首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The red-beard sponge Clathria prolifera, which is widely distributed in the USA, has been widely used as a model system in cell biology and has been proposed as a suitable teaching tool on biology and environmental sciences. We undertook the first detailed microbiological study of this sponge on samples collected from the Chesapeake Bay. A combination of culture-based studies, denaturing gradient gel electrophoresis, and bacterial community characterization based on 16S rRNA gene sequencing revealed that C. prolifera contains a diverse assemblage of bacteria that is different from that in the surrounding water. C. prolifera individuals were successfully maintained in a flow-through or recirculation aquaculture system for over 6 months and shifts in the bacterial assemblages of sponges in aquaculture compared with wild sponges were examined. The proteobacteria, bacteroidetes, actinobacteria, and cyanobacteria represented over 90% of the species diversity present in the total bacterial community of the wild C. prolifera. Actinobacteria, cyanobacteria, and spirochetes were not represented in clones obtained from C. prolifera maintained in the aquaculture system although these three groups comprised ca. 20% of the clones from wild C. prolifera, showing a significant effect of aquaculture on the bacterial community composition. This is the first systematic characterization of the bacterial community from a sponge found in the Chesapeake Bay. Changes in sponge bacterial composition were observed in sponges maintained in aquaculture and demonstrate the importance of monitoring microbial communities when cultivating sponges in aquaculture systems.  相似文献   

2.
The changes in bacterial communities associated with the marine sponge Mycale laxissima on transfer to aquaculture were studied using culture-based and molecular techniques. M. laxissima was maintained alive in flowthrough and closed recirculating aquaculture systems for 2 years and 1 year, respectively. The bacterial communities associated with wild and aquacultured sponges, as well as the surrounding water, were assessed using 16S rRNA gene clone library analysis and denaturing gradient gel electrophoresis (DGGE). Bacterial richness and diversity were measured using DOTUR computer software, and clone libraries were compared using S-LIBSHUFF. DGGE analysis revealed that the diversity of the bacterial community of M. laxissima increased when sponges were maintained in aquaculture and that bacterial communities associated with wild and aquacultured M. laxissima were markedly different than those of the corresponding surrounding water. Clone libraries of bacterial 16S rRNA from sponges confirmed that the bacterial communities changed during aquaculture. These communities were significantly different than those of seawater and aquarium water. The diversity of bacterial communities associated with M. laxissima increased significantly in aquaculture. Our work shows that it is important to monitor changes in bacterial communities when examining the feasibility of growing sponges in aquaculture systems because these communities may change. This could have implications for the health of sponges or for the production of bioactive compounds by sponges in cases where these compounds are produced by symbiotic bacteria rather than by the sponges themselves.  相似文献   

3.
Marine sponges contain complex assemblages of bacterial symbionts, the roles of which remain largely unknown. We identified diverse bacterial nifH genes within sponges and found that nifH genes are expressed in sponges. This is the first demonstration of the expression of any protein-coding bacterial gene within a sponge. Two sponges Ircinia strobilina and Mycale laxissima were collected from Key Largo, Florida and had delta(15)N values of c. 0-1 per thousand and 3-4 per thousand respectively. The potential for nitrogen fixation by symbionts was assessed by amplification of nifH genes. Diverse nifH genes affiliated with Proteobacteria and Cyanobacteria were detected, and expression of nifH genes affiliated with those from cyanobacteria was detected. The nifH genes from surrounding seawater were similar to those of Trichodesmium and clearly different from the cyanobacterial nifH genes detected in the two sponges. This study advances understanding of the role of bacterial symbionts in sponges and suggests that provision of fixed nitrogen is a means whereby symbionts benefit sponges in nutrient-limited reef environments. Nitrogen fixation by sponge symbionts is possibly an important source of new nitrogen to the reef environment that heretofore has been neglected and warrants further investigation.  相似文献   

