首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Specific recognition of the mRNA 5' cap by eukaryotic initiation factor eIF4E is a rate-limiting step in the translation initiation. Fluorescence spectroscopy and high-sensitivity isothermal titration calorimetry were used to examine the thermodynamics of eIF4E binding to a cap-analogue, 7-methylGpppG. A van't Hoff plot revealed nonlinearity characterized by an unexpected, large positive molar heat capacity change (DeltaC(degree)(p) = +1.92 +/- 0.93 kJ.mol(-1).K(-1)), which was confirmed by direct ITC measurements (DeltaC(degree)(p) = +1.941 +/- 0.059 kJ.mol(-1).K(-1)). This unique result appears to come from an extensive additional hydration upon binding and charge-related interactions within the binding site. As a consequence of the positive DeltaC(degree)(p), the nature of the thermodynamic driving force changes with increasing temperature, from enthalpy-driven and entropy-opposed, through enthalpy- and entropy-driven in the range of biological temperatures, into entropy-driven and enthalpy-opposed. Comparison of the van't Hoff and calorimetric enthalpy values provided proof for the ligand protonation at N(1) upon binding, which is required for tight stabilization of the cap-eIF4E complex. Intramolecular self-stacking of the dinucleotide cap-analogue was analyzed to reveal the influence of this coupled process on the thermodynamic parameters of the eIF4E-mRNA 5' cap interaction. The temperature-dependent change in the conformation of 7-methylGpppG shifts significantly the intrinsic DeltaH(degree)(0) = -72.9 +/- 4.2 kJ.mol(-1) and DeltaS(degree)(0) = -116 +/- 58 J.mol(-1).K(-1) of binding to the less negative resultant values, by DeltaH(degree)(sst) = +9.76 +/- 1.15 kJ.mol(-1) and DeltaS(degree)(sst) = +24.8 +/- 2.1 J.mol(-1).K(-1) (at 293 K), while the corresponding DeltaC(degree)(p)(sst) = -0.0743 +/- 0.0083 kJ.mol(-1).K(-1) is negligible in comparison with the total DeltaC(degree)(p) .  相似文献   

2.
mRNA 5'-cap recognition by the eukaryotic translation initiation factor eIF4E has been exhaustively characterized with the aid of a novel fluorometric, time-synchronized titration method, and X-ray crystallography. The association constant values of recombinant eIF4E for 20 different cap analogues cover six orders of magnitude; with the highest affinity observed for m(7)GTP (approximately 1.1 x 10(8) M(-1)). The affinity of the cap analogues for eIF4E correlates with their ability to inhibit in vitro translation. The association constants yield contributions of non-covalent interactions involving single structural elements of the cap to the free energy of binding, giving a reliable starting point to rational drug design. The free energy of 7-methylguanine stacking and hydrogen bonding (-4.9 kcal/mol) is separate from the energies of phosphate chain interactions (-3.0, -1.9, -0.9 kcal/mol for alpha, beta, gamma phosphates, respectively), supporting two-step mechanism of the binding. The negatively charged phosphate groups of the cap act as a molecular anchor, enabling further formation of the intermolecular contacts within the cap-binding slot. Stabilization of the stacked Trp102/m(7)G/Trp56 configuration is a precondition to form three hydrogen bonds with Glu103 and Trp102. Electrostatically steered eIF4E-cap association is accompanied by additional hydration of the complex by approximately 65 water molecules, and by ionic equilibria shift. Temperature dependence reveals the enthalpy-driven and entropy-opposed character of the m(7)GTP-eIF4E binding, which results from dominant charge-related interactions (DeltaH degrees =-17.8 kcal/mol, DeltaS degrees= -23.6 cal/mol K). For recruitment of synthetic eIF4GI, eIF4GII, and 4E-BP1 peptides to eIF4E, all the association constants were approximately 10(7) M(-1), in decreasing order: eIF4GI>4E-BP1>eIF4GII approximately 4E-BP1(P-Ser65) approximately 4E-BP1(P-Ser65/Thr70). Phosphorylation of 4E-BP1 at Ser65 and Thr70 is insufficient to prevent binding to eIF4E. Enhancement of the eIF4E affinity for cap occurs after binding to eIF4G peptides.  相似文献   

