首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 763 毫秒
1.
The coexistence of multiple species within a trophic level can be regulated by consumer preferences and nutrient supply, but the influence of these factors on the co-occurrence of seagrass species is not well understood. We examined the biomass and density responses of two seagrass species in the Florida Keys Reef Tract to grazing pressure near patch reefs, and evaluated how nutrient enrichment impacted herbivory dynamics. We transplanted Halodule wrightii (shoalgrass) sprigs into caged and uncaged plots in a Thalassia testudinum (turtlegrass) bed near a patch reef. Nutrients (N and P) were added to half of the experimental plots. We recorded changes in seagrass shoot density, and after three months, we measured above- and belowground biomass and tissue nutrient content of both species. Herbivory immediately and strongly impacted H. wrightii. Within six days of transplantation, herbivory reduced the density of uncaged H. wrightii by over 80%, resulting in a decrease in above- and belowground biomass of nearly an order of magnitude. T. testudinum shoot density and belowground biomass were not affected by herbivory, but aboveground biomass and leaf surface area were higher within cages, suggesting that although herbivory influenced both seagrass species, T. testudinum was more resistant to herbivory pressure than H. wrightii. Nutrient addition did not alter herbivory rates or the biomass of either species over the short-term duration of this study. In both species, nutrient addition had little effect on the tissue nutrient content of seagrass leaves, and N:P was near the 30:1 threshold that suggested a balance between N and P. The different impacts of grazing on these two seagrass species suggest that herbivory may be an important regulator of the distribution of multiple seagrass species near herbivore refuges like patch reefs in the Caribbean.  相似文献   

2.
Physical damage by motor vessels is a widespread problem for seagrass meadows, with hull and propeller strikes accounting for thousands of acres of impaired habitat in Florida, United States, alone. Because the excavations can become topographically unstable, and because recolonization and succession of seagrasses can require decades to reach climax, Thalassia testudinum‐dominated communities, there has been increasing efforts to regrade and stabilize impacted sediments, and to speed succession. A prior project involving eight vessel groundings in two hydrodynamic settings (high and low energy) examined the relative efficacy of capping injuries with sand‐filled fabric tubes or limestone pea rock, followed by planting of fast‐growing seagrass species and nutrient amendment using bird‐roosting stake deployments. Monitoring after 4 years showed recruitment of fast‐growing, subordinate species: Syringodium filiforme or Halodule wrightii, particularly in low‐energy environments; however, T. testudinum had not yet returned to natural densities. The current study extended monitoring an additional 3 years. At 7 years posteffort, T. testudinum recolonization was still incomplete. Of the eight sites, only three had statistically recovered. In low‐energy areas, H. wrightii cover was greater than in reference meadows, and a strong inverse relationship between H. wrightii and T. testudinum was observed. One explanation is that residual nutrients from bird feces switched the competitive outcome. We demonstrate using seagrass tissue N:P that nutrients delivered via bird stakes remained in the sediments of low‐energy environments, and argue that prolonged fertilization resulted in competitive advantages for H. wrightii, depressing T. testudinum recruitment and delaying recovery of the targeted seagrass community.  相似文献   

3.
Eutrophication of coastal waters often leads to excessive growth of microalgal epiphytes attached to seagrass leaves; however, the effect of increased nutrient levels on sediment microalgae has not been studied within seagrass communities. A slow‐release NPK Osmocote fertilizer was added to sediments within and outside beds of the shoal grass Halodule wrightii, in Big Lagoon, Perdido Key, Florida. Gross primary production (GPP) and biomass (HPLC photopigments) of sediment microalgae within and adjacent to fertilized and control H. wrightii beds were measured following two 4‐week enrichment periods during June and July 2004. There was no effect of position on sediment microalgal GPP or biomass in control and enriched plots. However, nutrient enrichment significantly increased GPP in both June and July. These results suggest that sediment microalgae could fill some of the void in primary production where seagrass beds disappear due to excessive nutrient enrichment. Sedimentary chl a (proxy of total microalgal biomass) significantly increased only during the June enrichment period, whereas fucoxanthin (proxy of total diatom biomass) was not increased by nutrient enrichment even though its concentration doubled in the enriched plots in June.  相似文献   