4.
Microbial symbionts form abundant and diverse components of marine sponge holobionts, yet the ecological and evolutionary factors that dictate their community structure are unresolved. Here, we characterized the bacterial symbiont communities of three sympatric host species in the genus Ircinia from the NW Mediterranean Sea, using electron microscopy and replicated 16S rRNA gene sequence clone libraries. All Ircinia host species harbored abundant and phylogenetically diverse symbiont consortia, comprised primarily of sequences related to other sponge-derived microorganisms. Community-level analyses of bacterial symbionts revealed host species-specific genetic differentiation and structuring of Ircinia-associated microbiota. Phylogenetic analyses of host sponges showed a close evolutionary relationship between Ircinia fasciculata and Ircinia variabilis, the two host species exhibiting more similar symbiont communities. In addition, several bacterial operational taxonomic units were shared between I.?variabilis and Ircinia oros, the two host species inhabiting semi-sciophilous communities in more cryptic benthic habitats, and absent in I.?fasciculata, which occurs in exposed, high-irradiance habitats. The generalist nature of individual symbionts and host-specific structure of entire communities suggest that: (1) a 'specific mix of generalists' framework applies to bacterial symbionts in Ircinia hosts and (2) factors specific to each host species contribute to the distinct symbiont mix observed in Ircinia hosts.  相似文献   

5.
Marine sponges are hosts to diverse and dense bacterial communities and thus provide a potential environment for quorum sensing. Quorum sensing, a key factor in cell–cell communication and bacterial colonization of higher animals, might be involved in the symbiotic interactions between bacteria and their sponge hosts. Given that marine Proteobacteria are known to produce N -acyl homoserine lactone (AHL) signal molecules, we tested the production of AHLs by Alpha - and Gammaproteobacteria isolated from marine sponges Mycale laxissima and Ircinia strobilina and the surrounding water column. We used three different AHL biodetection systems in diffusion assays: Chromobacterium violaceum , Agrobacterium tumefaciens and Sinorhizobium meliloti with optimal sensitivity to short-chain (C4–C6), moderate-chain (C8–C12) and long-chain (≥ C14) AHLs respectively. Thirteen of 23 isolates from M. laxissima and five of 25 isolates from I. strobilina were found to produce AHLs. Signals were detected from two of eight proteobacterial strains from the water column. Thin-layer chromatographic assays based on the A. tumefaciens reporter system were utilized to determine the AHL profiles of the positive isolates. The types and amounts of AHLs synthesized varied considerably among the strains. Small ribosomal rRNA gene sequencing revealed that the AHL-producing alphaproteobacterial isolates were mainly from the Silicibacter–Ruegeria subgroup of the Roseobacter clade. Two-dimensional gel electrophoresis (2DGE)-based proteomic analyses were congruent with phylogenetic relationships but provided higher resolution to differentiate these closely related AHL-producing strains.  相似文献   

6.
1. The phospholipid fatty acid compositions of the sponges Ircinia strobilina, Ircinia felix, Ircinia campana, Ircinia sp., Spongia tubulifera and Dysidea etherea were studied, revealing the presence, besides other common fatty acids, of considerable amounts (2-5%) of the novel 23-methyl-5,9-tetracosadienoic acid (1). 2. The demospongic acids 5,9-tetracosadienoic acid, 23-methyl-5,9-tetracosadienoic acid (1), and 5,9-pentacosadienoic acid, were particularly abundant in sponges of the genus Ircinia, in contrast to the most common 5,9-hexacosadienoic acid found in other species. These findings are discussed in terms of the taxonomy of the Dictyoceratida. 3. The complete characterization of the novel phospholipid fatty acid 23-methyl-5,9-tetracosadienoic acid (1) is presented.  相似文献   

7.
Research on sponge microbial assemblages has revealed different trends in the geographic variability and specificity of bacterial symbionts. Here, we combined replicated terminal-restriction fragment length polymorphism (T-RFLP) and clone library analyses of 16S rRNA gene sequences to investigate the biogeographic and host-specific structure of bacterial communities in two congeneric and sympatric sponges: Ircinia strobilina, two color morphs of Ircinia felix and ambient seawater. Samples were collected from five islands of the Bahamas separated by 80 to 400 km. T-RFLP profiles revealed significant differences in bacterial community structure among sponge hosts and ambient bacterioplankton. Pairwise statistical comparisons of clone libraries confirmed the specificity of the bacterial assemblages to each host species and differentiated symbiont communities between color morphs of I. felix. Overall, differences in bacterial communities within each host species and morph were unrelated to location. Our results show a high degree of symbiont fidelity to host sponge across a spatial scale of up to 400 km, suggesting that host-specific rather than biogeographic factors play a primary role in structuring and maintaining sponge–bacteria relationships in Ircinia species from the Bahamas.  相似文献   

