首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Impact of Maillard type glycation on properties of beta-lactoglobulin   总被引:1,自引:0,他引:1  
The Maillard reaction occurs during many thermal treatments of foods. It is used because of its role in creating colors, flavors, textures and other functional properties in foods. Glycated beta-lactoglobulin (BLG) can improve techno-functional properties as heat stability, emulsifying and foaming properties. Among the six common sugars used, arabinose and ribose induce the highest degree of modification of proteins. Glycation induced also the oligomerization of BLG monomers. Depending on the reactivity of the sugar, the population of oligomers produced showed smaller or larger heterogeneity in molecular masses. Antiradical properties of glycated BLG were estimated using a radical scavenging activity test. Glycation induced a radical scavenging activity; the intensity depended on the sugar used for modification.  相似文献   

2.
Bovine beta-lactoglobulin (BLG) was conjugated with cationic saccharides to improve its functions. We used a polylysine-dextran conjugate (PL-Dex) as the cationic saccharide which had been prepared by the Maillard reaction. The molar ratio of PL:Dex was 1:1. The emulsifying property of PL in the acidic pH range was improved by conjugating with Dex. BLG and PL-Dex were conjugated by using microbial transglutaminase (MTGase), the effective conjugation being confirmed by SDS-PAGE. The molar ratio of BLG:PL-Dex was 1:1. Structural analyses by a fluorescence study, ELISA with monoclonal antibodies and measurement of the retinol-binding activity indicated that the conjugates had almost retained the native structure of BLG. The emulsifying property of BLG in the acidic pH range and in the presence of NaCl was improved by conjugating with PL-Dex. The immunogenicity of BLG was reduced by this conjugation, while the antigenicity of the BLG-PL-Dex conjugate was similar to that of BLG in BALB/c mice.  相似文献   

3.
Modification of His-47 and removal of the N-terminal octapeptide caused a different effect on the structure of Naja naja atra (Taiwan cobra) phospholipase A2 (PLA2). Unlike native enzyme, Ca2+ induced an alteration in the structural flexibility of His-modified PLA2. Moreover, the spatial positions of Trp residues in His-modified PLA2 were not properly rearranged toward lipid-water interface in the presence of Ca2+. CD spectra and fluorescence measurement showed that the dynamic properties of Trp residues and the gross conformation of N-terminally truncated PLA2 were totally different from native enzyme. Although a precipitous drop in the enzymatic activity was observed with modified PLA2, His-modified PLA2 and N-terminally truncated PLA2 retained cytotoxicity on inducing necrotic death of human neuroblastoma SK-N-SH cells. Our data suggest that structural perturbations elicited by the chemical modification cause a dissociation of enzymatic activity and cytotoxicity of PLA2.  相似文献   

4.
Modification of proteins with polymers is a viable method to tune protein properties, e.g., to render them more water-soluble by using hydrophilic polymers. We have utilized precision-length, polyethylene glycol-based oligomers carrying a thioester moiety in transthioesterification and native chemical ligation reactions with internal and N-terminal cysteine residues in proteins and peptides. These reactions lead to uniquely modified proteins with an increased solubility in chaotrope- and detergent-free aqueous systems. Polymer modification of internal cysteines is fully reversible and allows generation of stable protein-polymer conjugates for enzymatic manipulations as demonstrated by proteolytic cleavage of a protein construct that was only soluble in buffers incompatible with protease activity before polymer modification. The permanent polymer modification of a Rab protein at its N-terminal cysteine produced a fully active Rab variant that was efficiently prenylated. Thus, PEGylation of prenylated proteins might be a viable route to increase water solubility of such proteins in order to carry out experiments in detergent- and lipid-free systems.  相似文献   