4.
To examine the synergism of high temperature and sulfide on two dominant tropical seagrass species, a large-scale mesocosm experiment was conducted in which sulfide accumulation rates (SAR) were increased by adding labile carbon (glucose) to intact seagrass sediment cores across a range of temperatures. During the initial 10 d of the 38 d experiment, porewater SAR in cores increased 2- to 3-fold from 44 and 136 μmol L− 1 d− 1 at 28-29 °C to 80 and 308 μmol L− 1 d− 1 at 34-35 °C in Halodule wrightii and Thalassia testudinum cores, respectively. Labile C additions to the sediment resulted in SAR of 443 and 601 μmol L− 1 d− 1 at 28-29 °C and 758 to 1,557 μmol L− 1 d− 1 at 34-35 °C in H. wrightii and T. testudinum cores, respectively. Both T. testudinum and H. wrightii were highly thermal tolerant, demonstrating their tropical affinities and potential to adapt to high temperatures. While plants survived the 38 d temperature treatments, there was a clear thermal threshold above 33 °C where T. testudinum growth declined and leaf quantum efficiencies (Fv/Fm) fell below 0.7. At this threshold temperature, H. wrightii maintained shoot densities and leaf quantum efficiencies. Although H. wrightii showed a greater tolerance to high temperature, T. testudinum had a greater capacity to sustain biomass and short shoots under thermal stress with labile C enrichment, regardless of the fact that sulfide levels in the T. testudinum cores were 2 times higher than in the H. wrightii cores. Tropical seagrass tolerance to elevated temperatures, predicted in the future with global warming, should be considered in the context of the sediment-plant complex which incorporates the synergism of plant physiological responses and shifts in sulfur biogeochemistry leading to increased plant exposure to sulfides, a known toxin.  相似文献   

5.
Starch grains are a ubiquitous component of plants that have been used in tandem with phytoliths, pollen, and macrofossils to reconstruct past floral diversity. This tool has yet to be fully explored for aquatic plants, specifically seagrasses, which lack phytoliths and are rarely preserved as macrofossils or pollen. If starch grains in seagrasses are morphologically distinct, this method has the potential to improve seagrass identification in the fossil record in such cases where its starch is preserved (e.g. scratches and occlusal surfaces of tooth enamel from seagrass consumers). The goals of this study were twofold: (1) to determine if starch is present in seagrass material and (2) to assess how starch grain morphology differs between different seagrasses.This study focused on four abundant and ecologically distinct seagrasses from the Caribbean: Halodule wrightii, Ruppia maritima, Syringodium filiforme, and Thalassia testudinum. Starch grains were observed in all species except S. filiforme. Grains from H. wrightii are typically observed in side-on orientation, are sub-round to angular, and are fairly small (3-19 μm, end-on). Grains of R. maritima are small spherical grains (4-8 μm) that have a centric hilum and a straight extinction cross with a median angle between the arms of 90°. Grains from T. testudinum are large (9-31 μm, end-on), conical in side-on and round/sub-round in end-on orientation, have a slightly eccentric hilum with an obvious particle, and prominent lamellae.Visual assessment and comparative statistics demonstrate that the morphology of starch grains from T. testudinum, R. maritima, and H. wrightii are significantly different. With more extensive research, there is potential for the positive identification of starch grains from an unknown seagrass. The ability to identify seagrass from starch grains could facilitate the identification of seagrasses in the fossil record and supply information on seagrass evolution and distribution, climate effects on seagrass distribution, and the diets of seagrass consumers.  相似文献   

6.
The objective of this study was to measure the communities associated with different seagrass species to predict how shifts in seagrass species composition may affect associated fauna. In the northwestern Gulf of Mexico, coverage of the historically dominant shoal grass (Halodule wrightii) is decreasing, while coverage of manatee grass (Syringodium filiforme) and turtle grass (Thalassia testudinum) is increasing. We conducted a survey of fishes, crabs, and shrimp in monospecific beds of shoal, manatee, and turtle grass habitats of South Texas, USA to assess how changes in sea grass species composition would affect associated fauna. We measured seagrass parameters including shoot density, above ground biomass, epiphyte type, and epiphyte abundance to investigate relationships between faunal abundance and these seagrass parameters. We observed significant differences in communities among three seagrass species, even though these organisms are highly motile and could easily travel among the different seagrasses. Results showed species specific relationships among several different characteristics of the seagrass community and individual species abundance. More work is needed to discern the drivers of the complex relationships between individual seagrass species and their associated fauna.  相似文献   