8.
Sporadic mass mortality events of Mediterranean sponges following periods of anomalously high temperatures or longer than usual stratification of the seawater column (i.e. low food availability) suggest that these animals are sensitive to environmental stresses. The Mediterranean sponges Ircinia fasciculata and I. oros harbor distinct, species-specific bacterial communities that are highly stable over time and space but little is known about how anomalous environmental conditions affect the structure of the resident bacterial communities. Here, we monitored the bacterial communities in I. fasciculata (largely affected by mass mortalities) and I. oros (overall unaffected) maintained in aquaria during 3 weeks under 4 treatments that mimicked realistic stress pressures: control conditions (13°C, unfiltered seawater), low food availability (13°C, 0.1 µm-filtered seawater), elevated temperatures (25°C, unfiltered seawater), and a combination of the 2 stressors (25°C, 0.1 µm-filtered seawater). Bacterial community structure was assessed using terminal restriction fragment length polymorphism (T-RFLP) analysis of 16S rRNA gene sequences and transmission electron microscopy (TEM). As I. fasciculata harbors cyanobacteria, we also measured chlorophyll a (chl a) levels in this species. Multivariate analysis revealed no significant differences in bacterial T-RFLP profiles among treatments for either host sponge species, indicating no effect of high temperatures and food shortage on symbiont community structure. In I. fasciculata, chl a content did not significantly differ among treatments although TEM micrographs revealed some cyanobacteria cells undergoing degradation when exposed to both elevated temperature and food shortage conditions. Arguably, longer-term treatments (months) could have eventually affected bacterial community structure. However, we evidenced no appreciable decay of the symbiotic community in response to medium-term (3 weeks) environmental anomalies purported to cause the recurrent sponge mortality episodes. Thus, changes in symbiont structure are not likely the proximate cause for these reported mortality events.  相似文献   

9.
Erwin PM  Olson JB  Thacker RW 《PloS one》2011,6(11):e26806

Background

Marine sponges can associate with abundant and diverse consortia of microbial symbionts. However, associated bacteria remain unexamined for the majority of host sponges and few studies use phylogenetic metrics to quantify symbiont community diversity. DNA fingerprinting techniques, such as terminal restriction fragment length polymorphisms (T-RFLP), might provide rapid profiling of these communities, but have not been explicitly compared to traditional methods.

Methodology/Principal Findings

We investigated the bacterial communities associated with the marine sponges Hymeniacidon heliophila and Haliclona tubifera, a sympatric tunicate, Didemnum sp., and ambient seawater from the northern Gulf of Mexico by combining replicated clone libraries with T-RFLP analyses of 16S rRNA gene sequences. Clone libraries revealed that bacterial communities associated with the two sponges exhibited lower species richness and lower species diversity than seawater and tunicate assemblages, with differences in species composition among all four source groups. T-RFLP profiles clustered microbial communities by source; individual T-RFs were matched to the majority (80.6%) of clone library sequences, indicating that T-RFLP analysis can be used to rapidly profile these communities. Phylogenetic metrics of community diversity indicated that the two sponge-associated bacterial communities include dominant and host-specific bacterial lineages that are distinct from bacteria recovered from seawater, tunicates, and unrelated sponge hosts. In addition, a large proportion of the symbionts associated with H. heliophila were shared with distant, conspecific host populations in the southwestern Atlantic (Brazil).

