首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Acetyl phosphate is hydrolyzed by the calcium ATPase of leaky sarcoplasmic reticulum vesicles from rabbit skeletal muscle with Km = 6.5 mM and kcat = 7.9 s-1 in the presence of 100 microM calcium (180 mM K+, 5 mM MgSO4, pH 7.0, 25 degrees C). In the absence of calcium, hydrolysis is 6% of the calcium-dependent rate at low and 24% at saturating concentrations of acetyl phosphate. Values of K0.5 for calcium are 3.5 and 2.2 microM (n = 1.6) in the presence of 1 and 50 mM acetyl phosphate, respectively; inhibition by calcium follows K0.5 = 1.6 mM (n approximately 1.1) with 50 mM acetyl phosphate and K0.5 = 0.5 mM (n approximately 1.3) with 1.5 mM ATP. The calcium-dependent rate of phosphoenzyme formation from acetyl phosphate is consistent with Km = 43 mM and kf = 32 s-1 at saturation; decomposition of the phosphoenzyme occurs with kt = 16 s-1. The maximum fraction of phosphoenzyme formed in the steady state at saturating acetyl phosphate concentrations is 43-46%. These results are consistent with kc congruent to 30 s-1 for binding of Ca2+ to E at saturating [Ca2+], to give cE.Ca2, in the absence of activation by ATP. Phosphoenzyme formed from ATP and from acetyl phosphate shows the same biphasic reaction with ADP, rate constants for decomposition that are the same within experimental error, and similar or identical activation of decomposition by ATP. It is concluded that the reaction pathways for acetyl phosphate and ATP in the presence of Ca2+ are the same, with the exception of calcium binding and phosphorylation; an alternative, faster route that avoids the kc step is available in the presence of ATP. The existence of three different regions of dependence on ATP concentration for steady state turnover is confirmed; activation of hydrolysis at high ATP concentrations involves an ATP-induced increase in kt.  相似文献   

2.
Millisecond mixing and quenching experiments were performed in order to study the rate of phosphorylation by Pi of the Ca2+-dependent ATPase of sarcoplasmic reticulum vesicles. A rapid phosphoenzyme formation was observed when the vesicles were preincubated in the absence of Ca2+ prior to the addition of Pi and Mg2+ to the medium, the half-time being in the range of 6 to 10 ms. A lag phase and a 5- to 10-fold slower rate of phosphoenzyme formation were observed when the enzyme was preincubated with Ca2+ prior to the addition to the reaction mixture of Pi, Mg2+, and an excess of ethylene glycol bis(β-aminoethyl ether)N,N′-tetraacetic acid. The rate of phosphoenzyme hydrolysis was measured either by the addition of Ca2+ or, in the absence of Ca2+, by tracing the hydrolysis of radioactive phosphoenzyme upon the addition of nonradioactive Pi. In the presence of Ca2+, the rate of phosphoenzyme hydrolysis was found to be one order of magnitude slower than the rate of hydrolysis measured in the absence of Ca2+. Different rates of phosphoenzyme formation and cleavage were found depending on whether sarcoplasmic reticulum vesicles or purified Ca2+-dependent ATPase were used. A transient phosphorylation by Pi was observed when the enzyme was preincubated in the absence of Ca2+ and then added to a medium containing Pi, Mg2+, and excess of Ca2+. The enzyme was phosphorylated during the initial 100 ms, the phosphoenzyme formed being slowly hydrolyzed in the subsequent incubation intervals. In these conditions ATP synthesis was observed if ADP was added to the mixture 100 ms after starting the reaction. No transient phosphorylation by Pi was observed when the enzyme was preincubated with Ca2+. Synthesis of a small but significant amount of ATP was observed when the enzyme was preincubated in the absence of Ca2+ and then added to a medium containing Pi, ADP, Mg2+, and 20 mm CaCl2. This was not observed when the enzyme was preincubated in the presence of Ca2+.  相似文献   