7.
The non-native seagrass species Halophila stipulacea has spread throughout the Eastern Caribbean since 2002, and could potentially impact the functioning of local seagrass ecosystems. Important characteristics for invasiveness, such as dispersal, recruitment and expansion of H. stipulacea at a local scale, are unknown. We assessed H. stipulacea expansion rates within Lac Bay, Bonaire, Dutch Caribbean (7?km2), since its establishment in 2010 and tested the settlement potential of uprooted vegetative fragments of H. stipulacea. Using 49 fixed locations, we observed that between 2011 and 2015 the occurrence of H. stipulacea in the bay increased significantly from 6% to 20% while native Thalassia testudinum occurrence decreased significantly from 53% to 33%. Free-floating H. stipulacea fragments that were collected and tethered above the sediment rooted within 10 days with a settlement success rate of 100%. The growth of settled fragments was on average 0.91 shoots d?1. The ongoing shift from native T. testudinum to introduced H. stipulacea dominated meadows may have important consequences for multiple Caribbean seagrass ecosystem functions. Given the large difference in size between the two seagrass species, functions such as coastal protection, habitat structure, food availability, and the stability and resilience of these systems can be altered. The next steps towards modelling future expansion of H. stipulacea throughout the Caribbean and beyond should include the assessment of fragment viability and dispersal distance, and the impacts of natural and anthropogenic disturbance on vegetative fragment density, dispersion and settlement by this species.  相似文献   

8.
This study evaluates the bottom-up and top-down controls on epiphyte loads under low nutrient additions. Nutrients and gastropod grazers were manipulated in a field experiment conducted within a Thalassia testudinum meadow in Florida Bay, FL, USA. The effect of seagrass leaf turnover rate on epiphyte loading was also evaluated using novel seagrass short-shoot mimics that “grow,” allowing for the manipulation of leaf turnover rates. During the summer growing season and over the course of one seagrass leaf turnover period, low-level water column nutrient additions increased total epiphyte load, epiphyte chlorophyll a, and epiphyte autotrophic index. T. testudinum leaf nutrients (N and P) and leaf productivity also increased. Epiphyte loading and T. testudinum shoot biomass and productivity did not respond to a 60% mean increase in gastropod abundance. Manipulations of seagrass leaf turnover rates at minimum wintertime and maximum summertime rates resulted in a 20% difference in epiphyte loading. Despite elevated grazer abundances and increased leaf turnover rates, epiphyte loads increased with nutrient addition. These results emphasize the sensitivity of T. testudinum and associated epiphytes to low-level nutrient addition in a nutrient-limited environment such as Florida Bay.  相似文献   

9.
Two reciprocal experiments testing for the effects of nutrient addition in the sediment and competitive interactions between the native seagrass Cymodocea nodosa (Ucria) Ascherson and the introduced alga Caulerpa taxifolia (Vahl) C. Agardh were performed. This study was conducted for 13 months (August 1995 until September 1996) in a bay on the south coast of Elba Island (Italy). Each experiment consisted of the manipulation of the level of nutrients (addition vs. control) and the manipulation of the neighbours (presence vs. removal). Response variables were blade density and size for one experiment and shoot density and leaf length of seagrass in the other. Results indicated that the presence of Caulerpa taxifolia did not affect significantly Cymodocea nodosa shoot density and the increased nutrient availability in the sediment did not alter this pattern. Neither the removal of the canopy of the seagrass nor the fertilization of the sediment has influenced significantly the density of the alga. Both species, where co-occurring, show larger size than where the neighbour is removed. Hence, results of this study suggest that the two species on the long term are likely to coexist and that the high nutrient supply of the sediment would not enhance the probability of success neither of the seagrass nor of the alga. Predictions made on the basis of short-term results, that high nutrient loads of the substratum would have represented an even more suitable condition for C. taxifolia to colonize C. nodosa beds and that on the long-term the alga has a high probability of success, did not occur.  相似文献   

