首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 906 毫秒
1.
The death and survival of neuronal cells are regulated by various signaling pathways during development of the brain and in neuronal diseases. Previously, we demonstrated that the neuronal adhesion molecule brain immunoglobulin-like molecule with tyrosine-based activation motifs/SHP substrate 1 (BIT/SHPS-1) is involved in brain-derived neurotrophic factor (BDNF)-promoted neuronal cell survival. Here, we report the apoptosis-inducing effect of CD47/integrin-associated protein (IAP), the heterophilic binding partner of BIT/SHPS-1, on neuronal cells. We generated a recombinant adenovirus vector expressing a neuronal form of CD47/IAP, and found that the expression of CD47/IAP by infection with CD47/IAP adenovirus induced the death of cultured cerebral cortical neurons. The numbers of TdT-mediated biotin-dUTP nick-end labelling (TUNEL)-positive neurons and of cells displaying apoptotic nuclei increased by expression of CD47/IAP. Neuronal cell death was prevented by the addition of the broad-spectrum caspase inhibitor Z-VAD-fmk. Furthermore, we observed that co-expression of CD47/IAP with BIT/SHPS-1 enhanced neuronal cell death, and that BDNF prevented it. These results suggest that CD47/IAP is involved in a novel pathway which regulates caspase-dependent apoptosis of cultured cerebral cortical neurons. CD47/IAP-induced death of cultured cortical neurons may be regulated by the interaction of CD47/IAP with BIT/SHPS-1 and by BDNF.  相似文献   

2.
Apoptosis is characterized by chromatin condensation, phosphatidylserine translocation, and caspase activation. Neuronal apoptotic death involves the participation of reactive oxygen species (ROS), which have also been implicated in necrotic cell death. In this study we evaluated the role of different ROS in neuronal death. Superoxide anion was produced by incubating cells with xanthine and xanthine oxidase plus catalase, singlet oxygen was generated with rose Bengal and luminic stimuli, and hydrogen peroxide was induced with the glucose and glucose oxidase. Cultured cerebellar granule neurons died with the characteristics of apoptotic death in the presence of superoxide anion or singlet oxygen. These two conditions induced caspase activation, nuclear condensation, phosphatidylserine translocation, and a decrease in intracellular calcium levels. On the other hand, hydrogen peroxide led to a necrosis-like cell death that did not induce caspase activation, phosphatidylserine translocation, or changes in calcium levels. Cell death produced by both singlet oxygen and superoxide anion, but not hydrogen peroxide, was partially reduced by an increase in intracellular calcium levels. These results suggest that formation of specific ROS can lead to different molecular cell death mechanisms (necrosis and apoptosis) and that ROS formed under different conditions could act as initiators or executioners on neuronal death.  相似文献   

3.
Inhibitor-of-apoptosis proteins (IAPs), including neuronal apoptosis inhibitory protein (NAIP), inhibit cell death. Other IAPs inhibit key caspase proteases which effect cell death, but the mechanism by which NAIP acts is unknown. Here we report that NAIP, through its third baculovirus inhibitory repeat domain (BIR3), binds the neuron-restricted calcium-binding protein, hippocalcin, in an interaction promoted by calcium. In neuronal cell lines NSC-34 and Neuro-2a, over-expression of the BIR domains of NAIP (NAIP-BIR1-3) counteracted the calcium-induced cell death induced by ionomycin and thapsigargin. This protective capacity was significantly enhanced when NAIP-BIR1-3 was co-expressed with hippocalcin. Over-expression of the BIR3 domain or hippocalcin alone did not substantially enhance cell survival, but co-expression greatly increased their protective effects. These data suggest synergy between NAIP and hippocalcin in facilitating neuronal survival against calcium-induced death stimuli mediated through the BIR3 domain. Analysis of caspase activity after thapsigargin treatment revealed that caspase-3 is activated in NSC-34, but not Neuro-2a, cells. Thus NAIP, in conjunction with hippocalcin, can protect neurons against calcium-induced cell death in caspase-3-activated and non-activated pathways.  相似文献   