5.
Chemical modification of lysine residues in Candida rugosa lipase (CRL) was carried out using five different functional ionic liquids, and about 15.4–25.0 % of the primary amino groups of lysine were modified. Enzymatic properties of the native and modified CRLs were investigated in olive oil hydrolysis reaction. Improved thermal stability, catalytic activity in organic solvents, and adaptability to temperature and pH changes were achieved compared with the native enzyme. CRL modified by [choline][H2PO4] showed the best results, bearing a maximum improvement of 16.7 % in terms of relative activity, 5.2-fold increase in thermostability (after incubation at 45 °C for 5 h), and 2.3-fold increase in activity in strong polar organic solvent (80 % dimethyl sulfoxide) compared with the native enzyme. The results of ultraviolet, circular dichroism and fluorescence spectroscopy suggested that the change of the secondary and tertiary structures of CRL caused by the chemical modification resulted in the enhancement of enzymatic performance. The modification of CRL with functional ionic liquids was proved to be a novel and efficient method for improving the enzymatic properties of CRL.  相似文献   

6.
Demonstrated herein is the possibility of using the accessibility of tryptophan (Trp) residues in immunoglobulin M (IgM) upon modification with Koshland reagent (2-hydroxy-5-nitrobenzyl bromide) as an index of the conformational changeability of IgM. Of fourteen Trp's in the native IgM (per HL-region) only one appeared to be most accessible, evidently Trp312 in the mu-chain. Irreversible acidic and thermal conformational transitions in IgM increase the number of accessible Trp's approximately two-fold. Following partial enzymatic deglycosylation of IgM, deep scission of mannose in particular, all Trp's become inaccessible. Modification of the most accessible Trp increases 2-3 fold the number of tyrosine residues readily accessible upon nitration with tetranitromethane. Modification of four trp's using spin-label method data causes a sharp reduction of the mobility of the C mu 3 domain and a simultaneous decrease in the solubility of modified IgM.  相似文献   

7.
N-Bromosuccinimide and 2-hydroxy-5-nitrobenzyl bromide have been used for modification of tryptophan residues in human haptoglobin (Hp) type 2-1. Modification of three exposed tryptophan residues reduced considerably both the Hp-haemoglobin interaction and binding of the antibody against the native protein. Modification of the remaining 7-8 tryptophan residues resulted in a complete loss of those properties. Antisera directed against Hp with the modified tryptophan residues appeared to be highly specific in immunological reactions.  相似文献   

8.
Modification of glutamate dehydrogenase with 3,4,5,6-tetrahydrophthalic anhydride at pH 8.0 results in the progressive loss of enzymatic activity and a concomitant increase in the negative charge of the protein. Although the rate of inactivation at room temperature is too rapid to allow accurate rate constant determination, modification at 4 degrees C shows that the pseudo-first-order rate constant for inactivation appears to show a saturation effect with increasing reagent concentration, with a maximum of approximately 1 min-1. Control experiments showed that tetrahydrophthalic anhydride was hydrolyzed at a much slower rate, with a pseudo-first-order rate constant of 0.041 min-1. Protection studies indicated that inactivation was decreased by the active site ligands, NADP and 2-oxoglutarate. The extents of inactivation, whether assayed with glutamate at pH 7.0 or norvaline at pH 8.0, were the same. Changes in mobility on native gels and isoelectric point were used to follow the incorporated negative charge resulting from modification. Enzyme modified in the presence of protecting ligands (where activity is maintained) showed mobility changes which suggested that a single site of modification was protected. Modified enzyme incorporated 0.78 mol pyridoxal 5-phosphate less than native enzyme, consistent with modification of lysine-126. Enzyme modified under limiting conditions was shown to have a quaternary structure similar to that of the native enzyme, as judged by crosslinking patterns obtained with dimethylpimelimidate. The modified protein is readily resolved from unmodified protein using an NaCl double gradient elution from DEAE-Sephacel. The modification is reversed with regain of activity by incubation of the modified enzyme at low pH. We have made use of the recently demonstrated ability of guanidine hydrochloride to dissociate the hexamer of glutamate dehydrogenase into trimers that can then be reassociated to construct heterohexamers of glutamate dehydrogenase, in which one trimer of the heterohexamer contains native subunits while the other has been inactivated by the 3,4,5,6-tetrahydrophthalic anhydride modification. The heterohexamer is separated from either native or fully modified hexamers by DEAE-Sephacel chromatography. Significantly, the heterohexamer has little detectable catalytic activity, although activity is regained by reversal of the modification of the one modified trimer in the hexamer. This demonstrates that catalytic site cooperation between trimers in the hexamer of glutamate dehydrogenase is an essential component of the enzymatic activity of this enzyme.  相似文献   

