首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
王丽萍  刘昱慧  邵宗泽 《微生物学报》2009,49(12):1634-1642
摘要:【目的】本研究的目的是从大西洋表层海水分离筛选新的烷烃降解菌,了解其降解基因及降解特性,为海洋石油污染的生物治理提供材料。【方法】以柴油与原油作为混合碳源从大西洋表层海水样品中富集、并分离筛选出降解能力较强的烷烃降解菌。根据16S rRNA基因和其看家基因secA1序列确定其系统进化地位。分析了烷烃降解范围、表面活性剂产生能力及其他生理生化特性;利用已报道的兼并引物进行了烷烃羟化酶基因的PCR扩增及系统进化分析。【结果】分离筛选得到1株能够降解C10?C36直链烷烃的菌株S14-10。经16S rR  相似文献   

2.
The thermophilic bacterium Alcaligenes faecalis isolated from the crude oil contaminated soil of Upper Assam, India. The isolated bacterium was first screened for the ability to produce biosurfactant. The strain growing at 42 °C could produce higher amount of biosurfactant in medium supplemented with 2% (v/v) diesel as sole source of carbon and energy. Biochemical characterizations including FT-IR and MS studies suggested the biosurfactant to be glycolipid. Tensiometric studies revealed that the biosurfactant produced by the bacterial strain could decrease the surface tension (??) at air-water interface from 71.6 to 32.3 mNm−1 after 96 h of growth on hydrocarbon and possessed a low critical micelle concentration (CMC) value of approximately 38 mgl−1, indicating high surface activity. The culture supernatant containing the biosurfactant was found to be functionally stable at varying pH (2-12), temperature (100 and 121 °C) and salinity (1-6% NaCl, w/v) conditions. Both the culture broth and the cell free supernatant exhibited high emulsifying activity against the different hydrocarbons and the crude oil components. The increase in cell surface hydrophobicity and glycolipid production by the strain suggested the existence of biosurfactant enhanced interfacial uptake of the hydrocarbons. Moreover, the partially purified biosurfactant exhibited antimicrobial activity by inhibiting the growth of several bacterial and fungal species. The strain represented a new class of biosurfactant producers and could be a potential candidate for the production of glycolipid biosurfactant which could be useful in a variety of biotechnological and industrial processes, particularly in the oil industry.  相似文献   

3.
A potential glycolipid biosurfactant producer Streptomyces sp. MAB36 was isolated from marine sediment samples. Medium composition and culture conditions for the glycolipid biosurfactant production by Streptomyces sp. MAB36 were optimized, using two statistical methods: Plackett–Burman design was applied to find out the key ingredients and conditions for the best yield of glycolipid biosurfactant production and central composite design was used to optimize the concentration of the four significant variables, starch, casein, crude oil and incubation time. Fructose and yeast extract were the best carbon and nitrogen sources for the production of the glycolipid biosurfactant. Biochemical characterizations including FTIR and MS studies suggested the glycolipid nature of the biosurfactant. The isolated glycolipid biosurfactant reduced the surface tension of water from 73.2 to 32.4 mN/m. The purified glycolipid biosurfactant showed critical micelle concentrations of 36 mg/l. The glycolipid biosurfactant was effective at very low concentrations over a wide range of temperature, pH, and NaCl concentration. The purified glycolipid biosurfactant showed strong antimicrobial activity. Thus, the strain Streptomyces sp. MAB36 has proved to be a potential source of glycolipid biosurfactant that could be used for the bioremediation processes in the marine environment.  相似文献   

4.
The use of microorganisms with hydrocarbon degrading capability and biosurfactant producers have emerged as an alternative for sustainable treatment of environmental passives. In this study 45 bacteria were isolated from samples contaminated with petrochemical residues, from which 21 were obtained from Landfarming soil contaminated with oily sludge, 11 were obtained from petrochemical industry effluents and 13 were originated directly from oily sludge. The metabolization capability of different carbon sources, growth capacity and tolerance, biosurfactant production and enzymes detection were determined. A preliminary selection carried out through the analysis of capability for degrading hydrocarbons showed that 22% of the isolates were able to degrade all carbon sources employed. On the other hand, in 36% of the isolates, the degradation of the oily sludge started within 18–48 h. Those isolates were considered as the most efficient ones. Twenty isolates, identified based on partial sequencing of the 16S rRNA gene, were pre-selected. These isolates showed ability for growing in a medium containing 1% of oily sludge as the sole carbon source, tolerance in a medium containing up to 30% of oily sludge, ability for biosurfactant production, and expression of enzymes involved in degradation of aliphatic and aromatic compounds. Five bacteria, identified as Stenotrophomonas acidaminiphila BB5, Bacillus megaterium BB6, Bacillus cibi, Pseudomonas aeruginosa, and Bacillus cereus BS20 were shown to be promising for use as inoculum in bioremediation processes (bioaugmentation) of areas contaminated with petrochemical residues since they can use oily sludge as the sole carbon source and produce biosurfactants.  相似文献   

