首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
PUF proteins, a family of RNA-binding proteins, interact with the 3' untranslated regions (UTRs) of specific mRNAs to control their translation and stability. PUF protein action is commonly correlated with removal of the poly(A) tail of target mRNAs. Here, we focus on how PUF proteins enhance deadenylation and mRNA decay. We show that a yeast PUF protein physically binds Pop2p, which is a component of the Ccr4p-Pop2p-Not deadenylase complex, and that Pop2p is required for PUF repression activity. By binding Pop2p, the PUF protein simultaneously recruits the Ccr4p deadenylase and two other enzymes involved in mRNA regulation, Dcp1p and Dhh1p. We reconstitute regulated deadenylation in vitro and demonstrate that the PUF-Pop2p interaction is conserved in yeast, worms and humans. We suggest that the PUF-Pop2p interaction underlies regulated deadenylation, mRNA decay and repression by PUF proteins.  相似文献   

3.
PUF proteins control gene expression by binding to the 3'-untranslated regions of specific mRNAs and triggering mRNA decay or translational repression. Here we focus on the mechanism of PUF-mediated regulation. The yeast PUF protein, Mpt5p, regulates HO mRNA and stimulates removal of its poly(A) tail (i.e. deadenylation). Mpt5p repression in vivo is dependent on POP2, a component of the cytoplasmic Ccr4p-Pop2p-Not complex that deadenylates mRNAs. In this study, we elucidate the individual roles of the Ccr4p and Pop2p deadenylases in Mpt5p-regulated deadenylation. Both in vivo and in vitro, Pop2p and Ccr4p proteins are required for Mpt5p-regulated deadenylation of HO. However, the requirements for the two proteins differ dramatically: the enzymatic activity of Ccr4p is essential, whereas that of Pop2p is dispensable. We conclude that Pop2p is a bridge through which the PUF protein recruits the Ccr4p enzyme to the target mRNA, thereby stimulating deadenylation. Our data suggest that PUF proteins may enhance mRNA degradation and repress expression by both deadenylation-dependent and -independent mechanisms, using the same Pop2p bridge to recruit a multifunctional Pop2p complex to the mRNA.  相似文献   

4.
Deadenylation is the major step triggering mammalian mRNA decay. One consequence of deadenylation is the formation of nontranslatable messenger RNA (mRNA) protein complexes (messenger ribonucleoproteins [mRNPs]). Nontranslatable mRNPs may accumulate in P-bodies, which contain factors involved in translation repression, decapping, and 5'-to-3' degradation. We demonstrate that deadenylation is required for mammalian P-body formation and mRNA decay. We identify Pan2, Pan3, and Caf1 deadenylases as new P-body components and show that Pan3 helps recruit Pan2, Ccr4, and Caf1 to P-bodies. Pan3 knockdown causes a reduction of P-bodies and has differential effects on mRNA decay. Knocking down Caf1 or overexpressing a Caf1 catalytically inactive mutant impairs deadenylation and mRNA decay. P-bodies are not detected when deadenylation is blocked and are restored when the blockage is released. When deadenylation is impaired, P-body formation is not restorable, even when mRNAs exit the translating pool. These results support a dynamic interplay among deadenylation, mRNP remodeling, and P-body formation in selective decay of mammalian mRNA.  相似文献   

5.
6.
7.
mRNA deadenylation is a key process in the regulation of translation and mRNA turnover. In Saccharomyces cerevisiae, deadenylation is primarily carried out by the Ccr4p and Caf1p/Pop2p subunits of the Ccr4-Not complex, which is conserved in eukaryotes including humans. Here we have identified an unconventional human Ccr4-Caf1 complex containing hCcr4d and hCaf1z, distant human homologs of yeast Ccr4p and Caf1p/Pop2p, respectively. The hCcr4d-hCaf1z complex differs from conventional Ccr4-Not deadenylase complexes, because (i) hCaf1z and hCcr4d concentrate in nuclear Cajal bodies and shuttle between the nucleus and cytoplasm and (ii) the hCaf1z subunit, in addition to rapid deadenylation, subjects substrate RNAs to slow exonucleolytic degradation from the 3' end in vitro. Exogenously expressed hCaf1z shows both of those activities on reporter mRNAs in human HeLa cells and stimulates general mRNA decay when restricted to the cytoplasm by deletion of its nuclear localization signal. These observations suggest that the hCcr4d-hCaf1z complex may function either in the nucleus or in the cytoplasm after its nuclear export, to degrade polyadenylated RNAs, such as mRNAs, pre-mRNAs, or those RNAs that are polyadenylated prior to their degradation in the nucleus.  相似文献   