4.
Glutathione peroxidase-1 protects from CD95-induced apoptosis   总被引:9,自引:0,他引:9  
Through the induction of apoptosis, CD95 plays a crucial role in the immune response and the elimination of cancer cells. Ligation of CD95 receptor activates a complex signaling network that appears to implicate the generation of reactive oxygen species (ROS). This study investigated the place of ROS production in CD95-mediated apoptosis and the role of the antioxidant enzyme glutathione peroxidase-1 (GPx1). Anti-CD95 antibodies triggered an early generation of ROS in human breast cancer T47D cells that was blocked by overexpression of GPx1 and inhibition of initiator caspase activation. Enforced expression of GPx1 also resulted in inhibition of CD95-induced effector caspase activation, DNA fragmentation, and apoptotic cell death. Resistance to CD95-mediated apoptosis was not due to an increased expression of anti-apoptotic molecules and could be reversed by glutathione-depleting agents. In addition, whereas the anti-apoptotic protein Bcl-xL prevented CD95-induced apoptosis in MCF-7 cells, it did not inhibit the early ROS production. Moreover, Bcl-xL but not GPx1 overexpression could suppress the staurosporine-induced late generation of ROS and subsequent cell death. Altogether, these findings suggest that GPx1 functions upstream of the mitochondrial events to inhibit the early ROS production and apoptosis induced by CD95 ligation. Finally, transgenic mice overexpressing GPx1 were partially protected from the lethal effect of anti-CD95, underlying the importance of peroxide formation (and GPx1) in CD95-triggered apoptosis.  相似文献   

5.
Anandamide (arachidonoylethanolamide or AEA) is an endocannabinoid that acts at vanilloid (VR1) as well as at cannabinoid (CB1/CB2) and NMDA receptors. Here, we show that AEA, in a dose-dependent manner, causes cell death in cultured rat cortical neurons and cerebellar granule cells. Inhibition of CB1, CB2, VR1 or NMDA receptors by selective antagonists did not reduce AEA neurotoxicity. Anandamide-induced neuronal cell loss was associated with increased intracellular Ca(2+), nuclear condensation and fragmentation, decreases in mitochondrial membrane potential, translocation of cytochrome c, and upregulation of caspase-3-like activity. However, caspase-3, caspase-8 or caspase-9 inhibitors, or blockade of protein synthesis by cycloheximide did not alter anandamide-related cell death. Moreover, AEA caused cell death in caspase-3-deficient MCF-7 cell line and showed similar cytotoxic effects in caspase-9 dominant-negative, caspase-8 dominant-negative or mock-transfected SH-SY5Y neuroblastoma cells. Anandamide upregulated calpain activity in cortical neurons, as revealed by alpha-spectrin cleavage, which was attenuated by the calpain inhibitor calpastatin. Calpain inhibition significantly limited anandamide-induced neuronal loss and associated cytochrome c release. These data indicate that AEA neurotoxicity appears not to be mediated by CB1, CB2, VR1 or NMDA receptors and suggest that calpain activation, rather than intrinsic or extrinsic caspase pathways, may play a critical role in anandamide-induced cell death.  相似文献   