9.
1. Modification of dimeric human prostate acid phosphatase (EC 3.1.3.2) by diimidoesters leads to the formation of water-soluble preparations of high enzymatic activity, resistant to denaturing agents. 2. Monomeric, dimeric, trimeric and tetrameric species were found in SDS-polyacrylamide gel electrophoresis of the phosphatase cross-linked with dimethyl-suberimidate, and dimeric, trimeric and tetrameric enzymatically active species on thin-layer Sephadex 200 gel filtration. This molecular pattern evidenced formation of the inter-subunit covalent linkages. All molecular forms are immunoreactive against the polyclonal rabbit anti-phosphatase antibodies. 3. The catalytic properties of the modified phosphatase are almost the same as those of the native enzyme. Differences in the optical properties between the modified and the native enzymes point to slight conformational transitions in the modified enzyme.  相似文献   

10.
The accessibility of tryptophan residues in immunoglobulin M to modification with the Koshland reagent (2-hydroxy-5-nitrobenzyl bromide) was used as an indicator of its conformational variability. Of 14 tryptophan residues (per HL-fragment) in the native IgM, only one (presumably Trp312 in the mu-chain) was the most accessible. Irreversible acid- or temperature-induced conformational changes of IgM increased almost 2-fold the number of accessible tryptophan residues. After partial enzymatic deglycosylation of IgM (especially by an intense splitting of mannose), all tryptophan residues became inaccessible. Modification of the most accessible tryptophan residue increased 2- to 3-fold the number of tyrosine residues accessible to nitration with tetranitromethane. Using the spin label method, it was demonstrated that modification of four tryptophan residues in IgM considerably decreased the mobility of the Cmu 3 domain together with an essential drop in. the solubility of the modified IgM.  相似文献   

11.
Abstract

Demonstrated herein is the possibility of using the accessibility of tryptophan (Trp) residues in immunoglobulin M (IgM) upon modification with Koshland reagent (2-hydroxy-5-nitrobenzyl bromide) as an index of the conformational changeability of IgM. Of fourteen Trp's in the native IgM (per HL-region) only one appeared to be most accessible, evidently Trp312 in the μ-chain. Irreversible acidic and thermal conformational transitions in IgM increase the number of accessible Trp's approximately two-fold. Following partial enzymatic deglycosylation of IgM, deep scission of mannose in particular, all Trp's become inaccessible. Modification of the most accessible Trp increases 2–3 fold the number of tyrosine residues readily accessible upon nitration with tetranitromethane. Modification of four trp's using spin-label method data causes a sharp reduction of the mobility of the Cμ3 domain and a simultaneous decrease in the solubility of modified IgM.  相似文献   

12.
Chemical modification of lysine residues in glucose oxidase was carried out using citraconic anhydride. Modification brought about changes in the kinetic properties of the enzyme as evident by substantial lowering of V(max) and K(m). Enhancement of tryptophan fluorescence was observed with a dramatic change in its pH dependence due to modification. Near- and far-UV circular dichroism spectra of the native and modified forms suggested formation of molten globule-like structures, further supported by 8-anilino-1-naphthalenesulfonic acid fluorescence which indicated higher exposure of hydrophobic residues as a result of chemical modification.  相似文献   