3.
Ca2+ binding and internalization in sarcoplasmic reticulum ATPase can be investigated by the use of La3+ as a Ca2+ analog. Displacement kinetics of Ca2+ bound by La3+ in native vesicles is a slow biphasic process (k1 = 0.55 s-1 and k2 = 0.05 s-1) that is consistent with the existence of two Ca2+ binding populations whereas in leaky vesicles there appears to be a single population (k = 0.57 s-1). Rapid quench experiments demonstrate that Ca2+ internalization occurs with an initial burst (approximately 8 nmol/mg protein) associated with the presence of a phosphate-donor substrate in the reaction medium. While acid quenching for measurements of phosphoenzyme is instantaneous, La3+ quenching allows completion of one catalytic and transport cycle due to the slow La3+ exchange with Ca2+. This explains the apparent inconsistencies in the kinetics and stoichiometry of phosphoenzyme formation and Ca2+ internalization that are observed under certain experimental conditions.  相似文献   

4.
The rise of intrinsic fluorescence due to calcium binding to sarcoplasmic reticulum ATPase occurs with a kobs of approximately 2 s-1 at pH 6.0, which is much lower than that observed at neutral pH. This is consistent with a H+-Ca2+ competition for the high-affinity sites. An accelerating effect of ATP on the calcium-induced transition can be clearly demonstrated at that pH. Nonhydrolyzable nucleotides, such as AMP-PNP, do not elicit the same response. Acetylphosphate also accelerates the calcium-induced fluorescence rise, demonstrating that this effect is limited to substrates that are able to form the phosphorylated enzyme intermediate. This effect, which is attributed to occupancy of the phosphorylation domain of the catalytic site, is distinct from the known secondary activation of enzyme turnover which is produced by ATP and by inactive nucleotide analogs, but not by acetylphosphate.  相似文献   

5.
Solutions of vanadate were controlled through concentration and pH adjustment to give specific compositions of mono- and oligovanadates. By monitoring the EPR spectrum of iodoacetamide spin-labeled ATPase, it is shown that decavanadate and the oligovanadate species present at neutral pH exhibit behavior typical of a substrate analogue. This is seen in terms of Ca2+ binding site affinity (microM), outward Ca2+ site orientation, and conformational effects on the enzyme normally associated with enzyme activation. In contrast, monovanadates exhibit behavior identical to that observed with Pi, with one exception: the vanadoenzyme is stable to Ca2+ in the concentration range of high affinity binding at the vanadate concentrations used here (200 microM). It is further demonstrated that Ca2+ binding in the 100 microM range directly induces enzyme devanadation of the monovanadate enzyme complex through Ca2+ binding to internal sites. Extensive array formation of dimeric ATPase units is found only with decavanadate in the absence of Ca2+, and then stoichiometric amounts are sufficient. Electron micrographs of dimeric arrays show evidence of increased penetration into the lipid bilayer, including freeze-fracture replicas which show evidence of corresponding "pits" in the inner leaflet of the bilayer. In turn, EPR spectra provide a means of following vanadate binding to the ATPase per se, as well as monitoring Ca2+-induced changes in the vanadoenzyme conformation, as only binding to specific sites on the enzyme affect the EPR spectrum.  相似文献   

6.
A J Murphy 《Biochemistry》1990,29(51):11236-11242
An adduct of a carbodiimide and ATP was synthesized from 1-ethyl-3-[3-(dimethylamino)propyl]carbodiimide (EDC) and the nucleotide. Despite its limited stability (t1/2 for hydrolysis of about 5 min at 25 degrees C), it was shown to react with and inactivate the calcium ATPase of sarcoplasmic reticulum in its vesicular, nonionic detergent-solubilized and purified forms. Saturation kinetics, with an ATP-EDC concentration dependence midpoint in the 10 microM range, were observed, suggesting an active-site affinity which is similar to ATP. The reaction was specific in that inactivation required reaction of about one adduct per ATPase. The modified enzyme could no longer be phosphorylated by ATP or Pi or hydrolyze p-nitrophenyl phosphate, but retained the ability to undergo the high-affinity calcium-dependent fluorescence change. It also bound trinitrophenyl-ADP and other nucleotides at least 10-fold more weakly than the unmodified ATPase. The inactivation reaction required the presence of Mg2+ and Ca2+ and was prevented by nucleotides such as ATP and ADP. For magnesium, the inactivation-enabling effect occurred with a midpoint of 3 mM. In the case of calcium, the transition resembled high-affinity binding in that it occurred cooperatively with a midpoint in the micromolar range. Higher [Mg2+] shifted this transition to higher [Ca2+]. Polyacrylamide gel electrophoresis (PAGE) demonstrated that the reaction converted the ATPase (Mr = 1.1 x 10(5)) to a species with an apparent Mr = (1.7-1.8) x 10(5). Since nonionic detergent-solubilized ATPase and purified ATPase gave similar results, intramolecular cross-linking is implicated.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