3.
The eukaryotic multisubunit initiation factor eIF4F is an essential component of the translational machinery. Recognition of the cap structure of mRNA, m(7)GpppN, where N is any nucleotide, by eIF4E is required for initiation of translation. Here we compare the equilibrium and thermodynamic binding characteristics of wild-type eIF4E and a high-affinity mutant, eIF4E(K119A), with those of cap analogues and eIF4G peptides. The temperature-dependent K(d) values for cap analogues were markedly lower, indicating tighter binding, with the eIF4E(K119A) mutant compared with wild-type eIF4E. Although interactions with cap analogues were found to be enthalpically driven, entropic contributions were also significant. Moreover, the binding affinities of eIF4G peptides were 2-4-fold tighter for eIF4E(K119A) than for eIF4E(wt). These results demonstrate that the binding affinity for both the mRNA cap and eIF4G peptides can be simultaneously altered by point mutations distant from either binding site. Entropic contributions to binding suggesting hydrophobic interactions are larger in the mutant protein and are most likely due to a conformational change.  相似文献   

4.
Eukaryotic translation initiation factor 4E (eIF4E) is essential for efficient protein synthesis in cap-dependent translation. The protein specifically binds the cap structure at the mRNA 5' terminus and facilitates the assembly of the mRNA with other initiation factors and the 40S ribosomal subunit. Phosphorylation of eIF4E is implicated in the regulation of the initiation step of translation. However, the molecular mechanism of this regulation still remains unclear. To address this problem, we have determined the binding affinities of eIF4E specifically mutated at position 209 or 159 for a series of novel mono- and dinucleotide cap analogues by a fluorometric time-synchronized titration method. A 1.5-3-fold reduction in the affinity of cap for the S209E mutant and a 1-2-fold increase in the affinity of cap for the S209K mutant, depending on the negative charge of phosphate chains, indicate that phosphorylation at Ser209 creates electrostatic repulsion between the protein and the negatively charged cap structure. The inhibition of the ability to bind cap analogues by the K159A mutant and its phosphorylated counterpart shows significant participation of Lys159 in the binding of the capped mRNA. Both structural modifications, phosphorylation and the replacement of lysine with alanine, result in an increase in the negative Gibbs free energy of association that is proportional to the length of the cap phosphate chain and additive, i.e., equal to the sum of the individual destabilizing changes of DeltaG degrees. The possible implication of these results for the mechanism of control of eIF4E by phosphorylation, especially for the "clamping model", is discussed.  相似文献   

5.
The peripheral subunit-binding domain (PSBD) of the dihydrolipoyl acetyltransferase (E2, EC 2.3.1.12) binds tightly but mutually exclusively to dihydrolipoyl dehydrogenase (E3, EC 1.8.1.4) and pyruvate decarboxylase (E1, EC 1.2.4.1) in the pyruvate dehydrogenase multienzyme complex of Bacillus stearothermophilus. Isothermal titration calorimetry (ITC) experiments demonstrated that the enthalpies of binding (DeltaH degrees ) of both E3 and E1 with the PSBD varied with salt concentration, temperature, pH, and buffer composition. There is little significant difference in the free energies of binding (DeltaG degrees = -12.6 kcal/mol for E3 and = -12.9 kcal/mol for E1 at pH 7.4 and 25 degrees C). However, the association with E3 was characterized by a small, unfavorable enthalpy change (DeltaH degrees = +2.2 kcal/mol) and a large, positive entropy change (TDeltaS degrees = +14.8 kcal/mol), whereas that with E1 was accompanied by a favorable enthalpy change (DeltaH degrees = -8.4 kcal/mol) and a less positive entropy change (TDeltaS degrees = +4.5 kcal/mol). Values of DeltaC(p) of -316 cal/molK and -470 cal/molK were obtained for the binding of E3 and E1, respectively. The value for E3 was not compatible with the DeltaC(p) calculated from the nonpolar surface area buried in the crystal structure of the E3-PSBD complex. In this instance, a large negative DeltaC(p) is not indicative of a classical hydrophobic interaction. In differential scanning calorimetry experiments, the midpoint melting temperature (T(m)) of E3 increased from 91 degrees C to 97.1 degrees C when it was bound to PSBD, and that of E1 increased from 65.2 degrees C to 70.0 degrees C. These high T(m) values eliminate unfolding as a major source of the anomalous DeltaC(p) effects at the temperatures (10-37 degrees C) used for the ITC experiments.  相似文献   

