首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Trypanosomes and Leishmanias are important human parasites whose cellular architecture is centred on the single flagellum. In trypanosomes, this flagellum is attached to the cell along a complex flagellum attachment zone (FAZ), comprising flagellar and cytoplasmic components, the integrity of which is required for correct cell morphogenesis and division. The cytoplasmic FAZ cytoskeleton is conspicuously associated with a sheet of endoplasmic reticulum termed the 'FAZ ER'. In the present work, 3D electron tomography of bloodstream form trypanosomes was used to clarify the nature of the FAZ ER. We also identified TbVAP, a T. brucei protein whose knockdown by RNAi in procyclic form cells leads to a dramatic reduction in the FAZ ER, and in the ER associated with the flagellar pocket. TbVAP is an orthologue of VAMP-associated proteins (VAPs), integral ER membrane proteins whose mutation in humans has been linked to familial motor neuron disease. The localisation of tagged TbVAP and the phenotype of TbVAP RNAi in procyclic form trypanosomes are consistent with a function for TbVAP in the maintenance of sub-populations of the ER associated with the FAZ and the flagellar pocket. Nevertheless, depletion of TbVAP did not affect cell viability or cell cycle progression.  相似文献   

2.
The vertebrate nervous system performs the most complex functions of any organ system. This feat is mediated by dedicated assemblies of neurons that must be precisely connected to one another and to peripheral tissues during embryonic development. Motor neurons, which innervate muscle and regulate autonomic functions, form an integral part of this neural circuitry. The first part of this review describes the remarkable progress in our understanding of motor neuron differentiation, which is arguably the best understood model of neuronal differentiation to date. During development, the coordinate actions of inductive signals from adjacent non-neural tissues initiate the differentiation of distinct motor neuron subclasses, with specific projection patterns, at stereotypical locations within the neural tube. Underlying this specialisation is the expression of specific homeodomain proteins, which act combinatorially to confer motor neurons with both their generic and subtype-specific properties. Ensuring that specific motor neuron subtypes innervate the correct target structure, however, requires precise motor axon guidance mechanisms. The second half of this review focuses on how distinct motor neuron subtypes pursue highly specific projection patterns by responding differentially to spatially discrete attractive and repulsive molecular cues. The tight link between motor neuron specification and axon pathfinding appears to be established by the dominant role of homeodomain proteins in dictating the ways that navigating motor axons interpret the plethora of guidance cues impinging on growth cones.  相似文献   

3.
Lipid transport between intracellular organelles is mediated by vesicular and nonvesicular transport mechanisms and is critical for maintaining the identities of different cellular membranes. Nonvesicular lipid transport between the endoplasmic reticulum (ER) and the Golgi complex has been proposed to affect the lipid composition of the Golgi membranes. Here, we show that the integral ER-membrane proteins VAP-A and VAP-B affect the structural and functional integrity of the Golgi complex. Depletion of VAPs by RNA interference reduces the levels of phosphatidylinositol-4-phosphate (PI4P), diacylglycerol, and sphingomyelin in the Golgi membranes, and it leads to substantial inhibition of Golgi-mediated transport events. These effects are coordinately mediated by the lipid-transfer/binding proteins Nir2, oxysterol-binding protein (OSBP), and ceramide-transfer protein (CERT), which interact with VAPs via their FFAT motif. The effect of VAPs on PI4P levels is mediated by the phosphatidylinositol/phosphatidylcholine transfer protein Nir2, which is required for Golgi targeting of OSBP and CERT and the subsequent production of diacylglycerol and sphingomyelin. We propose that Nir2, OSBP, and CERT function coordinately at the ER-Golgi membrane contact sites, thereby affecting the lipid composition of the Golgi membranes and consequently their structural and functional identities.  相似文献   

