首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 400 毫秒
1.
Focal adhesions: structure and dynamics   总被引:13,自引:0,他引:13  
Interactions of cells with the extracellular matrix are essential for the control of tissue remodelling, cell migration, and embryogenesis. At the cell-extracellular matrix contact points, specialized structures are formed and termed focal adhesions, where transmembrane adhesion receptors provide a structural link between the actin cytoskeleton and the extracellular matrix components. Numerous structural and regulatory proteins assemble at the cytoplasmic face of focal adhesions in a Rho-dependent fashion.  相似文献   

2.
Focal adhesions are clusters of integrin transmembrane receptors that mechanically couple the extracellular matrix to the actin cytoskeleton during cell migration. Focal adhesions sense and respond to variations in force transmission along a chain of protein-protein interactions linking successively actin filaments, actin binding proteins, integrins and the extracellular matrix to adapt cell-matrix adhesion to the composition and mechanical properties of the extracellular matrix. This review focuses on the molecular mechanisms by which actin binding proteins integrate actin dynamics, mechanotransduction and integrin activation to control force transmission in focal adhesions.  相似文献   

3.
Focal adhesions are specialized regions of the cell surface where integrin receptors and associated proteins link the extracellular matrix to the actin cytoskeleton. To define the cellular role of the focal adhesion protein zyxin, we characterized the phenotype of fibroblasts in which the zyxin gene was deleted by homologous recombination. Zyxin-null fibroblasts display enhanced integrin-dependent adhesion and are more migratory than wild-type fibroblasts, displaying reduced dependence on extracellular matrix cues. We identified differences in the profiles of 75- and 80-kD tyrosine-phosphorylated proteins in the zyxin-null cells. Tandem array mass spectrometry identified both modified proteins as isoforms of the actomyosin regulator caldesmon, a protein known to influence contractility, stress fiber formation, and motility. Zyxin-null fibroblasts also show deficits in actin stress fiber remodeling and exhibit changes in the molecular composition of focal adhesions, most notably by severely reduced accumulation of Ena/VASP proteins. We postulate that zyxin cooperates with Ena/VASP proteins and caldesmon to influence integrin-dependent cell motility and actin stress fiber remodeling.  相似文献   

4.
Matrix-cytoskeletal interactions in the developing eye   总被引:5,自引:0,他引:5  
The embryonic avian corneal epithelium in vitro responds to extracellular matrix (ECM) molecules in either soluble or polymerized form by flattening its basal surface, organizing the basal cortical actin cytoskeleton, and stepping up its production of corneal stroma twofold. Embryonic corneal epithelia, like hepatocytes and mammary gland cells, seem to contain heparan sulfate proteoglycan (HSPG) in their plasmalemma, which may interact with actin on the one hand or underlying collagen on the other. Work on the corneal epithelium suggests that, in addition to HSPG, specific glycoprotein receptors for laminin and collagen exist in the basal plasmalemma and play the critical role in actually organizing the basal epithelial cytoskeleton. As yet, uncharacterized proteins may link such receptors to actin. We suggest that ECM-dependent organization of the cytoskeleton is responsible for ECM enhancement of corneal epithelial differentiation. Cell shape and exogenous ECM also affect mesenchymal cell differentiation. In the case of the corneal fibroblast migrating in collagen gels, an actin cortex present around the elongate cell seems to interact with myosin in the cytosol to bring about pseudopodial extension. Both microtubules and actin microfilaments are involved in fibroblast elongation in collagen gels. It follows from the rules presented in this review that the mesenchymal cell surface is quite different from the epithelial cell surface in its organization. Nevertheless, epithelial cell surface-ECM interaction can be modified in the embryo at particular times to permit predesignated epithelial-mesenchymal transformations, as for example at the primitive streak. Though basal surfaces of definitive, nonmalignant epithelia adhere rather strictly to the rules of epithelium-ECM interaction and do not invade underlying ECM, the environment can be manipulated in vitro to cause these epithelia to send out pseudopodia and give rise aberrantly to mesenchymal cells in collagen gels. Further study of this phenomenon should cast light on the manner in which epithelial and mesenchymal cells organize receptors for matrix molecules on their cell surfaces and develop appropriate cytoskeletal responses to the extracellular matrix.  相似文献   