5.
A biosurfactant-producing bacterium, isolate 2/3, was isolated from mangrove sediment in the south of Thailand. It was evaluated as a potential biosurfactant producer. The highest biosurfactant production (4.52 g/l) was obtained when the cells were grown on a minimal salt medium containing 25 % (v/v) palm oil decanter cake and 1 % (w/v) commercial monosodium glutamate as carbon and nitrogen sources, respectively. After microbial cultivation at 30 °C in an optimized medium for 96 h, the biosurfactant produced was found to reduce the surface tension of pure water to 25.0 mN/m with critical micelle concentrations of 8.0 mg/l. The stability of the biosurfactant at different salinities, pH and temperature and also its emulsifying activity was investigated. It is an effective surfactant at very low concentrations over a wide range of temperatures, pH and salt concentrations. The biosurfactant obtained was confirmed as a glycolipid type biosurfactant by using a biochemical test, fourier-transform infrared spectroscopy, MNR and mass spectrometry. The crude biosurfactant showed a broad spectrum of antimicrobial activity and also had the ability to emulsify oil and enhance polyaromatic hydrocarbons solubility.  相似文献   

6.
Biosurfactant production by Pseudomonas aeruginosa A41, a strain isolated from seawater in the gulf of Thailand, was examined when grown in defined medium containing 2% vegetable oil or fatty acid as a carbon source in the presence of vitamins, trace elements and 0.4% NH(4)NO(3), at pH 7 and 30 degrees C with 200 rpm-shaking for 7 days. The yield of biosurfactant steadily increased even after a stationary phase. Under such conditions the surface tension of the medium was lowered from 55-70 mN/m to 27.8-30 mN/m with every carbon source tested. However, types of carbon sources were found to affect biosurfactant yield. The yields of rhamnolipid biosurfactant were 6.58 g/L, 2.91 g/L and 2.93 g/L determined as rhamnose content when olive oil, palm oil and coconut oil, respectively, were used as a carbon source. Among them, biosurfactant obtained from palm oil was the best in lowering surface tension of the medium. Increase in biosurfactant activities in terms of oil displacement test and rhamnose content were observed to be higher with shorter chain fatty acids than that of the longer chains (C12>C14>C16). In addition, we found that C18:2, highly unsaturated fatty acid, showed higher oil displacement activity and rhamnose content than that of C18:1. The optimal oil displacement activity was found at pH 7-9 and in the presence of 0.5-3% NaCl. The oil displacement activity was stable to temperatures up to 100 degrees C for 15 h. Surface tension reduction activity was relatively stable at pH 2-12 and 0-5% of NaCl. Emusification activity tested with various types of hydrocarbons and vegetable oils showed similarity of up to 60% stability. The partially purified biosurfactant via TLC and silica gel column chromatography gave three main peaks on HPLC with mass spectra of 527, 272, and 661 m/z respectively, corresponding to sodium-monorhamnodecanoate, hydroxyhexadecanoic acid and an unknown compound, respectively.  相似文献   

7.
A biosurfactant producing strain, Bacillus subtilis 20B, was isolated from fermented food in India. The strain also showed inhibition of various fungi in in-vitro experiments on Potato Dextrose Agar medium. It was capable of growth at temperature 55 degrees C and salts up to 7%. It utilized different sugars, alcohols, hydrocarbons and oil as a carbon source, with preference for sugars. In glucose based minimal medium it produced biosurfactant which reduced surface tension to 29.5 mN/m, interfacial tension to 4.5 mN/m and gave stable emulsion with crude oil and n-hexadecane. The biosurfactant activity was stable at high temperature, a wide range of pH and salt concentrations for five days. Oil displacement experiments using biosurfactant containing broth in sand pack columns with crude oil showed 30.22% recovery. The possible application of organism as biocontrol agent and use of biosurfactant in microbial enhanced oil recovery (MEOR) is discussed.  相似文献   

