首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Biodegradation of 2,4,6-trinitrotoluene (TNT) by the wood-rotting BasidiomycetePhanerochaete chrysosporium was studied in a fixed-film silicone membrane bioreactor and in agitated pellected cultures. The initial intermediate products of TNT biodegradation were shown to be 2-amino-4,6-dinitrotoluene (2amDNT) and 4-amino-2,6-dinitrotoluene (4amDNT). These intermediates were also degraded byP. chrysosporium. However, their rates of degradation were slow and appeared to represent rate-limiting steps in TNT degradation. The fact that 2amDNT and 4amDNT were further degraded is of importance. In most other microbial systems these compounds are typically not further degraded or are dimerized to even more persistent azo and azoxydimers. Similar to previous studies performed in stationary cultures, it was shown that substantial amounts of [14C]-TNT were degrade to [14C]-carbon dioxide in agitated pelleted cultures. Lignin peroxidase activity (assayed by veratryl alcohol oxidation) virtually disappeared upon addition of TNT to ligninolytic cultures ofP. chrysosporium. However, TNT, 2amDNT, and 4amDNT did not inhibit lignin peroxidase activity, nor were they substrates for this enzyme. Subsequent studies revealed that 4-hydroxylamino-2,6-dinitrotoluene, an intermediate in TNT reduction, was a potent lignin peroxidase inhibitor. Further studies revealed that this compound was also a substrate for lignin peroxidase H8.  相似文献   

2.
Summary The lignin mineralization rate in cultures of Phanerochaete chrysosporium increases with lignin peroxidase concentration up to 20 nkat ml–1. At higher concentrations the rate of lignin mineralization decreases with increasing lignin peroxidase concentration. The amount of mycelium is not a limiting factor for lignin mineralization at high exocellular lignin peroxidase in association with the mycelium as pellets and no free exocellular enzyme induce a lignin mineralization rate equivalent to cultures reconstituted with washed pellets supplemented with 15 nkat ml–1 of exogenous free enzyme. These results show that although lignin degradation by lignin peroxidase seems to be facilitated when lignin peroxidase is localised on the surface of the mycelium, free exocellular lignin peroxidase can also efficiently enhance mineralization of lignin by P. chrysosporium.  相似文献   

3.
Lignin peroxidase has been extensively studied due to the potential use of this enzyme in environmental pollution control. Important aspects of the production of the enzyme by the white rot fungus, Phanerochaete chrysosporium, include the improvement of yield results and cell maintenance. In the present work, Phanerochaete chrysosporium was immobilized in polyurethane foam and used for repeated-batch fermentations with various dilution of the initial medium (D), and lignin peroxidase production was investigated. The peak of 283 ± 17.5 U lignin peroxidase/l production rate was obtained at a D of 1/5, with significantly lower production rates seen at higher and lower dilution ratios. When six cycles of repeated-batch fermentation were conducted using a D of 1/5, the results revealed that at least four cycles of repeated-batch fermentation were possible with a high lignin peroxidase production rate under a cut-off value of 178 ± 3.87 U/l. Furthermore, the cell-free culture broth could be successfully concentrated to 2,800 U/l by ultrafiltration. Thus, the present study shows that optimizing the dilution of the utilized nutritional medium can improve repeated batch production of lignin peroxidase from immobilized P. chrysosporium, in terms of both cycle number and output.  相似文献   