6.
The DNA binding domain of the transposon Tn916 integrase (INT-DBD) binds to its DNA target site by positioning the face of a three-stranded antiparallel beta-sheet within the major groove. Binding of INT-DBD to a 13 base pair duplex DNA target site was studied by isothermal titration calorimetry, differential scanning calorimetry, thermal melting followed by circular dichroism spectroscopy, and fluorescence spectroscopy. The observed heat capacity change accompanying the association reaction (DeltaC(p)) is temperature-dependent, decreasing from -1.4 kJ K(-1) mol(-1) at 4 degrees C to -2.9 kJ K(-1) mol(-1) at 30 degrees C. The reason is that the partial molar heat capacities of the free protein, the free DNA duplex, and the protein-DNA complex are not changing in parallel when the temperature increases and that thermal motions of the protein and the DNA are restricted in the complex. After correction for this effect, DeltaC(p) is -1.8 kJ K(-1) mol(-1) and temperature-independent. However, this value is still higher than DeltaC(p) of -1.2 kJ K(-1) mol(-1) estimated by semiempirical methods from dehydration of surface area buried at the complex interface. We propose that the discrepancy between the measured and the structure-based prediction of binding energetics is caused by incomplete dehydration of polar groups in the complex. In support, we identify cavities at the interface that are large enough to accommodate approximately 10 water molecules. Our results highlight the difficulties of structure-based prediction of DeltaC(p) (and other thermodynamic parameters) and emphasize how important it is to consider changes of thermal motions and soft vibrational modi in protein-DNA association reactions. This requires not only a detailed investigation of the energetics of the complex but also of the folding thermodynamics of the protein and the DNA alone, which are described in the accompanying paper [Milev et al. (2003) Biochemistry 42, 3492-3502].  相似文献   

7.
The origin of reduced heat capacity change of unfolding (DeltaC(p)) commonly observed in thermophilic proteins is controversial. The established theory that DeltaC(p) is correlated with change of solvent-accessible surface area cannot account for the large differences in DeltaC(p) observed for thermophilic and mesophilic homologous proteins, which are very similar in structures. We have determined the protein stability curves, which describe the temperature dependency of the free energy change of unfolding, for a thermophilic ribosomal protein L30e from Thermococcus celer, and its mesophilic homologue from yeast. Values of DeltaC(p), obtained by fitting the free energy change of unfolding to the Gibbs-Helmholtz equation, were 5.3 kJ mol(-1) K(-1) and 10.5 kJ mol(-1) K(-1) for T.celer and yeast L30e, respectively. We have created six charge-to-neutral mutants of T.celer L30e. Removal of charges at Glu6, Lys9, and Arg92 decreased the melting temperatures of T.celer L30e by approximately 3-9 degrees C, and the differences in melting temperatures were smaller with increasing concentration of salt. These results suggest that these mutations destabilize T.celer L30e by disrupting favorable electrostatic interactions. To determine whether electrostatic interactions contribute to the reduced DeltaC(p) of the thermophilic protein, we have determined DeltaC(p) for wild-type and mutant T.celer L30e by Gibbs-Helmholtz and by van't Hoff analyses. A concomitant increase in DeltaC(p) was observed for those charge-to-neutral mutants that destabilize T.celer L30e by removing favorable electrostatic interactions. The crystal structures of K9A, E90A, and R92A, were determined, and no structural change was observed. Taken together, our results support the conclusion that electrostatic interactions contribute to the reduced DeltaC(p) of T.celer L30e.  相似文献   