8.
一株生物表面活性剂产生菌的分离及其特性研究   总被引:2,自引:0,他引:2  
孙燕  洪青  李顺鹏 《微生物学通报》2009,36(8):1110-1116
模炼油厂污泥中分离得到1株生物表面活性剂产生菌C-3, 根据其生理生化特性和16S rDNA序列相似性分析, 将其鉴定为铜绿假单胞菌(Pseudomonas aeruginosa)。初步研究了其产生物表面活性剂的最适条件, 在以植物油为碳源、30°C、初始pH 8、Ca2+浓度20 mg/L、250 mL三角瓶中装75 mL发酵液的条件下, 最利于菌株的生长和生物表面活性剂产生。它的成分为糖脂类物质, 临界胶束浓度(CMC)为50 mg/L, 具有很好的增溶效果。  相似文献   

9.
一株石油烃降解菌的细胞疏水性及其乳化性质   总被引:1,自引:0,他引:1  
【目的】从新疆油田石油污染土壤中分离到一株在25 °C条件下利用烃类产生生物表面活性剂的菌株红球菌(Rhodococcus sp.) HL-6, 对其菌体细胞疏水性及所产表面活性剂进行研究。【方法】通过细胞粘附性、表面张力及乳化活性测定对菌株所产表面活性剂进行性质研究。【结果】菌株HL-6在亲水性和疏水性基质中均能产生生物表面活性剂, 在疏水性基质中可以将培养液表面张力由初始的62.487 mN/m降到30.667 mN/m, 培养液在pH 6?9及NaCl浓度1%?5%范围内乳化效果良好, 在4 °C到55 °C范围内乳化效果均为100%, 菌株对柴油的耐受能力很高, 在30%柴油浓度下依然生长良好并且有44%的乳化活性。【结论】HL-6菌株的细胞表面具有很强的疏水性, 这有助于菌体细胞对烃类的摄取。该菌株能够利用烃类基质生产生物表面活性剂, 可以明显降低培养液表面张力并且对石油烃具有良好的乳化作用。说明菌株HL-6能够适应海洋滩涂石油污染的环境, 并可用于严重石油污染区域的生物修复。  相似文献   

10.
The strain SVGG16 isolated from tropical soil in Brazil and identified as Serratia sp. was selected as a promising biosurfactant producer using atypic growth conditions including ethanol-blended gasoline as the sole carbon source. Important parameters for biosurfactant production were selected through experimental design. Results demonstrated that this strain was able to reduce surface tension of the medium to 34 mN m−1, showing potential to be used in bioremediation processes.  相似文献   

11.
The present study describes the phenanthrene-degrading activity of Sphingomonas paucimobilis 20006FA and its ability to promote the bioavailability of phenanthrene. S. paucimobilis 20006FA was isolated from a phenanthrene-contaminated soil microcosm. The strain was able to grow in liquid mineral medium saturated with phenanthrene as the sole carbon source, showing high phenanthrene elimination (52.9% of the supplied phenanthrene within 20 days). The accumulation of 1-hydroxy-2-naphthoic acid and salicylic acid as major phenanthrene metabolites and the capacity of the strain to grow with sodium salicylate as the sole source of carbon and energy indicated that the S. paucimobilis 20006FA possesses a complete phenanthrene degradation pathway. However, under the studied conditions, the strain was able to mineralize only the 10% of the consumed phenanthrene. Investigations on the cell ability to promote bioavailability of phenanthrene showed that the S. paucimobilis strain 20006FA exhibited low cell hydrophobicity (0.13), a pronounced chemotaxis toward phenanthrene, and it was able to reduce the surface tension of mineral liquid medium supplemented with phenanthrene as sole carbon source. Scanning electron micrographs revealed that: (1) in suspension cultures, cells formed flocks and showed small vesicles on the cell surface and (2) cells were also able to adhere to phenanthrene crystals and to produce biofilms. Clearly, the strain seems to exhibit two different mechanisms to enhance phenanthrene bioavailability: biosurfactant production and adhesion to the phenanthrene crystals.  相似文献   