13.
Effect of chemical modification of horseradish peroxidase lysine epsilon-amino groups by propionic, butyric, valeric, succinic anhydrides and trinitrobenzolsulfonic acid (TNBS) on catalytic properties of the enzyme is investigated. All the preparations of modified peroxidase have 100% peroxidase activity for o-dianizidine at pH 7.0, which indicates the absence of lysine epsilon-amino group in the enzyme active site. pH-dependencies of modified peroxidase relative activity are studied; modification by anhydrides of monobasic acids is not found to result in changes of the relative activity pH-profile, while modification by succinic anhydride widens it. Absorption and circular dichoism spectra of native and modified peroxidase within 260--270 nm are obtained, some changes in the enzyme tertiary structure after its epsilon-amino groups modification are observed. Modification of four epsilon-amino groups by buturic and succinic anhydrides and of three epsilon-amino groups by TNBS is found to increase the regidity of protein surrounding of heme, and modification of six epsilon-amino groups by TNBS results in more unwrapped enzyme structure as compared with its native molecule.  相似文献   

14.
Emulsification properties are very important to control the texture of foods. However, the relationship between the molecular structure and emulsification properties of edible oils is not understood. To analyze this relationship, the emulsification susceptibilities of various kinds of single triacylglycerol molecular species and edible oils were systematically measured. The emulsification susceptibility increased as the carbon number and double bond number of triacylglycerol molecular species consisting oils increased. In addition, the effect of the double bond number was predominant. These results demonstrate that the emulsification property is affected by the molecular structure of oils. Furthermore, the emulsification susceptibilities of edible oils modified by enzymatic interesterification were changed as compared with those of native oils. This shows that emulsification property can be changed by the modification of the molecular structure of edible oils.  相似文献   

15.
The accessibility of NH2 groups in the DNA-binding protein of Pf1 bacteriophage has been investigated by differential chemical modification with the reagent ethyl acetimidate. The DNA-binding surface was mapped by identification of NH2 groups protected from modification when the protein is bound to bacteriophage-Pf1 DNA in the native nucleoprotein complex and when bound to the synthetic oligonucleotide d(GCGTTGCG). The ability of the modified protein to bind to DNA was monitored by fluorescence spectroscopy. Modification of the NH2 groups in the native nucleoprotein complex showed that seven out of the eight lysine residues present, and the N-terminus, were accessible to the reagent, and were not protected by DNA or by adjacent protein subunits. Modification of these residues did not inhibit the ability of the protein to bind DNA. Lysine-25 was identified by peptide mapping as being the major protected residue. Modification of this residue does abolish DNA-binding activity. Chemical modification of the accessible NH2 groups in the complex formed with the octanucleotide effectively abolishes binding to DNA. Peptide mapping established that, in this case, lysine-17 was the major protected residue. The differences observed in protection from acetimidation, and in the ability of the modified protein to bind DNA, indicate that the oligonucleotide mode of binding is not identical with that found in the native nucleoprotein complex with bacteriophage-Pf1 DNA.  相似文献   

16.
Modification of glutamate dehydrogenase from bovine liver with 2,4,6-trinitrobenzenesulfonic acid under conditions which yield stable preparations resulted in alterations of the catalytic, regulatory, and physical properties of the enzyme. Enzyme modified to the extent of one trinitrobenzenesulfonate molecule per chain of 53,500 molecular weight lost only 20% of its catalytic activity with no change in the Km values for the substrates. After modification, GTP was less effective as an inhibitor while ADP stimulation remained approximately the same. Ultracentrifugation studies showed a disaggregation of the modified enzyme and ADP did not cause reaggregation. The treated enzyme also was found to be more heat, stable even in its disaggregated state than the native enzyme.  相似文献   