Conclusions/Significance

The low diversity and species-specific nature of bacterial communities associated with H. heliophila and H. tubifera represent a distinctly different pattern from other, reportedly universal, sponge-associated bacterial communities. Our replicated sampling strategy, which included samples that reflect the ambient environment, allowed us to differentiate resident symbionts from potentially transient or prey bacteria. Pairing replicated clone library construction with rapid community profiling via T-RFLP analyses will greatly facilitate future studies of sponge-microbe symbioses.  相似文献   

10.
Denaturing gradient gel electrophoresis (DGGE) of PCR-amplified 16S rDNA was used to characterise and compare bacterial communities associated with scallop larvae (Pecten maximus), in different production units in a shellfish hatchery. Water and larvae samples were collected from three different aquaculture systems; stagnant, flow-through and a flow- through system with seawater treated with ozone. Samples were also collected from different algal cultures, inlet tanks and water pipes leading to the different aquaculture systems. Clear differences were seen between the bacterial community associated with the larvae and in the water from the different aquaculture systems. However, there were high similarities in the community composition between different water samples and between larvae samples collected at different time periods, indicating a high stability in the bacterial communities. Fifty three percent of the sequences from these samples were similar to 16S rRNA gene sequences of members of the gamma-subclass of the Proteobacteria. The different algal cultures had different bacterial communities, however 73 percent of the sequences were similar to 16S rRNA gene sequences of members of the alpha-subclass of the Proteobacteria. Differences in the DGGE profiles were also seen between the samples taken from the inlet tanks and water pipes, indicating a change in the bacterial community composition as the water passed through the pipes. To our knowledge this is the first study investigating bacterial communities associated with Great Scallop larvae in different aquaculture systems including noncultured components.  相似文献   

11.
Symbiotic bacteria play vital roles in the survival and health of marine sponges. Sponges harbor rich, diverse and species-specific microbial communities. Symbiotic marine bacteria have increasingly been reported as promising source of bioactive compounds. A culturomics-based study was undertaken to study the diversity of bacteria from marine sponges and their antimicrobial potential. We have collected three sponge samples i.e. Acanthaster carteri, Rhytisma fulvum (soft coral) and Haliclona caerulea from north region (Obhur) of Red Sea, Jeddah Saudi Arabia. Total of 144 bacterial strains were isolated from three marine sponges using culture dependent method. Screening of isolated strains showed only 37 (26%) isolates as antagonists against oomycetes pathogens (P. ultimum and P. capsici). Among 37 antagonistic bacteria, only 19 bacterial strains exhibited antibacterial activity against human pathogens (Methicillin-resistant Staphylococcus aureus (MRSA) ATCC 43300, Pseudomonas aeruginosa ATCC 27853, Escherichia coli ATCC 8739, Enterococcus faecalis ATCC 29212). Four major classes of bacteria i.e γ-Proteobacteria, α-Proteobacteria, Firmicutes and Actinobacteria were recorded from three marine sponges where γ-Proteobacteria was dominant class. One potential bacterial strain Halomonas sp. EA423 was selected for identification of bioactive metabolites using GC and LC-MS analyses. Bioactive compounds Sulfamerazine, Metronidazole-OH and Ibuprofen are detected from culture extract of strain Halomonas sp. EA423. Overall, this study gives insight into composition and diversity of antagonistic bacterial community of marine sponges and coral from Red Sea and presence of active metabolites from potential strain. Our results showed that these diverse and potential bacterial communities further need to be studied to exploit their biotechnological significance.  相似文献   

12.
Marine sponges often harbor photosynthetic symbionts that may enhance host metabolism and ecological success, yet little is known about the factors that structure the diversity, specificity, and nature of these relationships. Here, we characterized the cyanobacterial symbionts in two congeneric and sympatric host sponges that exhibit distinct habitat preferences correlated with irradiance: Ircinia fasciculata (higher irradiance) and Ircinia variabilis (lower irradiance). Symbiont composition was similar among hosts and dominated by the sponge-specific cyanobacterium Synechococcus spongiarum. Phylogenetic analyses of 16S-23S rRNA internal transcribed spacer (ITS) gene sequences revealed that Mediterranean Ircinia spp. host a specific, novel symbiont clade ("M") within the S. spongiarum species complex. A second, rare cyanobacterium related to the ascidian symbiont Synechocystis trididemni was observed in low abundance in I. fasciculata and likewise corresponded to a new symbiont clade. Symbiont communities in I. fasciculata exhibited nearly twice the chlorophyll a concentrations of I. variabilis. Further, S. spongiarum clade M symbionts in I. fasciculata exhibited dense intracellular aggregations of glycogen granules, a storage product of photosynthetic carbon assimilation rarely observed in I. variabilis symbionts. In both host sponges, S. spongiarum cells were observed interacting with host archeocytes, although the lower photosynthetic activity of Cyanobacteria in I. variabilis suggests less symbiont-derived nutritional benefit. The observed differences in clade M symbionts among sponge hosts suggest that ambient irradiance conditions dictate symbiont photosynthetic activity and consequently may mediate the nature of host-symbiont relationships. In addition, the plasticity exhibited by clade M symbionts may be an adaptive attribute that allows for flexibility in host-symbiont interactions across the seasonal fluctuations in light and temperature characteristic of temperate environments.  相似文献   