7.
Ca(2+) transport and UTP hydrolysis catalyzed by sarcoplasmic reticulum Ca(2+)-ATPase from skeletal muscle was studied. A passive Ca(2+) load inside microsomal vesicles clearly decreased the net uptake rate and the final accumulation of Ca(2+) but not the UTP hydrolysis rate, causing energy uncoupling. In the absence of passive leak, the Ca(2+)/P(i) coupling ratio was 0.7-0.8. UTP hydrolysis did not maintain a rapid component of Ca(2+) exchange between the cytoplasmic and lumenal compartments as occurs with ATP. The uncoupling process in the presence of UTP is associated with: (i) the absence of a steady state accumulation of ADP-insensitive phosphoenzyme; (ii) the cytoplasmic dissociation of Ca(2+) bound to the ADP-sensitive phosphoenzyme; and (iii) the absence of enzyme inhibition by cyclopiazonic acid. All these characteristics confirm the lack of enzyme conformations with low Ca(2+) affinity and point to the existence of an uncoupling mechanism mediated by a phosphorylated form of the enzyme. Suboptimal coupling values can be explained in molecular terms by the proposed functional model.  相似文献   

8.
Treatment of rabbit sarcoplasmic reticulum vesicles with the cross-linking agent, cupric phenanthroline, causes production of high-molecular weight bands on SDS-gel electrophoresis. A plot of log mol wt vs mobility indicates that the main band produced from the ATPase (mol wt = 105) has a mol wt of 4 × 105 and thus suggests formation of a tetramer. Notably, bands corresponding to dimers, trimers, pentamers, etc., are absent. The bands attributable to calsequestrin and calcium binding protein are unchanged by cupric phenanthroline. With extended treatment, the tetramer itself is polymerized (mol wt>106). Partial disruption of the membranes with deoxycholate or Triton X-100 before cross-linking favors tetramer formation; the presence of sodium dodecyl sulfate, on the other hand, prevents intermolecular cross-linking. Our results suggest that the ATPase is at least partially associated within the membrane as a tetramer.  相似文献   

9.
10.
We have investigated here the pre-steady state kinetics of sarcoplasmic reticulum ATPase incubated under conditions where significant amounts of Mg.ATP and Ca.ATP coexist, both of them being substrates for the ATPase. We confirmed that these two substrates are independently hydrolyzed by the ATPase, which thus apparently catalyzes Pi production by two simultaneous and separate pathways. External calcium (or the Ca2+/Mg2+ ratio) determines the extent to which Ca2+ or Mg2+ is bound at the phosphorylation site, while internal calcium controls the rate of processing of both the slow, calcium-containing and the fast, magnesium-containing phosphoenzyme. Time-dependent binding of calcium at the catalytic site is correlated with the observed burst of Pi liberation, which therefore results from reequilibration during pre-steady state of magnesium- and calcium-containing phosphoenzyme pools. Independently of direct exchange of metal at the catalytic site, ADP produced by the hydrolysis reaction contributes to reequilibration of these pools through reversal of phosphorylation by the ATP-ADP exchange pathway.  相似文献   