6.
Neuronal death pathways following hypoxia–ischaemia are sexually dimorphic, but the underlying mechanisms are unclear. We examined cell death mechanisms during OGD (oxygen-glucose deprivation) followed by Reox (reoxygenation) in segregated male (XY) and female (XX) mouse primary CGNs (cerebellar granule neurons) that are WT (wild-type) or Parp-1 [poly(ADP-ribose) polymerase 1] KO (knockout). Exposure of CGNs to OGD (1.5 h)/Reox (7 h) caused cell death in XY and XX neurons, but cell death during Reox was greater in XX neurons. ATP levels were significantly lower after OGD/Reox in WT-XX neurons than in XY neurons; this difference was eliminated in Parp-1 KO-XX neurons. AIF (apoptosis-inducing factor) was released from mitochondria and translocated to the nucleus by 1 h exclusively in WT-XY neurons. In contrast, there was a release of Cyt C (cytochrome C) from mitochondria in WT-XX and Parp-1 KO neurons of both sexes; delayed activation of caspase 3 was observed in the same three groups. Thus deletion of Parp-1 shunted cell death towards caspase 3-dependent apoptosis. Delayed activation of caspase 8 was also observed in all groups after OGD/Reox, but was much greater in XX neurons, and caspase 8 translocated to the nucleus in XX neurons only. Caspase 8 activation may contribute to increased XX neuronal death during Reox, via caspase 3 activation. Thus, OGD/Reox induces death of XY neurons via a PARP-1-AIF-dependent mechanism, but blockade of PARP-1-AIF pathway shifts neuronal death towards a caspase-dependent mechanism. In XX neurons, OGD/Reox caused prolonged depletion of ATP and delayed activation of caspase 8 and caspase 3, culminating in greater cell death during Reox.  相似文献   

7.
Chen SY  Chiu LY  Maa MC  Wang JS  Chien CL  Lin WW 《Autophagy》2011,7(2):217-228
The treatment of L929 fibrosarcoma cells with zVAD has been shown to induce necroptosis. However, whether autophagy is involved or not in this event remains controversial. In this study, we re-examined the role of autophagy in zVAD-induced cell death in L929 cells and further elucidated the signaling pathways triggered by caspase inhibition and contributing to autophagic death. First, we found that zVAD can stimulate LC3-II formation, autophagosome and autolysosome formation, and ROS accumulation. Antioxidants, beclin 1 or Atg5 silencing, and class III PtdIns3K inhibitors all effectively blocked ROS production and cell death, suggesting ROS accumulation downstream of autophagy contributes to cell necrosis. zVAD also stimulated PARP activation, and the PARP inhibitor DPQ can reduce zVAD-induced cell death, but did not affect ROS production, suggesting the increased ROS leads to PARP activation and cell death. Notably, our data also indicated the involvement of Src-dependent JNK and ERK in zVAD-induced ROS production and autophagic death. We found caspase 8 is associated with c-Src at the resting state, and upon zVAD treatment this association was decreased and accompanied by c-Src activation. In conclusion, we confirm the autophagic death in zVAD-treated L929 cells, and define a new molecular pathway in which Src-dependent ERK and JNK activation can link a signal from caspase inhibition to autophagy, which in turn induce ROS production and PARP activation, eventually leading to necroptosis. Thus, in addition to initiating proteolytic activity for cell apoptosis, inactivated caspase 8 also functions as a signaling molecule for autophagic death.  相似文献   

8.
Previous in vivo and in vitro analyses have shown that both necrosis and apoptosis are involved in neuronal cell death induced by energy impairment caused by mitochondrial dysfunction. However, little is known about the key factors that determine whether the cells undergo necrosis or apoptosis. In the present study, we analyzed neuronal cell death induced by 3-nitropropionic acid (3-NP), an irreversible inhibitor of mitochondrial complex II, in a primary culture system of rat cortical neurons. The neurons were maintained for a week in coculture with astroglial cells, and then they were treated with 3-NP in the presence or absence of astroglial cells. As judged from morphological (Hoechst 33258 staining) and biochemical (DNA fragmentation and caspase activation) analyses, the cortical neurons appeared to die through an apoptotic process after 3-NP treatment in the presence of astroglial cells. However, caspase inhibitors did not suppress the 3-NP-induced cell death, suggesting the involvement of a caspase-independent pathway of 3-NP-induced neuronal cell death in the presence of astroglial cells. On the other hand, 3-NP induced necrotic cell death within 1 day in the absence of astroglial cells, following a rapid decrease in intracellular ATP level. These changes were attenuated by the presence of astroglial cells or the addition of astroglial conditioned medium. These results suggest that astroglial trophic support influences the alteration of the intracellular energy state in 3-NP-treated neurons and consequently determines the type of neuronal cell death, apoptosis or necrosis.  相似文献   

