首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
5.
The yeast Paf1 complex (Paf1C), composed of Paf1, Ctr9, Cdc73, Rtf1, and Leo1, associates with RNA polymerase II (Pol II) at promoters and in the actively transcribed portions of mRNA genes. Loss of Paf1 results in severe phenotypes and significantly reduced levels of the other Paf1C components. In contrast, loss of Rtf1 causes relatively subtle phenotypic changes and no reduction in the other Paf1C factors but disrupts the association of these factors with Pol II and chromatin. To elucidate the fate of the Paf1C when dissociated from Pol II, we examined the localization of the Paf1C components in paf1 and rtf1 mutant yeast strains. We found that although the Paf1C factors remain nuclear in paf1 and rtf1 strains, loss of Paf1 or Rtf1 results in a change in the subnuclear distribution of the remaining factors. In wild-type cells, Paf1C components are present in the nucleoplasm but not the nucleolus. In contrast, in both paf1 and rtf1 strains, the remaining factors are found in the nucleolus as well as the nucleoplasm. Loss of Paf1 affects nucleolar function; we observed that expression of MAK21 and RRP12, important for rRNA processing, is reduced concomitant with an increase in rRNA precursors in a paf1 strain. However, these changes are not the result of relocalization of the Paf1C because loss of Rtf1 does not cause similar changes in rRNA processing. Instead, we speculate that the change in localization may reflect a link between the Paf1C and newly synthesized mRNAs as they exit the nucleus.  相似文献   

6.
7.
The Paf1 complex (Paf1C) interacts with RNA polymerase II (Pol II) and promotes histone methylation of transcribed coding sequences, but the mechanism of Paf1C recruitment is unknown. We show that Paf1C is not recruited directly by the activator Gcn4p but is dependent on preinitiation complex assembly and Ser5 carboxy-terminal domain phosphorylation for optimal association with ARG1 coding sequences. Importantly, Spt4p is required for Paf1C occupancy at ARG1 (and other genes) and for Paf1C association with Ser5-phosphorylated Pol II in cell extracts, whereas Spt4p-Pol II association is independent of Paf1C. Since spt4Delta does not reduce levels of Pol II at ARG1, Ser5 phosphorylation, or Paf1C expression, it appears that Spt4p (or its partner in DSIF, Spt5p) provides a platform on Pol II for recruiting Paf1C following Ser5 phosphorylation and promoter clearance. spt4Delta reduces trimethylation of Lys4 on histone H3, demonstrating a new role for yeast DSIF in promoting a Paf1C-dependent function in elongation.  相似文献   

8.
9.
10.
11.
12.
B Dichtl  W Keller 《The EMBO journal》2001,20(12):3197-3209
Recognition of poly(A) sites in yeast pre-mRNAs is poorly understood. Employing an in vitro cleavage system with cleavage and polyadenylation factor (CPF) and cleavage factor IA we show that the efficiency and positioning elements are dispensable for poly(A)-site recognition within a short CYC1 substrate in vitro. Instead, U-rich elements immediately upstream and downstream of the poly(A) site mediate cleavage-site recognition within CYC1 and ADH1 pre-mRNAs. These elements act in concert with the poly(A) site to produce multiple recognition sites for the processing machinery, since combinations of mutations within these elements were most effective in cleavage inhibition. Intriguingly, introduction of a U-rich element downstream of the GAL7 poly(A) site strongly enhanced cleavage, underscoring the importance of downstream sequences in general. RNA- binding analyses demonstrate that cleavage depends on the recognition of the poly(A)-site region by CPF. Consistent with in vitro results, mutation of sequences upstream and downstream of the poly(A) site affected 3'-end formation in vivo. A model for yeast pre-mRNA cleavage-site recognition outlines an unanticipated high conservation of yeast and mammalian 3'-end processing mechanisms.  相似文献   

13.
14.
15.
16.
The antiviral factor CPSF6-358 restricts human immunodeficiency virus type 1 (HIV-1) infection through an interaction with capsid (CA), preventing virus nuclear entry and integration. HIV-1 acquires resistance to CPSF6-358 through an N74D mutation of CA that impairs binding of the antiviral factor. Here we examined the determinants within CPSF6-358 that are necessary for CA-specific interaction. Residues 314 to 322 include amino acids that are essential for CPSF6-358 restriction of HIV-1. Fusion of CPSF6 residues 301 to 358 to rhesus TRIM5α is also sufficient to restrict wild-type but not N74D HIV-1. Restriction is lost if CPSF6 residues in the amino acid 314 to 322 interaction motif are mutated. Examination of the CA targeting motif in CPSF6-358 did not reveal evidence of positive selection. Given the sensitivity of different primate lentiviruses to CPSF6-358 and apparent conservation of this interaction, our data suggest that CPSF6-358-mediated targeting of HIV-1 could provide a broadly effective antiviral strategy.  相似文献   

17.
18.
The exosome complex of 3'-5' exonucleases participates in RNA maturation and quality control and can rapidly degrade RNA-protein complexes in vivo. However, the purified exosome showed weak in vitro activity, indicating that rapid RNA degradation requires activating cofactors. This work identifies a nuclear polyadenylation complex containing a known exosome cofactor, the RNA helicase Mtr4p; a poly(A) polymerase, Trf4p; and a zinc knuckle protein, Air2p. In vitro, the Trf4p/Air2p/Mtr4p polyadenylation complex (TRAMP) showed distributive RNA polyadenylation activity. The presence of the exosome suppressed poly(A) tail addition, while TRAMP stimulated exosome degradation through structured RNA substrates. In vivo analyses showed that TRAMP is required for polyadenylation and degradation of rRNA and snoRNA precursors that are characterized exosome substrates. Poly(A) tails stimulate RNA degradation in bacteria, suggesting that this is their ancestral function. We speculate that this function was maintained in eukaryotic nuclei, while cytoplasmic mRNA poly(A) tails acquired different roles in translation.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号