11.
Calcium and lanthanide binding in the sarcoplasmic reticulum ATPase   总被引:8,自引:0,他引:8  
The interactions of calcium and lathanides with the sarcoplasmic reticulum ATPase, and their respective ability to activate the enzyme, were studied by direct measurements of binding with radioactive tracers, functional effects on the ATPase partial reactions, changes in the quantum yield of tryptophanyl residues and a covalently bound fluorescein label (fluorescein 5-isothiocyanate, FITC), and energy transfer between bound lanthanide and fluorescent labels. We find that: (a) Lanthanides displace calcium from specific ATPase sites with diphasic kinetics that are consistent with sequential exchange. (b) Lanthanides in excess of the calcium stoichiometry are mostly bound to sarcoplasmic reticulum lipids and non-ATPase proteins. (c) Both calcium and lanthanides activate the ATPase and allow formation of the phosphorylated intermediate by utilization of ATP; however, hydrolytic cleavage of the intermediate formed in the presence of lanthanides occurs at a slower rate than the intermediate formed in the presence of calcium. (d) In contrast to a calcium-dependent change in the quantum yield of both the tryptophanyl residues (transmembrane region) and the FITC label (extramembranous region), lanthanides induce only a change in the quantum yield of the FITC label. (e) Measurements of energy transfer between bound lanthanide and fluorescent labels detect lanthanide bound midway between the catalytic site in the globular region of the ATPase outside the membrane, and the transmembrane calcium binding domain which is involved in enzyme activation (Clarke, D. M., Loo, T. W., Inesi, G., and MacLennan, D. H. (1989a) Nature 339, 476-478). It is apparent that cation bound in this midway location controls exchange of calcium bound in the transmembrane region. The possibility that the midway location may provide a domain for binding of a second calcium is discussed.  相似文献   

12.
We synthesized an anthraniloyl ATP (ant-ATP), which has a fluorescent anthraniloyl moiety at the OH group of ribose, to elucidate the mechanism of flagellar bend formation and its propagation in relation to the mechanochemical cycle of dynein ATPase. This fluorescent analog of ATP was efficiently hydrolyzed by 21 S dynein from sea urchin sperm flagella with Km = 7.6 microM, whereas the Km was 12 microM when ATP was used as the substrate. Similar Vmax values were obtained with both ATP and ant-ATP. Inhibition of the hydrolysis of ant-ATP by vanadate was a little smaller than that with ATP. Photosensitized cleavage of 21 S dynein heavy chains in the presence of ant-ATP and vanadate was also a little less efficient than that in the presence of ATP and vanadate. Ant-ATP also induced the disintegration of the trypsin-treated axoneme and the motility of demembranated sperm in a manner similar to ATP. When ATP was used as a substrate for the demembranated sperm, the apparent Michaelis constant for beat frequency (Km f) was 0.22 mM and the maximum frequency (fmax) was 36 Hz, whereas Km f) was 0.14 mM and fmax was 20 Hz for ant-ATP. Thus ant-ATP could be an efficient fluorescent analog of ATP for studying dynein ATPase and the mechanisms of flagellar motility.  相似文献   

13.
14.
15.
16.
17.
The substrate specificity of an extensively purified flavanone synthase from light-induced cell suspension cultures of Petroselinum hortense was investigated. p-Coumaroyl-CoA was found to be the only efficient substrate for flavanone synthesis, producing naringenin (5,7,4′-trihydroxyflavanone). Besides 4-hydroxy-6[4-hydroxystyryl]2-pyrone (F. Kreuzaler and K. Hahlbrock (1975) Arch. Biochem. Biophys.169, 84–90) two further release products of the synthase reaction in vitro were identified as 4-hydroxy-5,6-dihydro-6(4-hydroxyphenyl)2-pyrone and p-hydroxybenzalacetone. The apparent Km values for malonyl-CoA and p-coumaroyl-CoA in the reaction leading to naringenin, and for p-coumaroyl-CoA in the reaction leading to the styrylpyrone derivative were 35, 1.6, and 2.6 μm, respectively. With caffeoyl-CoA as substrate only a very small amount of eriodictyol (5,7,3′,4′-tetrahydroxyflavanone) was formed besides relatively large amounts of the corresponding styrylpyrone, dihydropyrone, and benzalacetone derivatives. No flavanone formation was observed with feruloyl-CoA as substrate, but again appreciable amounts of the three types of short-chain release products were formed. No reaction at all took place with cinnamoyl-CoA, p-methoxycinnamoyl-CoA, isoferuloyl-CoA, or p-hydroxybenzoyl-CoA.None of the styrylpyrone, dihydropyrone, and benzalacetone derivatives has been detected in the cell cultures in vivo. The present results suggest that naringenin is the only natural product of the synthase reaction and that further substitution in the B-ring of the flavonoids occurs in parsley at or after the flavanone stage. The nature of the smaller release products is consistent with the assumption of a stepwise addition of acetate units from malonyl-CoA to the acyl moiety of the starter molecule, p-coumaroyl-CoA.  相似文献   