4.
Peroxidases secreted by the white-rot basidiomycete Phanerochaete chrysosporium can oxidise a wide range of recalcitrant compounds including lignin and aromatic xenobiotics. Since low-rank coals such as brown coal and lignite retain structural features of the parent lignin, we investigated the possibility that P. chrysosporium is capable of acting on a brown coal, with the production of useful low-molecular-mass compounds. In nitrogen-limiting liquid medium containing 0.03% solubilised Morwell brown coal, P. chrysosporium was found to convert about 85% of the coal after 16 days incubation to a form not recoverable by alkali-washing and acid-precipitation. The modal molecular mass of the residual coal macromolecules was reduced from the initial 65kDa to 32 kDa. Extensive bleaching of the coal coincided with the presence of extracellular lignin peroxidase (LiP) and manganese-dependent peroxidase (MnP), although both LiP and MnP activity were lower in cultures containing coal. These reductions are accounted for by interference with the enzyme assays by solubilised coal and by binding of MnP to precipitated coal. LiP was about eight times more sensitive than MnP to inhibition by solubilised coal. In nitrogen-sufficient medium containing solubilised coal, neither coal modification nor LiP activity were observed, suggesting that LiP is an essential component of the bleaching process.  相似文献   

5.
Lignin peroxidase from the white-rot fungus Phanerochaete chrysosporium was chemically modified by reductive alkylation with benzyl, naphthyl and anthracyl moieties, thereby increasing its superficial hydrophobicity. The three chemical modifications altered the kinetic behaviour of the enzyme in 10% acetonitrile with four different substrates: carbazole, pinacyanol, pyrene and veratryl alcohol. Benzyl modification of lignin peroxidase increased the catalytic efficiency (k cat/K m,app) 2.7 times for carbazole oxidation. Thirteen N-containing compounds, including pyrroles, pyridines, and aromatic amines, were tested to determine whether they could be oxidized by lignin peroxidase in 10% acetonitrile. All the pyrrole analogues and all the amines tested were oxidized, but none of the pyridine analogous reacted. Some products were isolated and analyzed by high-resolution mass spectrometry. Most were dimers or polymers and, in some cases, these contained oxygen atoms. The possibility of bitumen and petroleum modifications using this enzyme is discussed.  相似文献   

6.
Phanerochaete chrysosporium cells were immobilized on the sintered porous glass support. Such a biocatalizer was used as a bed of the enzymatic reactor system for the continuous production of lignin peroxidase. From the after culture fluid the lignin peroxidase enzymatic activity was recovered and purified applying anion exchangers. Additionally, some physico-chemical properties of lignin peroxidases were determined.  相似文献   

7.
《FEBS letters》1986,205(2):293-298
Methyl oxalate of arylglycerol was formed as an aromatic ring cleavage product in degradation of arylglycerol-β-aryl ether (β-O-4) type lignin substructure model dimers by extracellular lignin peroxidase of Phanerochaete chrysosporium. The enzymatic cleavage of arylglycerol-β-(o-[2H3]methoxyphenyl) ether indicated that the methyl group of the methyl ester was derived from the methoxy group of the β-O-4 model dimer. It is thus concluded that demeth(ox)ylation was not essential for the enzymatic aromatic ring cleavage of the methoxylated aromatic substrates, β-O-4 lignin substructure models.  相似文献   

8.
Summary Lignin peroxidase production by several strains of Phanerochaete chrysosporium was determined during growth on glycerol under conditions of nitrogen sufficiency. Fungal strains which grew poorest on glycerol produced the highest titres of lignin peroxidase whereas enzyme levels were much lower when marginally greater biomass values were recorded. In the case of P. chrysosporium strain INA-12, the nature of the nitrogen source had a pronounced effect on both growth and enzyme production. Highest biomass values were obtained when l-glutamate or l-glutamine served as the major nitrogen source but enzyme synthesis was normally repressed completely. Lignin peroxidase activity in this strain was maximal when the initial pH of the culture medium was adjusted to pH 5.0.  相似文献   

9.
Summary Six fast growing ligninolytic white-rot fungi were compared with Phanerochaete chrysosporium. The results showed that the fungi have similar ligninolytic systems, although minor differences exist. Like in P. chrysosporium the ligninolytic system could be induced by veratryl alcohol in Coriolus versicolor and Chrysosporium pruinosum. These three lignin peroxidase producing fungi were the fastest lignin degraders in stationary cultures, whereas in agitated cultures Bjerkandera adusta showed highest lignin degradation rates. Metabolites accumulating during the degradation of veratryl alcohol were analyzed and compared. Peroxidase production seems to be a common feature of all the tested fungi. Polyclonal antibodies against the lignin peroxidase with pl of 4.65 from P. chrysosporium reacted with the extracellular peroxidases of C. pruinosum, C. versicolor and B. adusta, but not with those of Pleurotus ostreatus.Dedicated to Professor Dr. Hans-Jürgen Rehm on the occasion of his 60th birthday  相似文献   