13.
Marine sponges harbor dense microbial communities of exceptionally high diversity. Despite the complexity of sponge microbiota, microbial communities in different sponges seem to be remarkably similar. In this study, we used a subset of a previously established 454 amplicon pyrosequencing dataset (Schmitt and Taylor, unpublished data). Five Mediterranean sponges were chosen including the model sponge Aplysina aerophoba to determine the extent of uniformity by defining (i) the core microbial community, consisting of bacteria found in all sponges, (ii) the variable microbial community, consisting of bacteria found in 2–4 sponges, and (iii) the species-specific community, consisting of bacteria found in only one sponge. Using the enormous sequencing depth of pyrosequencing the diversity in each of the five sponges was extended to up to 15 different bacterial phyla per sponge with Proteobacteria and Chloroflexi being most diverse in each of the five sponges. Similarity comparison of bacteria on phylum and phylotype level revealed most similar communities in A. aerophoba and A. cavernicola and the most dissimilar community in Pseudocorticium jarrei. A surprising minimal core bacterial community was found when distribution of 97% operational taxonomic units (OTUs) was analyzed. Core, variable, and species-specific communities were comprised of 2, 26, and 72% of all OTUs, respectively. This indicates that each sponge contains a large set of unique bacteria and shares only few bacteria with other sponges. However, host species-specific bacteria are probably still closely related to each other explaining the observed similarity among bacterial communities in sponges.  相似文献   

14.
Marine sponges are well known for their associations with highly diverse, yet very specific and often highly similar microbiota. The aim of this study was to identify potential bacterial sub-populations in relation to sponge phylogeny and sampling sites and to define the core bacterial community. 16S ribosomal RNA gene amplicon pyrosequencing was applied to 32 sponge species from eight locations around the world''s oceans, thereby generating 2567 operational taxonomic units (OTUs at the 97% sequence similarity level) in total and up to 364 different OTUs per sponge species. The taxonomic richness detected in this study comprised 25 bacterial phyla with Proteobacteria, Chloroflexi and Poribacteria being most diverse in sponges. Among these phyla were nine candidate phyla, six of them found for the first time in sponges. Similarity comparison of bacterial communities revealed no correlation with host phylogeny but a tropical sub-population in that tropical sponges have more similar bacterial communities to each other than to subtropical sponges. A minimal core bacterial community consisting of very few OTUs (97%, 95% and 90%) was found. These microbes have a global distribution and are probably acquired via environmental transmission. In contrast, a large species-specific bacterial community was detected, which is represented by OTUs present in only a single sponge species. The species-specific bacterial community is probably mainly vertically transmitted. It is proposed that different sponges contain different bacterial species, however, these bacteria are still closely related to each other explaining the observed similarity of bacterial communities in sponges in this and previous studies. This global analysis represents the most comprehensive study of bacterial symbionts in sponges to date and provides novel insights into the complex structure of these unique associations.  相似文献   