9.
In the present study, we have determined the nature and the kinetics of the cellular events triggered by the exposure of cells to non-fibrillar amyloid-beta peptide (A beta). When cortical neurons were treated with low concentrations of soluble A beta (1-40), an early reactive oxygen species (ROS)-dependent cytoskeleton disruption precedes caspase activation. Indeed, caspase activation and neuronal cell death were prevented by the microtubule-stabilizing drug taxol. A perturbation of the microtubule network was noticeable after being exposed to A beta for 1 h, as revealed by electron microscopy and immunocytochemistry. Microtubule disruption and neuronal cell death induced by A beta were inhibited in the presence of antioxidant molecules, such as probucol. These data highlight the critical role of ROS production in A beta-mediated cytoskeleton disruption and neuronal cell death. Finally, using FRAP (fluorescence recovery after photo bleaching) analysis, we observed a time-dependent biphasic modification of plasma membrane fluidity, as early as microtubule disorganization. Interestingly, molecules that inhibited neurotubule perturbation and cell death did not affect the membrane destabilizing properties of A beta, suggesting that the lipid phase of the plasma membrane might represent the earliest target for A beta. Altogether our results convey the idea that upon interaction with the plasma membrane, the non-fibrillar A beta induces a rapid ROS-dependent disorganization of the cytoskeleton, which results in apoptosis.  相似文献   

10.
We have used the mammalian post-natal cerebellar cortex as a model to dissect out the molecular morphology of neuronal apoptosis in a well-defined population of central neurons: the cerebellar granule cells. By immunocytochemistry, in situ labeling of apoptotic cells, and analysis of cerebellar slices following particle-mediated gene transfer (biolistics), we have studied the relationship of cell death and cleavage of caspase 3, a key molecule in the execution of apoptosis, and monitored caspase 3 activation in living cells. Our results demonstrate the existence of caspase dependent and independent apoptotic pathways affecting the cerebellar granule cells at different stages of their life. Apoptosis of proliferating precursors and young pre-migratory cells occurs in the absence of caspase 3 cleavage, whereas cell death of post-mitotic post-migratory neurons is directly linked to caspase 3 activation. Data obtained from cerebellar cortex can be generalized to outline a more comprehensive picture of the cellular and molecular mechanisms of neuronal death not only in development, but also in a number of pathological conditions leading to neuronal loss.  相似文献   

11.
HSP70 is a member of the family of heat‐shock proteins that are known to be up‐regulated in neurons following injury and/or stress. HSP70 over‐expression has been linked to neuroprotection in multiple models, including neurodegenerative disorders. In contrast, less is known about the neuroprotective effects of HSP70 in neuronal apoptosis and with regard to modulation of programmed cell death (PCD) mechanisms in neurons. We examined the effects of HSP70 over‐expression by transfection with HSP70‐expression plasmids in primary cortical neurons and the SH‐SY5Y neuronal cell line using four independent models of apoptosis: etoposide, staurosporine, C2‐ceramide, and β‐Amyloid. In these apoptotic models, neurons transfected with the HSP70 construct showed significantly reduced induction of nuclear apoptotic markers and/or cell death. Furthermore, we demonstrated that HSP70 binds and potentially inactivates Apoptotic protease‐activating factor 1, as well as apoptosis‐inducing factor, key molecules involved in development of caspase‐dependent and caspase‐independent PCD, respectively. Markers of caspase‐dependent PCD, including active caspase‐3, caspase‐9, and cleaved PARP were attenuated in neurons over‐expressing HSP70. These data indicate that HSP70 protects against neuronal apoptosis and suggest that these effects reflect, at least in part, to inhibition of both caspase‐dependent and caspase‐independent PCD pathways.  相似文献   