5.
Cell adhesion to extracellular matrix is a complex process involving protrusive activity driven by the actin cytoskeleton, engagement of specific receptors, followed by signaling and cytoskeletal organization. Thereafter, contractile and endocytic/recycling activities may facilitate migration and adhesion turnover. Focal adhesions, or focal contacts, are widespread organelles at the cell-matrix interface. They arise as a result of receptor interactions with matrix ligands, together with clustering. Recent analysis shows that focal adhesions contain a very large number of protein components in their intracellular compartment. Among these are tyrosine kinases, which have received a great deal of attention, whereas the serine/threonine kinase protein kinase C has received much less. Here the status of protein kinase C in focal adhesions and cell migration is reviewed, together with discussion of its roles and potential substrates.  相似文献   

6.
Adhesion and migration are integrated cell functions that build, maintain and remodel the multicellular organism. In migrating cells, integrins are the main transmembrane receptors that provide dynamic interactions between extracellular ligands and actin cytoskeleton and signalling machineries. In parallel to integrins, other adhesion systems mediate adhesion and cytoskeletal coupling to the extracellular matrix (ECM). These include multifunctional cell surface receptors (syndecans and CD44) and discoidin domain receptors, which together coordinate ligand binding with direct or indirect cytoskeletal coupling and intracellular signalling. We review the way that the different adhesion systems for ECM components impact cell migration in two- and three-dimensional migration models. We further discuss the hierarchy of these concurrent adhesion systems, their specific tasks in cell migration and their contribution to migration in three-dimensional multi-ligand tissue environments.  相似文献   

7.
Integrin-linked focal adhesion complexes provide the main sites of cell adhesion to extracellular matrix and associate with the actin cytoskeleton to control cell movement. Dynamic regulation of focal adhesions and reorganization of the associated actin cytoskeleton are crucial determinants of cell migration. There are important roles for tyrosine kinases, extracellular signal-regulated protein kinase/mitogen-activated protein kinase signalling, and intracellular and extracellular proteases during actin and adhesion modulation. Dysregulation of these is associated with tumour cell invasion. In this article, we discuss established roles for these signalling pathways, as well as the functional interplay between them in controlling the migratory phenotype.  相似文献   

8.
The sites of tightest adhesion that form between cells and substrate surfaces in tissue culture are termed focal contacts. The external faces of focal contacts include specific receptors, belonging to the integrin family of proteins, for fibronectin and vitronectin, two common components of extracellular matrices. On the internal (cytoplasmic) side of focal contacts, several proteins, including talin and vinculin, mediate interactions with the actin filament bundles of the cytoskeleton. The changes that occur in focal contacts as a result of viral transformation are discussed.  相似文献   

9.
Epidermal growth factor (EGF) induces changes in cell morphology, actin cytoskeleton, and adhesion processes in cultured infantile pituitary cells. The extracellular matrix, through integrin engagement, collaborates with growth factors in cell signaling. We have examined the participation of collagen I/III and collagen plus fibronectin in the EGF response of infantile pituitary cells with respect to their cell morphology and actin cytoskeleton. As a comparison, we have used poly-lysine as a substrate. Infantile cells elicit the EGF response when they are associated with extracellular matrix proteins, but no response can be obtained with poly-lysine as the substrate. Cells acquire a flattened shape and organize their actin filaments and vinculin as in focal adhesions. Because the EGF receptor (EGFR) is linked to the actin cytoskeleton in other cells structuring a microdomain in cell signaling, we have investigated this association and substrate adhesion participation in infantile pituitary cells. The proportion of EGFR associated with the actin cytoskeleton is approximately 31%; no difference has been observed between the substrates used. Cells in suspension show actin-associated EGFR, suggesting an association independent of cell adhesion. However, no colocalization of EGFRs with actin fibers has been observed, suggesting an indirect association. Compared with β1-integrin, which is linked to actin fibers through structural proteins, EGFR binds more strongly with the actin cytoskeleton. This study thus shows cell adhesion dependence on the EGF effect in the actin cytoskeleton arrangement; this is probably favored by the actin fiber/EGFR association that facilitates the cell signaling pathways for actin cytoskeleton organization in infantile pituitary cells.This work was supported by the National Council of Science and Technology of México (grant 44619, and a fellowship to C.T.).  相似文献   