4.
5.
Chaperoning ribonucleoprotein biogenesis in health and disease   总被引:3,自引:0,他引:3       下载免费PDF全文
Pellizzoni L 《EMBO reports》2007,8(4):340-345
The survival motor neuron (SMN) protein is part of a macromolecular complex that functions in the biogenesis of small nuclear ribonucleoproteins (snRNPs)--the essential components of the pre-messenger RNA splicing machinery--as well as probably other RNPs. Reduced levels of SMN expression cause the inherited motor neuron disease spinal muscular atrophy (SMA). Knowledge of the composition, interactions and functions of the SMN complex has advanced greatly in recent years. The emerging picture is that the SMN complex acts as a macromolecular chaperone of RNPs to increase the efficiency and fidelity of RNA-protein interactions in vivo, and to provide an opportunity for these interactions to be regulated. In addition, it seems that RNA metabolism deficiencies underlie SMA. Here, a dual dysfunction hypothesis is presented in which two mechanistically and temporally distinct defects--that are dependent on the extent of SMN reduction in SMA--affect the homeostasis of specific messenger RNAs encoding proteins essential for motor neuron development and function.  相似文献   

6.
Amyotrophic lateral sclerosis (ALS) is an age-related, fatal motor neuron degenerative disease occurring both sporadically (sALS) and heritably (fALS), with inherited cases accounting for approximately 10% of diagnoses. Although multiple mechanisms likely contribute to the pathogenesis of motor neuron injury in ALS, recent advances suggest that oxidative stress may play a significant role in the amplification, and possibly the initiation, of the disease. Lipid peroxidation is one of the several outcomes of oxidative stress. Since the central nervous system (CNS) is enriched with polyunsaturated fatty acids, it is particularly vulnerable to membrane-associated oxidative stress. Peroxidation of cellular membrane lipids or circulating lipoprotein molecules generates highly reactive aldehydes, among which is 4-hydroxy-2-nonenal (HNE). HNE levels are increased in spinal cord motor neurons of ALS patients, indicating that lipid peroxidation is associated with the motor neuron degeneration in ALS. In the present study, we used a parallel proteomic approach to identify HNE-modified proteins in the spinal cord tissue of a model of fALS, G93A-SOD1 transgenic mice, in comparison to the nontransgenic mice. We found three significantly HNE-modified proteins in the spinal cord of G93A-SOD1 transgenic mice: dihydropyrimidinase-related protein 2 (DRP-2), heat-shock protein 70 (Hsp70), and possibly alpha-enolase. These results support the role of oxidative stress as a major mechanism in the pathogenesis of ALS. Structural alteration and activity decline of functional proteins may consistently contribute to the neurodegeneration process in ALS.  相似文献   

7.
Amyotrophic lateral sclerosis is the most common motor neuron disease and is still incurable. The mechanisms leading to the selective motor neuron vulnerability are still not known. The interplay between motor neurons and astrocytes is crucial in the outcome of the disease. We show that mutant copper-zinc superoxide dismutase (SOD1) overexpression in primary astrocyte cultures is associated with decreased levels of proteins involved in secretory pathways. This is linked to a general reduction of total secreted proteins, except for specific enrichment in a number of proteins in the media, such as mutant SOD1 and valosin-containing protein (VCP)/p97. Because there was also an increase in exosome release, we can deduce that astrocytes expressing mutant SOD1 activate unconventional secretory pathways, possibly as a protective mechanism. This may help limit the formation of intracellular aggregates and overcome mutant SOD1 toxicity. We also found that astrocyte-derived exosomes efficiently transfer mutant SOD1 to spinal neurons and induce selective motor neuron death. We conclude that the expression of mutant SOD1 has a substantial impact on astrocyte protein secretion pathways, contributing to motor neuron pathology and disease spread.  相似文献   

8.
Gαi proteins play major roles in the developing and mature nervous system, ranging from the control of cellular proliferation to modulating synaptic plasticity. Although best known for transducing signals from activated seven transmembrane G-protein coupled receptors (GPCRs) when bound to GTP, key cellular functions for Gαi-GDP are beginning to emerge. Here, we show that Gαi2 is expressed in motor neuron progenitors that are differentiating to form postmitotic motor neurons in the developing spinal cord. Ablation of Gαi2 causes deficits in motor neuron generation but no changes in motor neuron progenitor patterning or specification, consistent with a function for Gαi2 in regulating motor neuron differentiation. We show that Gαi2 function is mediated in part by its interaction with GDE2, a known regulator of motor neuron differentiation, and that disruption of the GDE2/Gαi2 complex in vivo causes motor neuron deficits analogous to Gαi2 ablation. Gαi2 preferentially associates with GDE2 when bound to GDP, invoking GPCR-independent functions for Gαi2 in the control of spinal motor neuron differentiation.  相似文献   