12.
13.
Cadmium (Cd), a highly toxic environmental pollutant, induces neurodegenerative diseases. Recently we have demonstrated that Cd may induce neuronal apoptosis in part through activation of c-Jun N-terminal kinase (JNK) and extracellular signal-regulated kinase 1/2 (Erk1/2) pathways. However, the underlying mechanism remains enigmatic. Here we show that Cd induced generation of reactive oxygen species (ROS), leading to apoptosis of PC12 and SH-SY5Y cells. Pretreatment with N-acetyl-L-cysteine (NAC) scavenged Cd-induced ROS, and prevented cell death, suggesting that Cd-induced apoptosis is attributed to its induction of ROS. Furthermore, we found that Cd-induced ROS inhibited serine/threonine protein phosphatases 2A (PP2A) and 5 (PP5), leading to activation of Erk1/2 and JNK, which was abrogated by NAC. Overexpression of PP2A or PP5 partially prevented Cd-induced activation of Erk1/2 and JNK, as well as cell death. Cd-induced ROS was also linked to the activation of caspase-3. Pretreatment with inhibitors of JNK (SP600125) and Erk1/2 (U0126) partially blocked Cd-induced cleavage of caspase-3 and prevented cell death. However, zVAD-fmk, a pan caspase inhibitor, only partially prevented Cd-induced apoptosis. The results indicate that Cd induction of ROS inhibits PP2A and PP5, leading to activation of JNK and Erk1/2 pathways, and consequently resulting in caspase-dependent and -independent apoptosis of neuronal cells. The findings strongly suggest that the inhibitors of JNK, Erk1/2, or antioxidants may be exploited for prevention of Cd-induced neurodegenerative diseases.  相似文献   

14.
Abstract : The inhibitor of apoptosis (IAP) family of anti-apoptotic genes, originally discovered in baculovirus, exists in animals ranging from insects to humans. Here, we investigated the ability of IAPs to suppress cell death in both a neuronal model of apoptosis and excitotoxicity. Cerebellar granule neurons undergo apoptosis when switched from 25 to 5 m M potassium, and excitotoxic cell death in response to glutamate. We examined the endogenous expression of four members of the IAP family, X chromosome-linked IAP (XIAP), rat IAP1 (RIAP1), RIAP2, and neuronal apoptosis inhibitory protein (NAIP), by semiquantitative reverse PCR and immunoblot analysis in cultured cerebellar granule neurons. Cerebellar granule neurons express significant levels of RIAP2 mRNA and protein, but expression of RIAP1, NAIP, and XIAP was not detected. RIAP2 mRNA content and protein levels did not change when cells were switched from 25 to 5 m M potassium. To determine whether ectopic expression of IAP influenced neuronal survival after potassium withdrawal or glutamate exposure, we used recombinant adenoviral vectors to target XIAP, human IAP1 (HIAP1), HIAP2, and NAIP into cerebellar granule neurons. We demonstrate that forced expression of IAPs efficiently blocked potassium withdrawal-induced N -acetly-Asp-Glu-Val-Asp-specific caspase activity and reduced DNA fragmentation. However, neurons were only protected from apoptosis up to 24 h after potassium withdrawal, not at later time points suggesting that IAPS delay but do not block apoptosis in cerebellar granule neurons. In contrast, treatment with 100 μ M or 1 m M glutamate did not induce caspase activity and adenoviral-mediated expression of IAPs had no influence on subsequent excitotoxic cell death.  相似文献   