8.
Fodor E  Ginsburg A 《Proteins》2006,64(1):13-18
Titrations of specific 18-bp duplex DNA with the cardiac-specific homeodomain Nkx2.5(C56S) have utilized an ultrasensitive isothermal titration calorimeter (ITC). As the free DNA nears depletion, we observe large apparent decreases in the binding enthalpy when the DNA is impaired or when the temperature is sufficiently high to produce some unfolding of the free protein. Either effect can be attributed to refolding of the biopolymer that occurs as a result of stabilization due to the large favorable change in free energy on the homeodomain binding to DNA (-49.4 kJ/mol at 298 K). In either case, thermodynamic parameters obtained in such ITC experiments are unreliable. By using a lower temperature (85 vs. 95 degrees C) during the annealing of complementary DNA strands, damage of the 18-bp duplex DNA (T(m) = 72 degrees C) is avoided, and titrations with the homeodomain are normal at temperatures from 10 to 40 degrees C when >95% of the protein is folded. Under the latter conditions, the heat capacity plot is linear with a DeltaC(p) value of -0.80 +/- 0.03 kJ K(-1) mol(-1), which is more negative than that calculated from the burial of solvent accessible surface areas (-0.64 +/- 0.05 kJ K(-1) mol(-1)), consistent with water structures being at the protein-DNA interfaces.  相似文献   

9.
Translation of most cellular mRNAs involves cap binding by the translation initiation complex. Among this complex of proteins are cap-binding protein eIF4E and the eIF4E kinase Mnk1. Cap-dependent mRNA translation generally correlates with Mnk1 phosphorylation of eIF4E when both are bound to eIF4G. During the late phase of adenovirus (Ad) infection translation of cellular mRNA is inhibited, which correlates with displacement of Mnk1 from eIF4G by the viral 100-kDa (100K) protein and dephosphorylation of eIF4E. Here we describe the molecular mechanism for 100K protein displacement of Mnk1 from eIF4G and elucidate a structural basis for eIF4G interaction with Mnk1 and 100K proteins and Ad inhibition of cellular protein synthesis. The eIF4G-binding site is located in an N-terminal 66-amino-acid peptide of 100K which is sufficient to bind eIF4G, displace Mnk1, block eIF4E phosphorylation, and inhibit eIF4F (cap)-dependent cellular mRNA translation. Ad 100K and Mnk1 proteins possess a common eIF4G-binding motif, but 100K protein binds more strongly to eIF4G than does Mnk1. Unlike Mnk1, for which binding to eIF4G is RNA dependent, competitive binding by 100K protein is RNA independent. These data support a model whereby 100K protein blocks cellular protein synthesis by coopting eIF4G and cap-initiation complexes regardless of their association with mRNA and displacing or blocking binding by Mnk1, which occurs only on preassembled complexes, resulting in dephosphorylation of eIF4E.  相似文献   