10.
Management of ecological disturbances requires an understanding of the time scale and dynamics of community responses to disturbance events. To characterize long-term seagrass bed responses to nutrient enrichment, we established six study sites in Florida Bay, USA. In 24 plots (0.25 m2) at each site, we regularly added nitrogen (N) and phosphorus (P) in a factorial design for 7 years. Five of the six sites exhibited strong P limitation. Over the first 2 years, P enrichment increased Thalassia testudinum cover in the three most P-limited sites. After 3 years, Halodule wrightii began to colonize many of the P-addition plots, but the degree of colonization was variable among sites, possibly due to differences in the supply of viable propagules. Thalassia increased its allocation to aboveground tissue in response to P enrichment; Halodule increased in total biomass but did not appear to change its aboveground: belowground tissue allocation. Nutrient enrichment did not cause macroalgal or epiphytic overgrowth of the seagrass. Nitrogen retention in the study plots was variable but relatively low, whereas phosphorus retention was very high, often exceeding 100% of the P added as fertilizer over the course of our experiments. Phosphorus retentions exceeding 100% may have been facilitated by increases in Thalassia aboveground biomass, which promoted the settlement of suspended particulate matter containing phosphorus. Our study demonstrated that low-intensity press disturbance events such as phosphorus enrichment can initiate a slow, ramped successional process that may alter community structure over many years.  相似文献   

11.
The clonal structure of the tropical seagrass Thalassia testudinum was studied at 16 sites along the Mexican Atlantic coast, situated in back-reef, shallow coastal and lagoon habitats. Thalassia testudinum was highly clonal, with an overall average clonal richness (R) of 0.55. The largest genet found in this study extended throughout the sampling area (∼230 m), with an estimated max age almost reaching 600 years. Lagoons with higher nutrient availability reflected by nutrient content of leaves (mean leaf C:N ratio 11.4) and lower hydrodynamic regimes reflected by the percentage of fine sediments (on average 23%), sustained larger genets of T. testudinum (mean of the largest genets over populations was 167.3 m) than the shallow coastal areas (C:N 12.3, 6.2% fine sediment, mean largest genet 10.3 m) and the more oligotrophic back-reefs (C:N 16.3, 2.7% fine sediment, mean largest genet 6.5 m). Population genetic analysis showed different levels of clonality, genotypic diversity and spatial genetic relatedness for this seagrass per habitat, with the lagoons presenting much lower levels of clonal diversity than the other two habitats.  相似文献   

12.
Upon exposure to chilling conditions, the seagrass populations of Thalassia testudinum Banks ex König, Syringodium filiforme Kütz., and Halodule wrightii Aschers. showed various amounts of leaf and plant damage that correlated with their origin in the Gulf of Mexico-Caribbean. Populations of more tropical origin in the southern Gulf and Caribbean showed the most chill damage and those of the northern Gulf showed the least injury from the exposure to low temperatures. Of the three seagrasses, Halodule showed greatest chill tolerance, Syringodium showed the least tolerance and Thalassia was intermediate. The uptake of 14C by leaves following exposure to chilling temperatures showed quantitative differences that correlated with the amount of leaf damage in the various populations. No significant changes in the fatty acids in total lipid extracts were noted in the Texas seagrasses after chilling and, therefore, their resistance to low temperature damage did not relate to changes in saturation of fatty acids. Although the growing conditions slightly altered the severity of the chilling effects, the differentiation of response to chilling among the seagrass populations is based on inherited properties.  相似文献   

13.
Seasonality of nutrient dynamics in three morphologically different seagrass species and their sediments was examined for 1 year between November 2006 and November 2007 at four sites in the Andaman Sea, Thailand. The smaller species, Cymodocea serrulata and Halophila ovalis, showed major seasonal variation in shoot density, above- and belowground biomass, much more than expected from seasonal changes in water temperature and light conditions. All parameters showed minimum values in the dry season due to desiccation during neap tides. In contrast Enhalus acoroides showed less seasonal variation. Only limited seasonality was found in tissue N content of all species, whereas tissue P content responded to the low P concentration in the water column during the wet season. There were no differences in sediment conditions among species, and nutrient pools were generally low. Furthermore there were no significant spatial differences in seagrass and sediment nutrient dynamics, despite varying anthropogenic activity at the study sites, reflecting the oligotrophic conditions in this region.  相似文献   