10.
Actin system of eukaryotic cells creates the driving force for alteration of the phagocytic cytoplasmatic membrane shape, which is needed for cell movement in the space and for microorganism capturing. Manipulation by actin cytoskeleton mediated through specialized bacterial products can promote proliferation of bacteria in the host. Published reports indicate that bacterial regulation of the actin system activity can be carried out by two modes: 1) by bacterial interactions with surface receptors regulating the cytoskeleton status and 2) by introduction of bacterial products targeted to the cytoskeleton components into the cells. Intracellular pathogens (Legionella) possess ligands which interact with eukaryotic receptors and type IV secretion system fit for translocation of heretofore unknown effector molecules into the cytoplasm. This can result in stimulation of actin polymerization activity and accelerated phagocytosis of the bacteria with rapid multiplication in tissues. By contrast, representatives of extracellular pathogens (Clostridium) produce substances penetrating inside the eukaryotic cells and destroying the actin network, thus making capturing and intracellular digestion of these microorganisms impossible.  相似文献   

11.
12.
13.
Dynamic interactions of cells with their environment regulate multiple aspects of tissue morphogenesis and function. Integrins are the major class of cell surface receptors that recognize and bind extracellular matrix proteins, resulting in the engagement and organization of the cytoskeleton as well as activation of signalling pathways to regulate cell behaviour and morphogenetic processes. The ternary complex of integrin‐linked kinase (ILK), PINCH, and parvin (IPP complex), which was identified more than a decade ago, interacts with the cytoplasmic tail of β integrins and couples them to the actin cytoskeleton. In addition, ILK has been shown to act as a serine/threonine kinase and to directly activate several signalling pathways downstream of integrins. However, the kinase activity of ILK and the precise functions of the IPP complex have remained elusive and controversial. This review focuses on the recent advances made towards understanding the specialized roles this complex and its individual components have acquired during evolution.  相似文献   

14.
Hemodynamic shear stress regulates endothelial cell biochemical processes that govern cytoskeletal contractility, focal adhesion dynamics, and extracellular matrix (ECM) assembly. Since shear stress causes rapid strain focusing at discrete locations in the cytoskeleton, we hypothesized that shear stress coordinately alters structural dynamics in the cytoskeleton, focal adhesion sites, and ECM on a time scale of minutes. Using multiwavelength four-dimensional fluorescence microscopy, we measured the displacement of rhodamine-fibronectin and green fluorescent protein-labeled actin, vimentin, paxillin, and/or vinculin in aortic endothelial cells before and after onset of steady unidirectional shear stress. In the cytoskeleton, the onset of shear stress increased actin polymerization into lamellipodia, altered the angle of lateral displacement of actin stress fibers and vimentin filaments, and decreased centripetal remodeling of actin stress fibers in subconfluent and confluent cell layers. Shear stress induced the formation of new focal complexes and reduced the centripetal remodeling of focal adhesions in regions of new actin polymerization. The structural dynamics of focal adhesions and the fibronectin matrix varied with cell density. In subconfluent cell layers, shear stress onset decreased the displacement of focal adhesions and fibronectin fibrils. In confluent monolayers, the direction of fibronectin and focal adhesion displacement shifted significantly toward the downstream direction within 1 min after onset of shear stress. These spatially coordinated rapid changes in the structural dynamics of cytoskeleton, focal adhesions, and ECM are consistent with focusing of mechanical stress and/or strain near major sites of shear stress-mediated mechanotransduction.  相似文献   