10.
The mRNA cap‐binding oncoprotein “eIF4E” is phosphorylated at residue S209 by Mnk kinases, and is closely associated with tumor development and progression. Despite being well‐established, mechanistic details at the molecular level of mRNA recognition by eIF4E due to phosphorylation have not been clearly elucidated. We investigated this through molecular modeling and simulations of the S209 phosphorylated derivative of eIF4E and explored the associated implication on the binding of the different variants of mRNA‐cap analogs. A key feature that emerges as a result of eIF4E phosphorylation is a salt‐bridge network between the phosphorylated S209 (pS209) and a specific pair of lysine residues (K159 and K162) within the cap‐binding interface on eIF4E. This interaction linkage stabilizes the otherwise dynamic C‐terminal region of the protein, resulting in the attenuation of the overall plasticity and accessibility of the binding pocket. The pS209‐K159 salt‐bridge also results in an energetically less favorable environment for the bound mRNA‐cap primarily due to electrostatic repulsion between the negative potentials from the phosphates in the cap and those appearing as a result of phosphorylation of S209. These observations collectively imply that the binding of the mRNA‐cap will be adversely affected in the phosphorylated derivative of eIF4E. We propose a mechanistic model highlighting the role of eIF4E phosphorylation as a regulatory tool in modulating eIF4E: mRNA‐cap recognition and its potential impact on translation initiation.  相似文献   

11.
Sequence-specific DNA recognition by bacterial integrase Tn916 involves structural rearrangements of both the protein and the DNA duplex. Energetic contributions from changes of conformation, thermal motions and soft vibrational modi of the protein, the DNA, and the complex significantly influence the energetic profile of protein-DNA association. Understanding the energetics of such a complicated system requires not only a detailed calorimetric investigation of the association reaction but also of the components in isolation. Here we report on the conformational stability of the integrase Tn916 DNA binding domain and its cognate 13 base pair target DNA duplex. Using a combination of temperature and denaturant induced unfolding experiments, we find that the 74-residue DNA binding domain is compact and unfolds cooperatively with only small deviation from two-state behavior. Scanning calorimetry reveals an increase of the heat capacity of the native protein attributable to increased thermal fluctuations. From the combined calorimetric and spectroscopic experiments, the parameters of protein unfolding are T(m) = 43.8 +/- 0.3 degrees C, DeltaH(m) = 255 +/- 18 kJ mol(-1), DeltaS(m) = 0.80 +/- 0.06 kJ mol(-1), and DeltaC(p) = 5.0 +/- 0.8 kJ K(-1) mol(-1). The DNA target duplex displays a thermodynamic signature typical of short oligonucleotide duplexes: significant heat absorption due to end fraying and twisting precedes cooperative unfolding and dissociation. The parameters for DNA unfolding and dissociation are DeltaH(m) = 335 +/- 4 kJ mol(-1) and DeltaC(p) = 2.7 +/- 0.9 kJ K(-(1) mol(-1). The results reported here have been instrumental in interpreting the thermodynamic features of the association reaction of the integrase with its 13 base pair target DNA duplex reported in the accompanying paper [Milev et al. (2003) Biochemistry 42, 3481-3491].  相似文献   

12.
The heat of binding of rabbit skeletal myosin subfragment 1 (myosin-S1) and heavy meromyosin (HMM) to F-actin has been measured by batch calorimetry. Proton release measurements in unbuffered solutions indicate that less than 0.1 mol of protons is absorbed or released per mol of myosin head bound to actin. Hence, the measured heats are approximately equal to the enthalpy of myosin-S1 and HMM binding to actin. The enthalpy of binding of myosin-S1 to actin was +22 +/- 3 and +27 +/- 5 kJ/mol of myosin-S1 in two series of experiments at 12 degrees C and +26 +/- 5 kJ/mol of myosin-S1 at 0 degrees C, indicating that delta Cp for this reaction in the range of 0-12 degrees C is small (-80 J/mol/K). The enthalpy of binding of HMM to actin at 12 degrees C was found to be +26 +/- 1 kJ/mol of myosin head. The enthalpies determined here and the equilibrium constants obtained from the literature for measurements at 20 degrees C under identical solvent conditions were used to estimate the entropy of the association of myosin S1 and HMM with F-actin: +235 J/mol/K for myosin-S1 and +190 J/mol of myosin head/K for HMM. Thermodynamic parameters of the interaction of myosin-S1 with actin and ADP or AMP-PNP can be evaluated using the enthalpy of association of myosin-S1 with actin determined here, together with literature values for the equilibrium constants and enthalpies of binding of these nucleotides to myosin-S1. The calculated enthalpies of binding of ADP or AMP-PNP to actomyosin-S1 are small and negative.  相似文献   