9.
Expression of A53T mutant human alpha-synuclein under the mouse prion promoter is among the most successful transgenic models of Parkinson''s disease. Accumulation of A53T alpha-synuclein causes adult mice to develop severe motor impairment resulting in early death at 8–12 months of age. In younger, pre-symptomatic animals, altered motor activity and anxiety-like behaviors have also been reported. These behavioral changes, which precede severe neuropathology, may stem from non-pathological functions of alpha-synuclein, including modulation of monoamine neurotransmission. Our analysis over the adult life-span of motor activity, anxiety-like, and depressive-like behaviors identifies perturbations both before and after the onset of disease. Young A53T mice had increased distribution of the dopamine transporter (DAT) to the membrane that was associated with increased striatal re-uptake function. DAT function decreased with aging, and was associated with neurochemical alterations that included increased expression of beta-synuclein and gamma synuclein. Prior to normalization of dopamine uptake, transient activation of Tau kinases and hyperphosphorylation of Tau in the striatum were also observed. Aged A53T mice had reduced neuron counts in the substantia nigra pars compacta, yet striatal medium spiny neuron dendritic spine density was largely maintained. These findings highlight the involvement of the synuclein family of proteins and phosphorylation of Tau in the response to dopaminergic dysfunction of the nigrostriatal pathway.  相似文献   

10.
In the present review a large amount of experimental and clinical studies on ALS are discussed in an effort to dissect common pathogenic mechanisms which may provide novel information and potential therapeutic strategies for motor neuron degeneration.Protein clearing systems play a critical role in motor neuron survival during excitotoxic stress, aging and neurodegenerative disorders. Among various mechanisms which clear proteins from the cell recent studies indicate autophagy as the most prominent pathway to promote survival of motor neurons.Autophagy regulates the clearance of damaged mitochondria, endoplasmic reticulum and misfolded proteins in eukaryotic cells. Upon recruitment of the autophagy pathway, an autophagosome is produced and directed towards lysosomal degradation.Here we provide evidence that in both genetic and sporadic amyotrophic lateral sclerosis (ALS, the most common motor neuron disorder) a defect in the autophagy machinery is common. In fact, swollen, disrupted mitochondria and intracellular protein aggregates accumulate within affected motor neurons. These structures localize within double membrane vacuoles, autophagosomes, which typically cluster in perinuclear position. In keeping with this, when using autophagy inhibitors or suppressing autophagy promoting genes, motor symptoms and motor neuron death are accelerated. Conversely stimulation of autophagy alleviates motor neuron degeneration.Therefore, autophagy represents an important target when developing novel treatments in ALS.  相似文献   

11.
脊髓性肌萎缩症(spinal muscular atrophy,SMA)是一类与运动神经元存活基因(survival of motor neurons gene,SMN gene)突变有关的神经系统变性疾病,而SMN基因的转录产物即为SMN蛋白(survival of motorneurons protein,SMN protein)。SMN蛋白与多种蛋白结合后发挥作用,如SMN-Sm蛋白的相互作用在富含尿嘧啶的小核核糖核蛋白体(uridine—richsmallribonucleo—proteins,UsnRNPs)转运装配中有重要意义。SMN蛋白是通过其Tudor结构域与剪接体sm蛋白的二甲基化修饰的富含精氨酸一氨基乙酸域(ar—ginineandglycine—rich,RG)结合。  相似文献   

12.
13.
James H Hurley 《The EMBO journal》2015,34(19):2398-2407
The ESCRT proteins are an ancient system that buds membranes and severs membrane necks from their inner face. Three “classical” functions of the ESCRTs have dominated research into these proteins since their discovery in 2001: the biogenesis of multivesicular bodies in endolysosomal sorting; the budding of HIV-1 and other viruses from the plasma membrane of infected cells; and the membrane abscission step in cytokinesis. The past few years have seen an explosion of novel functions: the biogenesis of microvesicles and exosomes; plasma membrane wound repair; neuron pruning; extraction of defective nuclear pore complexes; nuclear envelope reformation; plus-stranded RNA virus replication compartment formation; and micro- and macroautophagy. Most, and perhaps all, of the functions involve the conserved membrane-neck-directed activities of the ESCRTs, revealing a remarkably widespread role for this machinery through a broad swath of cell biology.  相似文献   