14.
Three tropical seagrass species were planted into 1.5 m2 culture tanks and grown under the same conditions for 2 years. New shoot production and vegetation growth of both Syringodium filiforme Kütz. and Halodule wrightii Aschers. resulted in complete cover in monoculture tanks within the first year. The vegetative spread of Thalassia testudinum Banks ex König was slower than that of the other species. The culture of seagrasses in open mesocosm systems was most successful when continuous current circulation was maintained, water column nutrients were kept low, and extreme high temperatures (> 36°C) were avoided. Seagrass colonized and grew equally well in Indian River mud substratum and in quartz sand.  相似文献   

15.
海草是分布在全球海岸带的沉水被子植物,与周围环境共同形成的海草床生态系统是三大典型海洋生态系统之一,具有十分重要的生态功能。20世纪以来,全球海草床衰退严重,研究海草床的生态修复迫在眉睫,现有修复方法未能足够重视微生物在海草床中的重要作用。本文综合阐述了微生物在海草床生态系统有机物矿化和营养流动过程中起到的作用,分析了微生物驱动下的海草床水体与沉积物之间的元素循环,提出了人类活动引起海草床退化的原因,总结了海草床微生物的系统研究方法,并在此基础上提出从微生物生态的角度修复海草床的新思路。  相似文献   

16.
《Aquatic Botany》2007,86(1):14-24
The long-term sustainability of seagrasses in the subtropics and tropics depends on their ability to adapt to shifts in salinity regimes, particularly in light of present increases in coastal freshwater extractions and future climate change scenarios. Although there are major concerns world-wide on increased salinity in coastal estuaries, there is little quantitative information on the specific upper salinity tolerance of tropical and subtropical seagrass species. We examined seagrass hypersalinity tolerance under two scenarios: (1) when salinity is raised rapidly simulating a pulsed event, such as exposure to brine effluent, and (2) when salinity is raised slowly, characteristic of field conditions in shallow evaporative basins; the first in hydroponics (Experiments I and II) and the second in large mesocosms using intact sediment cores from the field (Experiment III). The three tropical seagrass species investigated in this study were highly tolerant of hypersaline conditions with a slow rate of salinity increase (1 psu d−1). None of the three species elicited total shoot mortality across the range of salinities examined (35–70 psu over 30 days exposures); representing in situ exposure ranges in Florida Bay, a shallow semi-enclosed subtropical lagoon with restricted circulation. Based on stress indicators, shoot decline, growth rates, and PAM florescence, all three species were able to tolerate salinities up to 55 psu, with Thalassia testudinum (60 psu) and Halodule wrightii (65 psu) eliciting a slightly higher salinity threshold than Ruppia maritima (55 psu). However, when salinity was pulsed, without a slow osmotic adjustment period, threshold levels dropped 20 psu to approximately 45 psu for T. testudinum. While we found these three seagrass species to be highly tolerant of high salinity, and conclude that hypersalinity probably does not solely cause seagrass dieoff events in Florida Bay, high salinity can modify carbon and O2 balance in the plant, potentially affecting the long-term health of the seagrass community.  相似文献   

17.
A study was undertaken to evaluate the interrelationship between the presence of seagrasses, Zostera marina and Halodule wrightii, and the physical and chemical properties of sediments in a coastal plain estuary near Beaufort, North Carolina. In sediments underlying a cover of seagrass, silt-clay, organic matter, exchangeable ammonium, ammonium dissolved in pore waters and total nitrogen were larger than in unvegetated profiles. The magnitude of the physical and chemical properties of sediments varied according to the location of the station in relation to the vegetation, as well as the continuity in the distribution of the seagrass. The largest pools of nitrogen, the finest sediment texture, and the greatest organic matter content were in sediments associated with the mid bed regions of seagrass meadows, intermediate at the edges of the bed and small isolated patches of grass, and least in unvegetated substrate.General conclusions from this study are: 1) once established, seagrasses appear capable of modifying the sediment texture as well as the organic matter and nitrogen content; 2) nitrogen accumulates beneath the vegetation suggesting that vegetated sediments are sinks; however, functional recycling mechanisms seem to be operating as suggested by the larger magnitude of remineralized nitrogen in the vegetated profiles; and 3) the establishment of seagrasses in this geographical region are not necessarily restricted by the sediment properties measured in this study. These data and conclusions are discussed in regard to an application of contemporary theories of ecosystem development to seagrass systems.Contribution Number 82-22-B  相似文献   