13.
Khan MA  Goss DJ 《Biochemistry》2005,44(11):4510-4516
Previous kinetic binding studies of wheat germ protein synthesis eukaryotic translational initiation factor eIFiso4F and its subunit, eIFiso4E, with m(7)GTP and mRNA analogues indicated that binding occurred by a two-step process with the first step occurring at a rate close to the diffusion-controlled rate [Sha, M., Wang, Y., Xiang, T., van Heerden, A., Browning, K. S., and Goss, D. J. (1995) J. Biol. Chem. 270, 29904-29909]. The kinetic effects of eIF4B, PABP, and wheat germ eIFiso4F with two mRNA cap analogues and the temperature dependence of this reaction were measured and compared. The Arrhenius activation energies for binding of the two mRNA cap analogues, Ant-m(7)GTP and m(7)GpppG, were significantly different. Fluorescence stopped-flow studies of the eIFiso4F.eIF4B protein complex with two m(7)G cap analogues show a concentration-independent conformational change. The rate of this conformational change was approximately 2.4-fold faster for the eIFiso4F.eIF4B complex compared with our previous studies of eIFiso4F [Sha, M., Wang, Y., Xiang, T., van Heerden, A., Browning, K. S., and Goss, D. J. (1995) J. Biol. Chem. 270, 29904-29909]. The dissociation rates were 3.7- and 5.4-fold slower for eIFiso4F.Ant-m(7)GTP and eIFiso4F.m(7)GpppG, respectively, in the presence of eIF4B and PABP. These studies show that eIF4B and PABP enhance the interaction with the cap and probably are involved in protein-protein interactions as well. The temperature dependence of the cap binding reaction was markedly reduced in the presence of either eIF4B or PABP. However, when both eIF4B and PABP were present, not only was the energy barrier reduced but the binding rate was faster. Since cap binding is thought to be the rate-limiting step in protein synthesis, these two proteins may perform a critical function in regulation of the overall protein synthesis efficiency. This suggests that the presence of both proteins leads to a rapid, stable complex, which serves as a scaffold for further initiation complex formation.  相似文献   

14.
15.
Kovrigin EL  Cole R  Loria JP 《Biochemistry》2003,42(18):5279-5291
The interaction of the dinucleotide inhibitor 5'-phosphothymidine(3',5')pyrophosphate adenosine 3'-phosphate (pTppAp) with bovine pancreatic ribonuclease A (RNase A) was characterized by calorimetry and solution NMR spectroscopy. Calorimetric data show that binding of pTppAp to RNase A is exothermic (DeltaH = -60.1 +/- 4.1 kJ/mol) with a dissociation constant of 16 nM at 298 K. At this temperature, the binding results in an entropy loss (TDeltaS = -16.8 +/- 7.3 kJ/mol) that is more favorable than that with the product analogue, 2'-CMP (TDeltaS = -31.3 +/- 0.9 kJ/mol). Temperature-dependent calorimetric experiments give a DeltaC(p) for ligand binding of -230 +/- 100 J/mol K. Binding of pTppAp results in noticeable effects on the backbone amide chemical shifts and dynamics. Amide backbone (15)N NMR spin-relaxation studies were performed on both apo RNase A and RNase A/pTppAp as a function of temperature. At each temperature, the model-free-determined order parameters, S(2), were significantly higher for RNase A/pTppAp than for the apo enzyme indicating a decrease in the conformational entropy of the protein upon ligand binding. Furthermore, the magnitude of this difference varies along the amino acid sequence specifically locating the entropic changes. The temperature dependence of S(2) at each residue enabled assessment of the local heat capacity changes (DeltaC(p)) from ligand binding. In an overall, average sense, DeltaC(p) for the protein backbone, determined from the NMR dynamics measurements, did not differ between apo RNase A and RNase A/pTppAp indicating that backbone dynamics contribute little to DeltaC(p) for protein-ligand interactions in this system. However, residue-by-residue comparison of the temperature-dependent change in entropy (DeltaS(B)) between free and bound forms reveals nonzero contributions to DeltaC(p) at individual sites. The balance of positive and negative changes reveals a redistribution of energetics upon binding. Furthermore, experiment and semiempirical estimates suggest that a large negative DeltaC(p) should accompany binding of pTppAp, and we conclude that this contribution must arise from factors other than amide backbone dynamics.  相似文献   