15.
We have previously shown that in a HEK-293 cell line that overexpresses the C1a isoform of the calcitonin receptor (C1a-HEK), calcitonin induces the tyrosine phosphorylation of the focal adhesion-associated proteins HEF1 (a p130(Cas)-like docking protein), paxillin, and focal adhesion kinase and that it also stimulates the phosphorylation and activation of Erk1 and Erk2. We report here that cell attachment to the extracellular matrix, an intact actin cytoskeleton, and c-Src are absolutely required for the calcitonin-induced phosphorylation of focal adhesion-associated proteins. In contrast to the phosphorylation of paxillin and HEF1 in cells attached to fibronectin-coated dishes, calcitonin failed to stimulate the phosphorylation of paxillin and HEF1 in suspended cells, in cells attached to poly-d-lysine-coated dishes, and in attached cells pretreated with the RGD-containing peptide GRGDS. Overexpression of wild-type c-Src increased calcitonin-induced paxillin and HEF1 phosphorylation, whereas overexpression of kinase-dead Src or Src lacking a functional SH2 domain inhibited the calcitonin-stimulated tyrosine phosphorylation of these proteins. Overexpression of Src lacking the SH3 domain did not affect the calcitonin-induced phosphorylation of paxillin and HEF1. In contrast to the regulation of paxillin and HEF1 phosphorylation, the calcitonin-induced phosphorylation of Erk1 and Erk2 did not appear to involve c-Src and was only partially dependent on cell adhesion to the extracellular matrix and an intact actin cytoskeleton. Furthermore, inhibition of Erk1 and Erk2 phosphorylation had no effect on the calcitonin-induced phosphorylation of paxillin and HEF1. Thus, in C1a-HEK cells, the calcitonin receptor is coupled to the tyrosine phosphorylation of focal adhesion-associated proteins and to Erk1/2 phosphorylation by mechanisms that are in large part independent.  相似文献   

16.
We investigated in a colon adenocarcinoma cell line, the exclusive role of extracellular matrix (ECM) components in the absence of soluble factors regarding the integrin clustering processes, and their implication in cell adhesion, spreading and organization of the actin cytoskeleton. Caco-2 cells were shown to express at the plasma membrane 11 integrins, some of which (e.g. alpha3beta1, alpha5beta1, alpha6beta1/beta4, alpha8beta1 and alpha(v)beta1/beta5/beta6) were identified for the first time in this cell line. Cell adhesion and spreading processes were governed essentially by lamellipodium, the regulation of which was shown to be induced by two types of integrin clustering processes mediated by ECM proteins alone. During these phenomena, alpha2beta1, alpha(v)beta6 and alpha6beta1 integrins, the Caco-2 cell specific receptors of type IV collagen, fibronectin and laminin, respectively, were clustered in small focal complexes (point contacts), whereas alpha(v)beta5, the vitronectin receptor in this cell line, was aggregated in focal adhesions. The two levels of integrin clustering induced only F-actin cortical web formation organized in thin radial and/or circular filaments. We conclude thus that ECM components per se through their action on integrin clustering are involved in cell adhesion, cortical actin cytoskeleton organization and cell spreading.  相似文献   

17.
Endothelial cells and the regulation of their migration are of prime importance in many physiological and pathological processes such as angiogenesis. RhoA, an important Rho family member known to trigger actin reorganization, has been shown to mediate the formation of focal adhesions and stress fibers in quiescent fibroblasts. However, recent studies have emphasized its functional diversity and its implication in migration or metastatic processes in different cell types other than fibroblasts. Its role in endothelial cells is little known. In this study, we were interested by analyzing in human endothelial cells the subcellular redistribution of endogenous RhoA and the reorganization of cytoskeletal actin induced by two important extracellular matrix proteins, collagen and fibronectin. This paper shows a translocation of RhoA and its association with cortical actin in focal contact domains at membrane ruffles and at lamellipodia of spread or migrating endothelial cells, in the absence of any soluble mitogen stimulation. Furthermore, RhoA was found colocalized with ezrin, a member of the ERM family proteins newly described as important membrane-actin cytoskeleton linkers, at early membrane ruffles of endothelial cells spread on collagen but not on fibronectin. The present study points out that extracellular matrix, depending on the nature of its components, may promote distinct assemblies of focal contact constitutive proteins and strongly suggests that endothelial RhoA, like Rac1, may be an important mediator of matrix signaling pathway regulating endothelial cell adhesiveness and motility, independently of growth factor stimulation.  相似文献   