15.
Apoptosis requires tightly regulated cell death pathways. The signaling pathways that trigger a cell to undergo apoptosis after UV radiation are cell type specific and are currently being defined. Here, we have used pharmacological and genetic tools to demonstrate the decisive part of the mitochondrial pathway in UVC-induced apoptosis in mouse embryo fibroblasts (MEFs). UVC-induced apoptosis proceeded independent of the activation of death receptor components. In contrast, soon after UV radiation, MAPK activation and generation of reactive oxygen species (ROS) increased, followed by a decline in mitochondrial membrane potential (MMP) and cytochrome c release, as well as activation of caspase-9 and -3 and the upregulation of p47-phox. Deficiency of apaf-1, a critical member of the apoptosome, dramatically abolished all the UV-induced signal deterioration and cell death. In parallel, UVC-induced apoptosis was largely attenuated by either DN-caspase-9 or Bcl-X(L) overexpression. Pretreatment of cells with N-acetylcysteine or catalase but not Tempol decreased UVC-induced MAPK activation and apoptosis. Inhibition of JNK and caspase attenuated p47-phox upregulation. Altogether, we have for the first time demonstrated the critical role of Apaf-1 in the regulation of MAPK, ROS, and MMP in UVC-radiated MEFs and propose that the amplification feedback loop among mitochondrial signal molecules culminates in the demise of the cell.  相似文献   

16.
CD47 and the 19 kDa interacting protein-3 (BNIP3) in T cell apoptosis   总被引:5,自引:0,他引:5  
CD47 is a surface receptor that induces either coactivation or apoptosis in lymphocytes, depending on the ligand(s) bound. Interestingly, the apoptotic pathway is independent of caspase activation and cytochrome c release and is accompanied by early mitochondrial dysfunction with suppression of mitochondrial membrane potential (Deltapsim). Using CD47 as bait in a yeast two-hybrid system, we identified the Bcl-2 homology 3 (BH3)-only protein 19 kDa interacting protein-3 (BNIP3), a pro-apoptotic member of the Bcl-2 family, as a novel partner. Interaction between CD47 and the BH3-only protein was confirmed by immunoprecipitation analysis, and CD47-induced apoptosis was inhibited by attenuating BNIP3 expression with antisense oligonucleotides. Finally, we showed that the C-terminal domain of thrombospondin-1 (TSP-1), but not signal-regulatory protein (SIRPalpha1), is the ligand for CD47 involved in inducing cell death. Immunofluorescence analysis of CD47 and BNIP3 revealed a partial colocalization of both molecules under basal conditions. After T cell stimulation via CD47, BNIP3 translocates to the mitochondria to induce apoptosis. These results show that the BH3-dependent apoptotic pathways, previously shown to be activated by intracellular pro-apoptotic events, can also be turned on by surface receptors. This new pathway results in a fast induction of cell death resembling necrosis, which is likely to play an important role in lymphocyte regulation at inflammatory sites and/or in the vicinity of thrombosis.  相似文献   

17.
Emerging evidence supports an important role for caspases in neuronal death following ischemia-reperfusion injury. This study assessed whether cell specific caspases participate in neuronal degeneration and whether caspase inhibition provides neuroprotection following transient retinal ischemia. We utilized a model of transient global retinal ischemia. The spatial and temporal pattern of the active forms of caspase 1, 2 and 3 expression was determined in retinal neurons following ischemic injury. Double-labeling with cell-specific markers identified which cells were expressing different caspases. In separate experiments, animals received various caspase inhibitors before the induction of ischemia. Sixty minutes of ischemia resulted in a delayed, selective neuronal death of the inner retinal layers at 7 days. Expression of caspase 1 was not detected at any time point. Maximal expression of caspase 2 was found at 24 h primarily in the inner nuclear and ganglion cell layers of the retina and localized to ganglion and amacrine neurons. Caspase 3 also peaked at 24 h in both the inner nuclear and outer nuclear layers and was predominantly expressed in photoreceptor cells and to a lesser extent in amacrine neurons. The pan caspase inhibitor, Boc-aspartyl fmk, or an antisense oligonucleotide inhibitor of caspase 2 led to significant histopathologic and functional improvement (electroretinogram) at 7 days. No protection was found with the caspase 1 selective inhibitor, Y-vad fmk. These observations suggest that ischemia-reperfusion injury activates different caspases depending on the neuronal phenotype in the retina and caspase inhibition leads to both histologic preservation and functional improvement. Caspases 2 and 3 may act in parallel in amacrine neurons following ischemia-reperfusion. These results in the retina may shed light on differential caspase specificity in global cerebral ischemia.  相似文献   