16.
The thermodynamics of the conversion of aqueous D-psicose to D-allose has been investigated using high-pressure liquid chromatography. The reaction was carried out in phosphate buffer at pH 7.4 over the temperature range 317.25-349.25 K. The following results are obtained for the conversion process at 298.15 K: DeltaG degrees = - 1.41 +/- 0.09 kJ mol(-1), DeltaH degrees = 7.42 +/- 1.7 kJ mol(-1), and DeltaC(p) degrees = 67 +/- 50 J mol(-1) K(-1). An approximate equilibrium constant of 0.30 is obtained at 333.15 K for the conversion of aqueous D-psicose to D-altrose. Available thermodynamic data for isomerization reactions involving aldohexoses and aldopentoses are summarized.  相似文献   

17.
Khan MA  Goss DJ 《Biochemistry》2004,43(28):9092-9097
Phosphorylation of eukaryotic translational initiation factors (eIFs) has been shown to be an important means of regulating protein synthesis. Plant initiation factors undergo phosphorylation/dephosphorylation under a variety of stress and growth conditions. We have shown that recombinant wheat cap-binding protein, eIF(iso)4E, produced from E. coli can be phosphorylated in vitro. Phosphorylation of eIF(iso)4E has effects on m(7)G cap-binding affinity similar to those of phosphorylation of mammalian eIF4E even though eIF(iso)4E lacks an amino acid that can be phosphorylated at the residue corresponding to Ser-209, the phosphorylation site in mammalian eIF4E. The cap-binding affinity was reduced 1.2-2.6-fold when eIF(iso)4E was phosphorylated. The in vitro phosphorylation site for wheat eIF(iso)4E was identified as Ser-207. Addition of eIF(iso)4G and eIF4B that had also been phosphorylated in vitro further reduced cap-binding affinity. Temperature-dependent studies showed that DeltaH(degrees) was favorable for cap binding regardless of the phosphorylation state of the initiation factors. The entropy, however, was unfavorable (negative) except when eIF(iso)4E was phosphorylated and interacting with eIF(iso)4G. Phosphorylation may modulate not only cap-binding activity, but other functions of eukaryotic initiation factors as well.  相似文献   

18.
Recognition of the 5' cap by the eukaryotic initiation factor 4E (eIF4E) is the rate-limiting step in the ribosome recruitment to mRNAs. The regular cap consists of 7-monomethylguanosine (MMG) linked by a 5'-5' triphosphate bridge to the first transcribed nucleoside, while some primitive eukaryotes possess a N (2), N (2),7-trimethylguanosine (TMG) cap structure as a result of trans splicing. Mammalian eIF4E is highly specific to the MMG form of the cap in terms of association constants and thermodynamic driving force. We have investigated conformational changes of eIF4E induced by interaction with two cap analogues, 7-methyl-GTP and N (2), N (2),7-trimethyl-GTP. Hydrogen-deuterium exchange and electrospray mass spectrometry were applied to probe local dynamics of murine eIF4E in the apo and cap-bound forms. The data show that the cap binding induces long-range conformational changes in the protein, not only in the cap-binding pocket but also in a distant region of the 4E-BP/eIF4G binding site. Formation of the complex with 7-methyl-GTP makes the eIF4E structure more compact, while binding of N (2), N (2),7-trimethyl-GTP leads to higher solvent accessibility of the protein backbone in comparison with the apo form. The results suggest that the additional double methylation at the N (2)-amino group of the cap causes sterical effects upon binding to mammalian eIF4E which influence the overall solution dynamics of the protein, thus precluding formation of a tight complex.  相似文献   