14.
All plant pararetroviruses belong to the Caulimoviridae family. This family contains six genera of viruses with different biological, serological, and molecular characteristics. Although some important mechanisms of viral replication and host infection are understood, much remains to be discovered about the many functions of the viral proteins. The focus of this study, the virion-associated protein (VAP), is conserved among all members of the group and contains a coiled-coil structure that has been shown to assemble as a tetramer in the case of cauliflower mosaic virus. We have used the yeast two-hybrid system to characterize self-association of the VAPs of four distinct plant pararetroviruses, each belonging to a different genus of Caulimoviridae. Chemical cross-linking confirmed that VAPs assemble into tetramers. Tetramerization is thus a common property of these proteins in plant pararetroviruses. The possible implications of this conserved feature for VAP function are discussed.  相似文献   

15.
Mitochondrial dysfunction including that caused by oxidative stress has been implicated in the pathogenesis of neurodegenerative diseases. Glutaredoxin 1 (Grx1), a cytosolic thiol disulfide oxido-reductase, reduces glutathionylated proteins to protein thiols and helps maintain redox status of proteins during oxidative stress. Grx1 downregulation aggravates mitochondrial dysfunction in animal models of neurodegenerative diseases, such as Parkinson's and motor neuron disease. We examined the mechanism underlying the regulation of mitochondrial function by Grx1. Downregulation of Grx1 by shRNA results in loss of mitochondrial membrane potential (MMP), which is prevented by the thiol antioxidant, alpha-lipoic acid, or by cyclosporine A, an inhibitor of mitochondrial permeability transition. The thiol groups of voltage dependent anion channel (VDAC), an outer membrane protein in mitochondria but not adenosine nucleotide translocase (ANT), an inner membrane protein, are oxidized when Grx1 is downregulated. We then examined the effect of beta-N-oxalyl amino-L-alanine (L-BOAA), an excitatory amino acid implicated in neurolathyrism (a type of motor neuron disease), that causes mitochondrial dysfunction. Exposure of cells to L-BOAA resulted in loss of MMP, which was prevented by overexpression of Grx1. Grx1 expression is regulated by estrogen in the CNS and treatment of SH-SY5Y cells with estrogen upregulated Grx1 and protected from L-BOAA mediated MMP loss. Our studies demonstrate that Grx1, a cytosolic oxido-reductase, helps maintain mitochondrial integrity and prevents MMP loss caused by oxidative insult. Further, downregulation of Grx1 leads to mitochondrial dysfunction through oxidative modification of the outer membrane protein, VDAC, providing support for the critical role of Grx1 in maintenance of MMP.  相似文献   

16.
The importance of active axonal transport to the neuron has been highlighted by the recent discoveries that mutations in microtubule motor proteins result in neurodegenerative diseases. Mutations affecting microtubule motor function have been shown to cause hereditary forms of Charcot-Marie-Tooth disease (type 2A), hereditary spastic paraplegia and motor neuron disease. Although motor neurons appear to be uniquely susceptible to defects in axonal transport, recent work has identified links between perturbations in axonal transport and the pathogenesis of other neurodegenerative diseases such as Huntington's disease and Alzheimer's disease. More broadly, cytoskeletal abnormalities might also be at the root of related disorders such as spinal muscular atrophy, supporting a key role for axonal transport in the pathogenesis of many neurodegenerative diseases.  相似文献   