15.
The aim of this study was to investigate the diversity and variability of bacterial communities associated with the marine sponge Halichondria panicea with respect to tissue compartmentalization as well as seasonal and small-scale geographic variation. Diversity of microorganisms in sponges was investigated recently, but work on the variability and succession of associated bacterial communities is rare. Despite some information on Pacific and Mediterranean sponges, it is still uncertain whether bacteria and sponges are specifically associated. In this study, H. panicea specimens were sampled throughout the year at different stations around the island of Helgoland (North Sea) and investigated using molecular tools. The bacterial community associated with H. panicea was diverse, consisting of one denaturing gradient gel electrophoresis (DGGE) band occurring in most 'tissue' samples and additional variable bands. Variability was observed between different sponge fractions (i.e. the aquiferous system and the 'tissue'), sampling locations, and sampling dates. A PCR-DGGE specific for the Roseobacter group of marine Alphaproteobacteria displayed low diversity and a marked similarity between all samples. Phylogenetic analysis also pointed to specific Alphaproteobacteria of the Roseobacter group, which was predominant in most sponge 'tissue' samples. We conclude that H. panicea harbour a specific Roseobacter population with varying bacterial co-populations occurring seasonally or on a small-scale geographically, sometimes even dominating the bacterial community.  相似文献   

16.
Cultivation of sponges is being explored to supply biomaterial for the pharmaceutical and cosmetics industries. This study assesses the impact of various cultivation methods on the microbial community within the sponge Rhopaloeides odorabile during: (1) in situ cultivation under natural environmental conditions, (2) ex situ cultivation in small flow-through aquaria and (3) ex situ cultivation in large mesocosm systems. Principal components analysis of denaturing gradient gel electrophoresis profiles indicated a stable microbial community in sponges cultured in situ (grown in the wild) and in sponges cultured ex situ in small flow-through aquaria over 12 weeks. In contrast, a shift in the microbial community was detected in sponges cultivated ex situ in large mesocosm aquaria for 12 months. This shift included (1) a loss of some stable microbial inhabitants, including members of the Poribacteria, Chloroflexi and Acidobacteria and (2) the addition of new microbes not detected in the wild sponges. Many of these acquired bacteria had highest similarity to known sponge-associated microbes, indicating that the sponge may be capable of actively selecting its microbial community. Alternatively, long-term ex situ cultivation may cause a shift in the dominant microbes that facilitates the growth of the more rare species. The microbial community composition varied between sponges cultivated in mesocosm aquaria with different nutrient concentrations and seawater chemistry, suggesting that these variables play a role in structuring the sponge-associated microbes. The high growth and symbiont stability in R. odorabile cultured in situ confirm that this is the preferred method of aquaculture for this species at this time.  相似文献   

17.
Microbes associated with marine sponges play significant roles in host physiology. Remarkable levels of microbial diversity have been observed in sponges worldwide through both culture-dependent and culture-independent studies. Most studies have focused on the structure of the bacterial communities in sponges and have involved sponges sampled from shallow waters. Here, we used pyrosequencing of 16S rRNA genes to compare the bacterial and archaeal communities associated with two individuals of the marine sponge Inflatella pellicula from the deep-sea, sampled from a depth of 2,900 m, a depth which far exceeds any previous sequence-based report of sponge-associated microbial communities. Sponge-microbial communities were also compared to the microbial community in the surrounding seawater. Sponge-associated microbial communities were dominated by archaeal sequencing reads with a single archaeal OTU, comprising ∼60% and ∼72% of sequences, being observed from Inflatella pellicula. Archaeal sequencing reads were less abundant in seawater (∼11% of sequences). Sponge-associated microbial communities were less diverse and less even than any other sponge-microbial community investigated to date with just 210 and 273 OTUs (97% sequence identity) identified in sponges, with 4 and 6 dominant OTUs comprising ∼88% and ∼89% of sequences, respectively. Members of the candidate phyla, SAR406, NC10 and ZB3 are reported here from sponges for the first time, increasing the number of bacterial phyla or candidate divisions associated with sponges to 43. A minor cohort from both sponge samples (∼0.2% and ∼0.3% of sequences) were not classified to phylum level. A single OTU, common to both sponge individuals, dominates these unclassified reads and shares sequence homology with a sponge associated clone which itself has no known close relative and may represent a novel taxon.  相似文献   