17.
Structural properties of modified forms of glucose oxidase made by stepwise specific modification have been investigated. By a single step modification, one of the modified forms resulted in the conversion of native structure of glucose oxidase to molten globule like form [S. Hosseinkhani, B. Ranjbar, H. Naderi-Manesh, M. Nemat-Gorgani, FEBS Lett. 561 (2004) 213–216]. Chemical modification of lysine residues in glucose oxidase was carried out using different concentration of citraconic anhydride. Modification brought about changes in the tertiary structure with some degree of alteration in secondary structure. FTIR, far and near-UV CD spectropolarimetry, intrinsic and extrinsic fluorescence spectroscopy showed structural changes of glucose oxidase in a concentration dependent manner. This was supported by comparative study of secondary and tertiary structure.  相似文献   

18.
The effect of chemical modification of ribonuclease A on its catalytic properties was studied. The kinetic parameters were calculated by using the Eisental and Cornish-Bowden direct linear plot. The Km value found for ribonuclease A conjugates with human serum albumin are comparable with those for the native enzyme whereas the Vmax value of the modified enzyme exceeds the maximum velocity of the enzymatic reaction of native ribonuclease A.  相似文献   

19.
Three types of N-acetylated chitosans (NACs) with different degrees of acetylation (DA) were prepared and used as a substrate for enzymatic hydrolysis with a commercially available pectinase and a modified one. Pectinase modification was conducted using polyalkyleneoxide-maleic anhydride copolymer (PEO-MA copolymer). The effects of DA on enzymatic reaction with native and modified pectinases were investigated experimentally. Initial hydrolysis rate and Michaelis-Menten kinetic parameters were measured by analysis of reducing sugars. DA of NAC strongly affected the hydrolytic characteristics of native and modified pectinases. N-acetylation of chitosan increased the initial hydrolysis rate and the enzyme-substrate affinity with respect to both pectinases: NACs with DA over 0.3 showed high initial hydrolysis rate and strong affinity between enzyme and substrate. Especially, when NAC with DA over 0.3 was treated with modified pectinase, the affinity became much stronger than the native pectinase.  相似文献   

20.
Crotoxin B, the basic Asp49-PLA(2) subunit from crotoxin, the main component of Crotalus durissus terrificus venom, displays myotoxic, edema-inducing, bactericidal (upon Escherichia coli), liposomal-disrupting and anticoagulant activities. Chemical modifications of His (with 4-bromophenacyl bromide, BPB), Tyr (with 2-nitrobenzenesulphonyl fluoride, NBSF), Trp (with o-nitrophenylsulphenyl chloride, NPSC) and Lys (with acetic anhydride) residues of this protein, in addition to cleavage with cyanogen bromide (CNBr) and inhibition with ethylenediaminetetraacetic acid (EDTA), were carried out in order to study their effects on enzymatic and pharmacological activities. Lethality was reduced after modification of His or Lys residues, as well as after cleavage with CNBr, while enzymatic activity was completely abolished after modification of His or incubation with EDTA. Modification of Lys or Tyr, or cleavage with CNBr, partially reduced enzymatic activity. Anticoagulant activity was modified similarly to enzymatic activity, evidencing the dependency of this pharmacological effect on catalytic activity. Myotoxicity was reduced after modification of His or Lys, as well as after cleavage with CNBr, whereas EDTA reduced this effect to a lesser extent. Bactericidal effect was significantly reduced only after modification of Lys and after cleavage with CNBr. Edema-inducing activity was partially inhibited after treatment with EDTA and strongly reduced after acetylation of Lys residues and cleavage with CNBr, being only partially reduced after His alkylation. On the other hand, liposome disrupting activity was only partially reduced after modification of His and Tyr or after cleavage with CNBr. Modification of Trp residue partially reduced lethality and myotoxicity but did not affect enzymatic or anticoagulant activities. These data indicate that enzymatic activity is relevant for some pharmacological effects induced by crotoxin B (mainly lethal, myotoxic and anticoagulant activities), and also evidence that this subunit of crotoxin displays regions different from the active catalytic site which are involved in some of the toxic and pharmacological effects induced by this phospholipase A(2).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号