17.
While the long-term physiological adaptation of the neuromuscular system to changed functional demands is usually reflected by unilateral skeletal muscle transitions, the progressive degeneration of distinct motor neuron populations is often associated with more complex changes in the abundance and/or isoform expression pattern of contractile proteins and metabolic enzymes. In order to evaluate these intricate effects of primary motor neuronopathy on the skeletal muscle proteome, label-free MS was employed to study global alterations in the WR (wobbler) mouse model of progressive neurodegeneration. In motor neuron disease, fibre-type specification and the metabolic weighting of bioenergetic pathways appear to be strongly influenced by both a differing degree of a subtype-specific vulnerability of neuromuscular synapses and compensatory mechanisms of fibre-type shifting. Proteomic profiling confirmed this pathobiochemical complexity of disease-induced changes and showed distinct alterations in 72 protein species, including a variety of fibre-type-specific isoforms of contractile proteins, metabolic enzymes, metabolite transporters and ion-regulatory proteins, as well as changes in molecular chaperones and various structural proteins. Increases in slow myosin light chains and the troponin complex and a decrease in fast MBP (myosin-binding protein) probably reflect the initial preferential loss of the fast type of neuromuscular synapses in motor neuron disease.  相似文献   

18.
Amyotrophic lateral sclerosis is the most common form of motor neuron disease in adult patients and characterized by progressive paralysis. The wobbler mouse (phenotype WR, genotype wr/wr) is an established animal model of human motor neuron disease and is characterized by a large variety of cellular abnormalities including muscular atrophy. In analogy to recent proteomic studies of cerebrospinal fluid and spinal cord, we have used here fluorescence difference in-gel electrophoresis to analyze global changes in the skeletal muscle proteome from WR versus normal mice. Relative concentrations of 21 proteins were found to be increased and 3 proteins were decreased. Mass spectrometric analysis identified these proteins to be associated with key metabolic pathways, the contractile apparatus, intermediate filaments and the cellular stress response. Drastically increased levels of the glycolytic enzyme glyceraldehyde-3-phosphate dehydrogenase were confirmed by immunoblotting and this finding agrees with the idea of an oxidative-to-glycolytic shift in disease-related muscular atrophy. The establishment of novel disease-specific biomarkers of motor neuron disease might be helpful in the design of improved diagnostic tools and the identification of novel therapeutic targets.  相似文献   

19.
In this study, we investigated the mechanisms of sterol transport from the plasma membrane (PM) to the endoplasmic reticulum (ER) and lipid droplets (LDs) in HeLa cells. By overexpressing all mammalian oxysterol-binding protein-related proteins (ORPs), we found that especially ORP1S and ORP2 enhanced PM-to-LD sterol transport. This reflected the stimulation of transport from the PM to the ER, rather than from the ER to LDs. Double knockdown of ORP1S and ORP2 inhibited sterol transport from the PM to the ER and LDs, suggesting a physiological role for these ORPs in the process. A two phenylalanines in an acidic tract (FFAT) motif in ORPs that mediates interaction with VAMP-associated proteins (VAPs) in the ER was not necessary for the enhancement of sterol transport by ORPs. However, VAP-A and VAP-B silencing slowed down PM-to-LD sterol transport. This was accompanied by enhanced degradation of ORP2 and decreased levels of several FFAT motif-containing ORPs, suggesting a role for VAPs in sterol transport by stabilization of ORPs.  相似文献   

20.
Motor neurons are among some of the most unusual cells in the body becaue of their immense size and their role as the critical link between the motor centers of the brain and the muscles. In addition to their intrinsic biological interest, it is vital that we gain a better understanding of these cells and their pathology, since motor neuron degenerative diseases are lethal disorders that affect young and old and are relatively common. For example, one form of spinal muscular atrophy (SMA) is the most common genetic killer of children in the developed world. Amyotrophic lateral sclerosis (ALS), another form of motor neuron degeneration, is the third most common neurodegenerative cause of adult death, after Alzheimer's disease and Parkinson's disease, and is significantly more common than multiple sclerosis (Motor Neurone Disease Association 1998). Currently, approximately 1 in 500 people in England and Wales who die have a form of motor neuron disease (Motor Neurone Disease Association 1998). Each year, 5000 Americans are diagnosed with ALS, and of these, 10% are under 40 years old. Mouse models of motor neuron degeneration are essential for understanding the causes and mechanisms of motor neuron pathology. These mice are yielding important information that will ultimately lead to treatments and potentially cures for these diseases. Received: 5 June 2000 / Accepted: 27 July 2000  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号