8.
9.
10.
The major pathways of mRNA turnover in eukaryotic cells are initiated by shortening of the poly(A) tail. Recent work has identified Ccr4p and Pop2p as components of the major cytoplasmic deadenylase in yeast. We now demonstrate that CCR4 encodes the catalytic subunit of the deadenylase and that Pop2p is dispensable for catalysis. In addition, we demonstrate that at least some of the Ccr4p/Pop2p-associated Not proteins are cytoplasmic, and lesions in some of the NOT genes can lead to defects in mRNA deadenylation rates. The Ccr4p deadenylase is inhibited in vitro by addition of the poly(A) binding protein (Pab1p), suggesting that dissociation of Pab1p from the poly(A) tail may be rate limiting for deadenylation in vivo. In addition, the rapid deadenylation of the COX17 mRNA, which is controlled by a member of the Pumilio family of deadenylation activators Puf3p, requires an active Ccr4p/Pop2p/Not deadenylase. These results define the Ccr4p/Pop2p/Not complex as the cytoplasmic deadenylase in yeast and identify positive and negative regulators of this enzyme complex.  相似文献   

11.
Eukaryotic mRNAs can be degraded in either decapping/5'-to-3' or 3'-to-5' direction after deadenylation. In yeast and mammalian cells, decay factors involved in the 5'-to-3' decay pathway are concentrated in cytoplasmic processing bodies (P bodies). The mechanistic steps and localization of mammalian mRNA decay are still not completely understood. Here, we investigate functions of human mRNA decay enzymes in AU-rich element (ARE)-mediated mRNA decay (AMD) and find that the deadenylase, poly(A) ribonuclease PARN, and enzymes involved in the 5'-to-3' and 3'-to-5' decay pathways are required for AMD. The ARE-containing reporter mRNA accumulates in discrete cytoplasmic granular structures, which are distinct from P bodies and stress granules. These granules consist of poly(A)-specific ribonuclease, exosome subunits, and decay-promoting ARE-binding proteins. Inhibition of AMD increases accumulation of ARE-mRNA in these granules. We refer to these structures as cytoplasmic exosome granules and suggest that some AMD may occur in these granules.  相似文献   

12.
13.
14.
Shortening of the poly(A) tail (deadenylation) is the first and often rate-limiting step in the degradation pathway of most eukaryotic mRNAs and is also used as a means of translational repression, in particular in early embryonic development. The nanos mRNA is translationally repressed by the protein Smaug in Drosophila embryos. The RNA has a short poly(A) tail at steady state and decays gradually during the first 2-3 h of development. Smaug has recently also been implicated in mRNA deadenylation. To study the mechanism of sequence-dependent deadenylation, we have developed a cell-free system from Drosophila embryos that displays rapid deadenylation of nanos mRNA. The Smaug response elements contained in the nanos 3'-untranslated region are necessary and sufficient to induce deadenylation; thus, Smaug is likely to be involved. Unexpectedly, deadenylation requires the presence of an ATP regenerating system. The activity can be pelleted by ultracentrifugation, and both the Smaug protein and the CCR4.NOT complex, a known deadenylase, are enriched in the active fraction. The same extracts show pronounced translational repression mediated by the Smaug response elements. RNAs lacking a poly(A) tail are poorly translated in the extract; therefore, SRE-dependent deadenylation contributes to translational repression. However, repression is strong even with RNAs either bearing a poly(A) tract that cannot be removed or lacking poly(A) altogether; thus, an additional aspect of translational repression functions independently of deadenylation.  相似文献   