18.
Ligation of CD47 by its natural ligand thrombospondin (TSP), or cross-linking by CD47 antibodies, triggers caspase-independent cell death in normal and leukemic cells. This kind of cell death is characterised by the cytoplasmic events of apoptosis including externalisation of phosphatidylserines and mitochondria swelling. We report herein selective mitochondrial changes in CD47-dependent cell death of T cells. After T cell stimulation via CD47, a rapid mitochondrial transmembrane potential (deltapsi(m)) disruption is accompanied by the production of reactive oxygen species (ROS) and phosphatidylserine exposure. Surprisingly, mitochondrial dysfunction does not induce cytochrome c or AIF release. Moreover, the dying cells do not exhibit caspase-3 activation and display intact nuclei without any large-scale, or oligonucleosomal DNA fragmentation. We conclude that DeltaPsi(m) loss and ROS production are an early step in CD47-dependent killing and neither cytochrome c, nor AIF are implicated in this new cell death pathway.  相似文献   

19.
CD47 signals T cell death.   总被引:10,自引:0,他引:10  
Activation-induced death of T cells regulates immune responses and is considered to involve apoptosis induced by ligation of Fas and TNF receptors. The role of other receptors in signaling T cell death is less clear. In this study we demonstrate that activation of specific epitopes on the Ig variable domain of CD47 rapidly induces apoptosis of T cells. A new mAb, Ad22, to this site induces apoptosis of Jurkat cells and CD3epsilon-stimulated PBMC, as determined by morphological changes, phosphatidylserine exposure on the cell surface, uptake of propidium iodide, and true counts by flow cytometry. In contrast, apoptosis was not observed following culture with anti-CD47 mAbs 2D3 or B6H12 directed to a distant or closely adjacent region, respectively. CD47-mediated cell death was independent of CD3, CD4, CD45, or p56lck involvement as demonstrated by studies with variant Jurkat cell lines deficient in these signaling pathways. However, coligation of CD3epsilon and CD47 enhanced phosphatidylserine externalization on Jurkat cells with functional CD3. Furthermore, normal T cells required preactivation to respond with CD47-induced apoptosis. CD47-mediated cell death appeared to proceed independent of Fas or TNF receptor signaling and did not involve characteristic DNA fragmentation or requirement for IL-1beta-converting enzyme-like proteases or CPP32. Taken together, our data demonstrate that under appropriate conditions, CD47 activation results in very rapid T cell death, apparently mediated by a novel apoptotic pathway. Thus, CD47 may be critically involved in controlling the fate of activated T cells.  相似文献   

20.
Chondroitin sulfate (CS) is a major microenvironmental molecule in the CNS, and there have been few reports about its neuroprotective activity. As neuronal cell death by excitotoxicity is a crucial phase in many neuronal diseases, we examined the effect of various CS preparations on neuronal cell death induced by the excitotoxicity of glutamate analogs. CS preparations were added to cultured neurons before and after the administration of glutamate analogs. Then, the extents of both neuronal cell death and survival were estimated. Pre-administration of a highly sulfated CS preparation, CS-E, significantly reduced neuronal cell death induced by not only NMDA but also ( S )-α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid or kainate. Neither CS preparations other than CS-E nor other highly sulfated polysaccharides such as heparin and dextran sulfate exerted any neuroprotective effects. NMDA-induced current in neurons was not changed by pre-administration of CS-E, but the pattern of protein-tyrosine phosphorylation was changed. In addition, the elevation of caspase 3 activity was significantly suppressed in CS-E-treated neurons. These results indicate that CS-E prevents neuronal cell death mediated by various glutamate receptors, and suggest that phosphorylation-related intracellular signals and the suppression of caspase 3 activation are implicated in neuroprotection by CS-E.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号