18.
Cell adhesion to the extracellular matrix is mediated by adhesion receptors, mainly integrins, which upon interaction with the extracellular matrix, bind to the actin cytoskeleton via their cytoplasmic domains. This association is mediated by a variety of scaffold and signaling proteins, which control the mechanical and signaling activities of the adhesion site. Upon transformation of fibroblasts with active forms of Src (e.g., v-Src), focal adhesions are disrupted, and transformed into dot-like contacts known as podosomes, and consisting of a central actin core surrounded by an adhesion ring. To clarify the mechanism underlying Src-dependent modulation of the adhesive phenotype, and its influence on podosome organization, we screened for the effect of siRNA-mediated knockdown of tyrosine kinases, MAP kinases and phosphatases on the reorganization of the adhesion-cytoskeleton complex, induced by a constitutively active Src mutant (SrcY527F). In this screen, we discovered several genes that are involved in Src-induced remodeling of the actin cytoskeleton. We further showed that knockdown of Src in osteoclasts abolishes the formation of the podosome-based rings and impairs cell spreading, without inducing stress fiber development. Our work points to several genes that are involved in this process, and sheds new light on the molecular plasticity of integrin adhesions.  相似文献   

19.
《The Journal of cell biology》1986,103(6):2683-2696
The cell surface proteoglycan on normal murine mammary gland mouse mammary epithelial cells consists of an ectodomain bearing heparan and chondroitin sulfate chains and a lipophilic domain that is presumed to be intercalated into the plasma membrane. Because the ectodomain binds to matrix components produced by stromal cells with specificity and high affinity, we have proposed that the cell surface proteoglycan is a matrix receptor that binds epithelial cells to their underlying basement membrane. We now show that the proteoglycan surrounds cells grown in subconfluent or newly confluent monolayers, but becomes restricted to the basolateral surface of cells that have been confluent for a week or more; Triton X-100 extraction distinguishes three fractions of cell surface proteoglycan: a fraction released by detergent and presumed to be free in the membrane, a fraction bound via a salt-labile linkage, and a nonextractable fraction; the latter two fractions co-localize with actin filament bundles at the basal cell surface; and when proteoglycans at the apical cell surface are cross- linked by antibodies, they initially assimilate into detergent- resistant, immobile clusters that are subsequently aggregated by the cytoskeleton. These findings suggest that the proteoglycan, initially present on the entire surface and free in the plane of the membrane, becomes sequestered at the basolateral cell surface and bound to the actin-rich cytoskeleton as the cells become polarized in vitro. Binding of matrix components may cross-link proteoglycans at the basal cell surface and cause them to associate with the actin cytoskeleton, providing a mechanism by which the cell surface proteoglycan acts as a matrix receptor to stabilize the morphology of epithelial sheets.  相似文献   

20.
Focal contacts are transmembrane links between the extracellular matrix and the actin cytoskeleton that play a critical role in directed cell migration, adhesion, and normal growth. Several different component proteins of the focal contact show develop-mentally dependent changes in expression, suggesting that this is an important mechanism by which focal contact formation is controlled during embryogenesis. In this report we examine the expression of focal contact-associated proteins in human fetal and neonatal melanocytes using Western blotting. We show that expression of paxillin, a 69-kDa vinculin binding protein, is fourfold higher in neonatal melanocytes than in fetal melanocytes. Further, we show that talin, a high molecular weight structural protein that links integrins to the actin cytoskeleton, is proteolytically cleaved in fetal, but not in neonatal melanocytes. Immunofluorescence microscopy of cells grown on fibronectin confirmed the presence of paxillin, talin, and vinculin at the ends of actin stress fibers at presumptive focal contacts in melanocytes. Adhesion experiments to extracellular matrix ligands revealed significant differences in adhesion of fetal and neonatal melanocytes to fibronectin. The developmentally specific changes in focal contact protein expression observed suggest that this may be an important mechanism by which focal contact assembly is controlled in human melanocytes during development.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号