15.
16.
Decapping is a critical step in mRNA decay. In the 5'-to-3' mRNA decay pathway conserved in all eukaryotes, decay is initiated by poly(A) shortening, and oligoadenylated mRNAs (but not polyadenylated mRNAs) are selectively decapped allowing their subsequent degradation by 5' to 3' exonucleolysis. The highly conserved heptameric Lsm1p-7p complex (made up of the seven Sm-like proteins, Lsm1p-Lsm7p) and its interacting partner Pat1p activate decapping by an unknown mechanism and localize with other decapping factors to the P-bodies in the cytoplasm. The Lsm1p-7p-Pat1p complex also protects the 3'-ends of mRNAs in vivo from trimming, presumably by binding to the 3'-ends. In order to determine the intrinsic RNA-binding properties of this complex, we have purified it from yeast and carried out in vitro analyses. Our studies revealed that it directly binds RNA at/near the 3'-end. Importantly, it possesses the intrinsic ability to distinguish between oligoadenylated and polyadenylated RNAs such that the former are bound with much higher affinity than the latter. These results indicate that the intrinsic RNA-binding characteristics of this complex form a critical determinant of its in vivo interactions and functions.  相似文献   

17.
Cytoplasmic deadenylation: regulation of mRNA fate   总被引:1,自引:0,他引:1  
  相似文献   

18.
In somatic cells, untranslated mRNAs accumulate in cytoplasmic foci called processing bodies or P-bodies. P-bodies contain complexes that inhibit translation and stimulate mRNA deadenylation, decapping, and decay. Recently, certain P-body proteins have been found in germ granules, RNA granules specific to germ cells. We have investigated a possible connection between P-bodies and germ granules in Caenorhabditis elegans. We identify PATR-1, the C. elegans homolog of the yeast decapping activator Pat1p, as a unique marker for P-bodies in C. elegans embryos. We find that P-bodies are inherited maternally as core granules that mature differently in somatic and germline blastomeres. In somatic blastomeres, P-bodies recruit the decapping activators LSM-1 and LSM-3. This recruitment requires the LET-711/Not1 subunit of the CCR4-NOT deadenylase and correlates spatially and temporally with the onset of maternal mRNA degradation. In germline blastomeres, P-bodies are maintained as core granules lacking LSM-1 and LSM-3. P-bodies interact with germ granules, but maintain distinct dynamics and components. The maternal mRNA nos-2 is maintained in germ granules, but not in P-bodies. We conclude that P-bodies are distinct from germ granules, and represent a second class of RNA granules that behaves differently in somatic and germline cells.  相似文献   

19.
Eukaryotic mRNAs containing premature termination codons are subjected to accelerated turnover, known as nonsense-mediated decay (NMD). Recognition of translation termination events as premature requires a surveillance complex, which includes the RNA helicase Upf1p. In Saccharomyces cerevisiae, NMD provokes rapid decapping followed by 5'-->3' exonucleolytic decay. Here we report an alternative, decapping-independent NMD pathway involving deadenylation and subsequent 3'-->5' exonucleolytic decay. Accelerated turnover via this pathway required Upf1p and was blocked by the translation inhibitor cycloheximide. Degradation of the deadenylated mRNA required the Rrp4p and Ski7p components of the cytoplasmic exosome complex, as well as the putative RNA helicase Ski2p. We conclude that recognition of NMD substrates by the Upf surveillance complex can target mRNAs to rapid deadenylation and exosome-mediated degradation.  相似文献   

20.
The destabilization of AU-rich element (ARE)-containing mRNAs mediated by proteins of the TIS11 family is conserved among eukaryotes including Drosophila. Previous studies have demonstrated that Tristetraprolin, a human protein of the TIS11 family, induces the degradation of ARE-containing mRNAs through a large variety of mechanisms including deadenylation, decapping, and P-body targeting. We have previously shown that the degradation of the mRNA encoding the antimicrobial peptide Cecropin A1 (CecA1) is controlled by the TIS11 protein (dTIS11) in Drosophila cells. In this study, we used CecA1 mRNA as a model to investigate the molecular mechanism of dTIS11-mediated mRNA decay. We observed that during the biphasic deadenylation and decay process of this mRNA, dTIS11 enhances deadenylation performed by the CCR4-CAF-NOT complex while the mRNA is still associated with ribosomes. Sequencing of mRNA degradation intermediates revealed that the complete deadenylation of the mRNA triggers its decapping and decay in both the 5′-3′ and the 3′-5′ directions. Contrary to the observations made for its mammalian homologs, overexpression of dTIS11 does not promote the localization of ARE-containing mRNAs in P-bodies but rather decreases the accumulation of CecA1 mRNA in these structures by enhancing the degradation process. Therefore, our results suggest that proteins of the TIS11 family may have acquired additional functions in the course of evolution from invertebrates to mammals.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号