19.
Thermodynamics of podophyllotoxin binding to tubulin and its multiple points of attachment with tubulin has been studied in detail using isothermal titration calorimetry. The calorimetric enthalpy of the association of podophyllotoxin with tubulin is negative and occurs with a negative heat capacity change (DeltaC(p) = -2.47 kJ mol(-)(1) K(-)(1)). The binding is unique with a simultaneous participation of both hydrophobic and hydrogen-bonding forces with unfavorable negative entropic contribution at higher temperature, favored with an enthalpy-entropy compensation. Interestingly, the binding of 2-methoxy-5-(2',3',4'-trimethoxyphenyl)tropone (AC, a colchicine analogue without the B ring) with tubulin is enthalpy-favored. However, the podophyllotoxin-tubulin association depending upon the temperature of the reaction has a favorable entropic and enthalpic component, which resembles both B- and C-ring properties of colchicine. On the basis of the crystal structure of the podophyllotoxin-tubulin complex, distance calculations have indicated a possible interaction between threonine 179 of alpha-tubulin and the hydroxy group on the D ring of podophyllotoxin. To confirm the involvement of the oxalone moiety as well as the lactone ring of podophyllotoxin in tubulin binding, analogues of podophyllotoxin are synthesized with methoxy substitution at the 4' position of ring D along with its isomer and another analogue epimerized at ring E. From these results, involvement of oxalone as well as the lactone ring of the drug in a specific orientation inclusive of ring A is indicated for podophyllotoxin-tubulin binding. Therefore, podophyllotoxin, like colchicine, behaves as a bifunctional ligand having properties of both the B and C rings of colchicine by making more than one point of attachment with the protein tubulin.  相似文献   

20.
Structural complexes of the eukaryotic translation initiation factor 4E (eIF4E) with a series of N(7)-alkylated guanosine derivative mRNA cap analogue structures have been characterised. Mass spectrometry was used to determine apparent gas-phase equilibrium dissociation constants (K(d)) values of 0.15 microM, 13.6 microM, and 55.7 microM for eIF4E with 7-methyl-GTP (m(7)GTP), GTP, and GMP, respectively. For tight and specific binding to the eIF4E mononucleotide binding site, there seems to be a clear requirement for guanosine derivatives to possess both the delocalised positive charge of the N(7)-methylated guanine system and at least one phosphate group. We show that the N(7)-benzylated monophosphates 7-benzyl-GMP (Bn(7)GMP) and 7-(p-fluorobenzyl)-GMP (FBn(7)GMP) bind eIF4E substantially more tightly than non-N(7)-alkylated guanosine derivatives (K(d) values of 7.0 microM and 2.0 microM, respectively). The eIF4E complex crystal structures with Bn(7)GMP and FBn(7)GMP show that additional favourable contacts of the benzyl groups with eIF4E contribute binding energy that compensates for loss of the beta and gamma-phosphates. The N(7)-benzyl groups pack into a hydrophobic pocket behind the two tryptophan side-chains that are involved in the cation-pi stacking interaction between the cap and the eIF4E mononucleotide binding site. This pocket is formed by an induced fit in which one of the tryptophan residues involved in cap binding flips through 180 degrees relative to structures with N(7)-methylated cap derivatives. This and other observations made here will be useful in the design of new families of eIF4E inhibitors, which may have potential therapeutic applications in cancer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号