10.
Summary Phanerochaete chrysosporium decolourised 6 out of 9 synthetic textile dyes tested in the presence of glucose. 3 textile dyes were decolourised in the absence of a primary carbon source. Decolourisation of an artificial textile effluent was complete after 7 days, however, the role of lignin peroxidase was unclear.  相似文献   

11.
Summary Degenerate oligonucleotides encoding the two conserved histidine regions of the Phanerochaete chrysosporium BKM-F-1767 lignin peroxidase gene have been used as PCR primers to clone lignin peroxidase genes from the genomic DMA of four different white rot fungi.  相似文献   

12.
The ligninolytic system of white rot fungi is primarily composed of lignin peroxidase, manganese peroxidase (MnP) and laccase. The present work was carried out to determine the best culture conditions for production of MnP and its activity in the relatively little-explored cultures of Dichomitus squalens, Irpex flavus and Polyporus sanguineus, as compared with conditions for Phanerochaete chrysosporium and Coriolus versicolor. Studies on enzyme production under different nutritional conditions revealed veratryl alcohol, guaiacol, Reax 80 and Polyfon H to be excellent MnP inducers. Electronic Publication  相似文献   

13.
Lignin peroxidase from Phanerochaete chrysosporium was used to study the oxidation of aromatic compounds, including polycyclic aromatic hydrocarbons and heterocyclic compounds, that are models of moieties of asphaltene molecules. The oxidations were done in systems containing water-miscible organic solvents, including methanol, isopropanol, N, N-dimethylformamide, acetonitrile, and tetrahydrofuran. Of the 20 aromatic compounds tested, 9 were oxidized by lignin peroxidase in the presence of hydrogen peroxide. These included anthracene, 1-, 2-, and 9-methylanthracenes, acenaphthene, fluoranthene, pyrene, carbazole, and dibenzothiophene. Of the compounds studied, lignin peroxidase was able to oxidize those with ionization potentials of <8 eV (measured by electron impact). The reaction products contain hydroxyl and keto groups. In one case, carbon-carbon bond cleavage, yielding anthraquinone from 9-methylanthracene, was detected. Kinetic constants and stability characteristics of lignin peroxidase were determined by using pyrene as the substrate in systems containing different amounts of organic solvent. Benzyl alkylation of lignin peroxidase improved its activity in a system containing water-miscible organic solvent but did not increase its resistance to inactivation at high solvent concentrations.  相似文献   

14.
The effects of different inoculum-loading rates and pre-treatment of wheat straw with formic acid and hot water (50 °C) on the establishment of Phanerochaete chrysosporium on unsterile straw were studied in laboratory scale and in a 1.5-m3 bioreactor. The establishment of P. chrysosporium on unsterile straw was satisfactory. Phanerochaete chrysosporium and other fungi, which developed simultaneously, were able to produce the activity necessary to degrade two herbicides, bentazon and MCPA (4-chloro-2-methylphenoxyacetic acid) in 20 days (65 and 75%, respectively). The decrease of both herbicides coincided with the presence of the activity of the lignin-degrading enzymes lignin peroxidase and manganese peroxidase/laccase. Extensive growth of P. chrysosporium or other lignin-degrading fungi on unsterile straw would be excellent for inexpensive solid substrate systems intended for degradation of pesticides.  相似文献   