18.
The capacity of epifauna to control algal proliferation following nutrient input depends on responses of both grazers and upper trophic level consumers to enrichment. We examined the responses of Thalassia testudinum (turtle grass) epifaunal assemblages to nutrient enrichment at two sites in Florida Bay with varying levels of phosphorus limitation. We compared epifaunal density, biomass, and species diversity in 2 m2 plots that had either ambient nutrient concentrations or had been enriched with nitrogen and phosphorus for 6 months. At the severely P-limited site, total epifaunal density and biomass were two times higher in enriched than in unenriched plots. Caridean shrimp, grazing isopods, and gammarid amphipods accounted for much of the increase in density; brachyuran crabs, primary predatory fish, and detritivorous sea cucumbers accounted for most of the increase in biomass. At the less P-limited site, total epifaunal density and biomass were not affected by nutrient addition, although there were more caridean shrimp and higher brachyuran crab and pink shrimp biomass in enriched plots. At both sites, some variation in epifaunal density and biomass was explained by features of the macrophyte canopy, such as T. testudinum and Halodule wrightii percent cover, suggesting that enrichment may change the refuge value of the macrophyte canopy for epifauna. Additional variation in epifaunal density and biomass was explained by epiphyte pigment concentrations, suggesting that enrichment may change the microalgal food resources that support grazing epifauna. Increased epifaunal density in enriched plots suggests that grazers may be able to control epiphytic algal proliferation following moderate nutrient input to Florida Bay. Electronic supplementary material Electronic supplementary material is available for this article at and accessible for authorised users.  相似文献   

19.
The vegetative development of the seagrass Thalassia testudinum was assessed in three reefs (Hornos, isla Sacrificios, isla de Enmedio) of the Veracruz Reef System (Veracruz, México) which are located at increasing distances from the mainland coast. Leaf nutrient content of T. testudinum suggests that the availability of nitrogen and phosphorus increases from Hornos reef to isla Sacrificios and isla de Enmedio, that is, as the distance to the coast increases. The total biomass of this species tended to increase similarly as a result of the large increase of the biomass of rhizomes and roots but not of leaves. In contrast to previous knowledge of the response of seagrasses along gradients of nutrient availability, the rhizome and roots to shoot biomass ratio increased by a factor of two as nutrient availability increased. The density of T. testudinum shoots and their mass, the LAI and leaf productivity, and the average number of leaves produced by a T. testudinum shoot in 1 year were lowest in the reef closest to shore (Hornos). Our results show that the vegetative development of T. testudinum in Hornos reef is restrained when compared with that in isla Sacrificios and isla de Enmedio and suggest that the differences of vegetative development of this species in the Veracruz Reef System might be driven by factors other than nutrient availability.  相似文献   

20.
Seagrasses are marine flowering plants with hydrophilous pollination. This abiotic pollination by water assumes absence of flower-animal interaction, but animals can interfere in this process through consumption of reproductive structures. We studied predation on male flowers by fish for three dioecious seagrass species (Thalassia testudinum, Syringodium filiforme and Halodule wrightii) in the Mexican Caribbean. Seagrass flowers have a highly reduced or absent corolla and florivores directly consumed the anthers with pollen. The foliar structures (tepals, bracts or sheaths) protecting the male flower buds were removed by hand in situ. The floral buds were followed by videos or taking pictures at regular intervals and most (56–100 %, depending on seagrass species and experimental setting) artificially denuded male flower buds were consumed within 24 h by juvenile fish of various species. Histochemical analysis showed that the pollen and embedding mucilage were rich in polysaccharides and proteins, thus potentially nutritious. The seagrasses had copious production of pollen (between 0.2 and 1.2 × 106 pollen per flower, depending on the species). But T. testudinum and S. filiforme were often pollen limited, and the probability of fruit set was reduced ~50 % when the females were at the distance of 1 and 5–6 m from the males flowers, respectively. Under natural conditions, depredation on pre-anthesis male flowers in the three species was low because flower bud emergence (few hours) and pollen release (1–4 h) were ephemeral processes. In addition, the release of pollen of T. testudinum occurred at dusk when herbivorous fish became inactive. These life-cycle characteristics aid to avoid excessive pollen consumption by fish, however, whether they are anti-predator strategies or mere adaptations for submarine pollination remains to be established.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号