18.
The diversity and specificity of microbial communities in marine environments is a key aspect of the ecology and evolution of both the eukaryotic hosts and their associated prokaryotes. Marine sponges harbor phylogenetically diverse and complex microbial lineages. Here, we investigated the sponge bacterial community and distribution patterns of microbes in three sympatric intertidal marine demosponges, Hymeniacidon perlevis, Ophlitaspongia papilla and Polymastia penicillus, from the Atlantic coast of Portugal using classical isolation techniques and 16S rRNA gene clone libraries. Microbial composition assessment, with nearly full-length 16S rRNA gene sequences (ca. 1400 bp) from the isolates (n = 31) and partial sequences (ca. 280 bp) from clone libraries (n = 349), revealed diverse bacterial communities and other sponge-associated microbes. The majority of the bacterial isolates were members of the order Vibrionales and other symbiotic bacteria like Pseudovibrio ascidiaceiocola, Roseobacter sp., Hahellaceae sp. and Cobetia sp. Extended analyses using ecological metrics comprising 142 OTUs supported the clear differentiation of bacterial community profiles among the sponge hosts and their ambient seawater. Phylogenetic analyses were insightful in defining clades representing shared bacterial communities, particularly between H. perlevis and the geographically distantly-related H. heliophila, but also among other sponges. Furthermore, we also observed three distinct and unique bacterial groups, Betaproteobactria (∼81%), Spirochaetes (∼7%) and Chloroflexi (∼3%), which are strictly maintained in low-microbial-abundance host species O. papilla and P. penicillus. Our study revealed the largely generalist nature of microbial associations among these co-occurring intertidal marine sponges.  相似文献   

19.
Seafloor massive sulfides are a potential energy source for the support of chemosynthetic ecosystems in dark, deep‐sea environments; however, little is known about microbial communities in these ecosystems, especially below the seafloor. In the present study, we performed culture‐independent molecular analyses of sub‐seafloor sulfide samples collected in the Southern Mariana Trough by drilling. The depth for the samples ranged from 0.52 m to 2.67 m below the seafloor. A combination of 16S rRNA and functional gene analyses suggested the presence of chemoautotrophs, sulfur‐oxidizers, sulfate‐reducers, iron‐oxidizers and iron‐reducers. In addition, mineralogical and thermodynamic analyses are consistent with chemosynthetic microbial communities sustained by sulfide minerals below the seafloor. Although distinct bacterial community compositions were found among the sub‐seafloor sulfide samples and hydrothermally inactive sulfide chimneys on the seafloor collected from various areas, we also found common bacterial members at species level including the sulfur‐oxidizers and sulfate‐reducers, suggesting that the common members are widely distributed within massive sulfide deposits on and below the seafloor and play a key role in the ecosystem function.  相似文献   

20.
The aim of this study was to analyze successional changes in the bacterial community over a period of 6 months of cultivation of Aplysina aerophoba sponges under different artificial cultivation conditions by use of denaturing gradient gel electrophoresis (DGGE). The cultivation conditions varied concerning the water temperature (20 ± 2 °C and 25 ± 2 °C) of the aquaria, additional illumination of one aquarium, and feeding of the sponges. Amplicons from DGGE separation of dominant colonizing or variably appearing bacteria were sequenced and aligned for taxonomical identification. In addition, secondary metabolites typically found in A. aerophoba were analyzed to investigate changes in the natural product profile during cultivation. The cultivation of sponges under any given condition did not lead to a depletion of their bacterial community in the course of the experiment. On the contrary, the distinctive set of associated bacteria was maintained in spite of a dramatic loss of biomass and morphological degradation during the cultivation period. Generally, all sequences obtained from the DGGE gels were related to bacteria of five phyla: Actinobacteria, Cyanobacteria, α-Proteobacteria, γ-Proteobacteria, and Chloroflexi. Despite the overall stability of the bacterial community in A. aerophoba, an unambiguous variability was detected for the CyanobacteriaA. aerophoba clone TK09”. This variability was ascribed to the predominant light conditions. The analysis of the metabolic pattern revealed that the concentration of a class of characteristic-brominated compounds typically found in A. aerophoba, like aeroplysinin-1, aerophobin-1, aerophobin-2, and isofistularin-3, increased over the 6 months of cultivation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号