15.
Lignin was mineralized in the experiments in which 14C-lignin was incubated with lignin peroxidase or manganese peroxidase in a tartrate buffer in the presence of cycloheximide-treated protoplasts obtained from the ligninolytic mycelia of Phanerochaete chrysosporium. The rate of lignin mineralization was dependent on the lignin peroxidase or manganese peroxidase concentration in the medium. In the experiments in which lignin was incubated with lignin peroxidase or manganese peroxidase, lignin was repolymerized irrespective of the presence of protoplasts mineralizing lignin, suggesting that an active degradation of lignin and repolymerization took place. Taking into account that lignin peroxidase and manganese peroxidase were the only extracellular enzymes in the experiments in which lignin was mineralized by the protoplasts, it is postulated that lignin peroxidase and/or manganese peroxidase can degrade lignin into small fragments which can then be further absorbed by the fungal cells and subsequently degraded to CO2.  相似文献   

16.
We report the synthesis of veratraldehyde from veratryl alcohol by Phanerochaete chrysosporium lignin peroxidase with in situ electrogeneration of hydrogen peroxide in an electroenzymatic reactor. The effects of operating parameters such as enzyme level, pH, and electrical potential on the efficiency of veratryl alcohol oxidation were investigated. Furthermore, we compared direct addition of hydrogen peroxide with electrogeneration of the material during enzymatic oxidation of veratryl alcohol. The electroenzymatic method using in situ-generated hydrogen peroxide was found to be effective for oxidation of veratryl alcohol by lignin peroxidase. The new method may be easily applied to biodegradation systems.  相似文献   

17.
Porous polyurethane particles were prepared and used for the immobilization of white rot fungusPhanerochaete chrysosporium. The immobilized cells were employed for the production of lignin peroxidase. Polyurethane immobilized spores, or mycelial pellets ofPhanerochaete chrysosporium as well as freely suspended mycelial pellets of fungus were used as biocatalyst for the degradation of 2-chlorophenol. The polyurethane carriers appear to be superior to the other carriers already used for the immobilization of fungus.  相似文献   

18.
An H2O2-requiring enzyme system was found in the extracellular medium of ligninolytic cultures of Phanerochaete chrysosporium. The enzyme system generated ethylene from 2-keto-4-thiomethyl butyric acid (KTBA), and oxidized a variety of lignin model compounds including the diarylpropane 1-(4′-ethoxy-3′-methoxyphenyl) 1,3-dihydroxy-2-(4″-methoxyphenyl)propane (I), a β-ether dimer 1-(4′-ethoxy-3′-methoxyphenyl)glycerol-β-guaiacyl ether (IV) and an olefin 1-(4′-ethoxy-3′-methoxy-phenyl)1,2-propene (VI). The products found were equivalent to the metabolic products previously isolated from intact ligninolytic cultures. In addition, the enzyme system partially degraded 14C-ring labeled lignin. The enzyme was not found in high nitrogen (N) cultures, nor in cultures of a ligninolytic mutant strain which is incapable of metabolizing lignin.  相似文献   

19.
Summary The ligninolytic enzymes ofPhlebia radiata were produced in static conditions earlier developed forPhanerochaete chrysosporium. The production pattern of lignin peroxidases resembled that ofP. chrysosporium. The extracellular proteins ofPhlebia radiata were separated by isoelectric focusing. Four proteins with acidic isoelectric points (4.15) were detected by peroxidase staining. The peroxidases ofP. radiata reacted with antibodies produced against a peroxidase ofPhanerochaete chrysosporium and vice versa. Thus the lignin peroxidases of the two fungi have major similarities despite slight differences in their isoelectric points and molecular weights. Veratryl alcohol was produced by both fungi and degraded to veratraldehyde, two lactones and a quinone by the ligninolytic cultures.  相似文献   

20.
Of seven fungal strains tested for their ability to decolourise three structurally diverse synthetic dyes, Phanerochaete sordida, Bjerkandera sp. BOS55, Phlebia radiata, and Phanerochaete chrysosporium had average values of maximum decolourisation rates higher than 0.2 [Absorbance] d–1. All seven fungi produced manganese peroxidase (MnP) but laccase activity was detected only in Phlebia radiata. No lignin peroxidase (LiP) activity was observed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号