18.
The ATP-dependent phosphoenzyme formation and its reversal were studied at 0 degrees C and pH 7.0 in the ATPase of sarcoplasmic reticulum. Addition of KCl or several other salts (approximately 100 mM) decreased the maximum rate of ADP-induced dephosphorylation of phosphoenzyme as well as the apparent affinity of the phosphoenzyme toward ADP. High ATP had a similar effect on the latter, whereas it had little effect on the former. In contrast, high KCl or a considerable change in the ionic strength had little effect on the initial rate of phosphoenzyme formation at saturating ATP concentrations. During steady state phosphorylation at 1.0 mM MgCl2 and 5.0 mM CaCl2 in the absence of added KCl, a significant amount of [gamma-32P]ATP remained bound to the enzyme even when the enzyme concentration was much in excess over that of [gamma-32P]ATP. Evidence is presented that this enzyme-ATP complex represents a precursor to the phosphoenzyme. ATP dissociated slowly (0.20 s-1) from this enzyme-ATP complex and addition of high KCl or other salts accelerated its dissociation. In contrast, when the enzyme was complexed with adenyl-5'-yl (beta, gamma-methylene)diphosphonate in the absence of added KCl under these conditions, dissociation of the nucleotide from the complex as estimated in the displacement experiment with [gamma-32P]ATP, was found to be much faster than that of ATP.  相似文献   

19.
20.
We have investigated the kinetic and thermodynamic properties of the Ca2+-ATPase of skeletal muscle sarcoplasmic reticulum under conditions that result in a single transport cycle. Simultaneous addition of ATP and EGTA to sarcoplasmic reticulum vesicles, preincubated with calcium, resulted in a transient of intermediate species. In the presence of saturating Ca2+ levels, total E-P species reached a maximum of 2.3 nmol/mg at 100 ms, followed by a monoexponential decay with kobs = 3.6 s-1. The data are interpreted in terms of Ca2+ sequestration, either by occlusion as Ca2+ in the phosphorylated enzyme or chelation by EGTA. Maximum Ca2+ uptake was 8.3 nmol/mg with the release of 4.4 nmol/mg Pi. The ratio of Ca2+ uptake to Pi release approached 1.9 over a wide [Ca2+] range. Equilibrium Ca2+ binding, in the absence of ATP, showed a K0.5 of 0.88 microM with a Hill coefficient of 1.9. The Ca2+ concentration dependence of Ca2+ uptake during single-cycle catalysis showed a 10-fold enhanced affinity (K0.5 = 0.06 microM) and was noncooperative (nH = 0.9). Quench with excess EGTA (greater than 2 mM) decreased Ca2+ uptake to 1 nmol/mg, indicating an "off" rate of Ca2+ from high affinity sites that exceeds 100 s-1. The ATP concentration dependence for a single-cycle catalysis showed an apparent K0.5 of 1.1 microM, similar to that for ATP equilibrium binding. It is proposed that enzyme phosphorylation proceeds only following binding of a second calcium ion to externally oriented sites whose intrinsic affinity is in the same range as the calcium dependence of a single-cycle turnover.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号