12.
Biosurfactant production by Pichia anomala PY1, a thermotorelant strain isolated from fermented food, was examined as grown in media containing various carbon and nitrogen sources. The optimal conditions for biosurfactant production included 4% soybean oil as carbon source at pH 5.5 at 30 degrees C for 7 d. Under these conditions, the surface tension of the medium decreased to 28 mN/m with oil displacement measured at 69.43 cm(2). Comparative studies of biosurfactant production in media containing glucose or soybean oil were performed. The biosurfactants obtained were isolated and purified by chromatographic methods. The molecular weights of samples were further investigated by mass spectrometry. In medium containing glucose, biosurfactants of molecular weights of 675, 691, and 707 were obtained, while those isolated from medium containing soybean oil were of molecular weights of 658, 675, and 691. These results reveal that sophorolipid compounds containing fatty acids of C20 and C18:1 were produced from both media.  相似文献   

13.
An efficient biosurfactant-producing bacterium was isolated and cultured from petroleum reservoir in northeast China. Isolate was screened for biosurfactant production using haemolytic assay, Cetyl Trimethyl Ammonium Bromide agar plate assay (CTAB) and the qualitative oil-displacement test. Based on partial sequenced 16S rDNA analysis of isolate, USTBa, identified as Bacillus methylotrophicus with 100% identity. This bacterium was able to produce a type of biosurfactant with excessive foam-forming properties. The maximum biosurfactant production was obtained when the cells were grown on minimal salt medium containing 2% (v/v) crude-oil as the sole source of carbon at 35 °C and 180 rpm after 192 h. This strain had a high emulsification activity and biosurfactant production of 78% and 1.8 g/L respectively. The cell free broth containing biosurfactant could reduce the surface tension to 28 mN/m. Fourier transform infrared (FT-IR) spectrum of extracted biosurfactant indicates the presence of carboxyl, hydroxyl and methoxyl functional groups. Elemental analysis of the biosurfactant by Energy dispersive X-ray spectroscopy (EDS) reveals that the biosurfactant was anionic in nature. The strain USTBa represented as a potent biosurfactant-producer and could be useful in variety of biotechnological and industrial processes, particularly oil industry.  相似文献   

14.
Mannosylerythritol lipids (MELs) are glycolipid biosurfactants excreted by fungal strains. They show not only excellent surface-active properties but also versatile biochemical actions. Ustilago scitaminea NBRC 32730 has been reported mainly to produce a mono-acetylated and di-acylated MEL, MEL-B, from sucrose as sole carbon source. In order to make biosurfactant production more efficient, we focused our attention on the use of sugarcane juice, one of the most economical resources. The fungal strain produced MEL-B at the yield of 12.7 g/L from only sugarcane juice containing 22.4% w/w sugars. Supplementation with organic (yeast extract, peptone, and urea) and inorganic (sodium nitrate and ammonium nitrate) nitrogen sources markedly enhanced the production yield. Of the nitrogen sources, urea gave the best yield. Under optimum conditions, the strain produced 25.1 g/L of MEL-B from the juice (19.3% sugars) supplemented with 1 g/L of urea in a jar fermenter at 25 °C over 7 d. The critical micelle concentration (CMC) and the surface-tension at the CMC for the present MEL-B were 3.7×10(-6) M and 25.2 mN/m respectively. On water-penetration scan, the biosurfactant efficiently formed the lamella phase (L(α)) and myelins over a wide range of concentrations, indicating excellent surface-active and self-assembling properties. More significantly, the biosurfactant showed a ceramide-like skin-care property in a three-dimensional cultured human skin model. Thus, sugarcane juice is likely to be effective in glycolipid production by U. scitaminea NBRC 32730, and should facilitate the application of MELs.  相似文献   

15.
Biosurfactant-producing bacteria were isolated from mangrove sediment in southern Thailand. Isolates were screened for biosurfactant production by using the surface tension test. The highest reduction of surface tension was achieved with a bacterial strain which was identified by 16S rRNA gene sequencing as Oleomonas sagaranensis AT18. It has also been investigated using different carbon and nitrogen sources. It showed that the strain was able to grow and reduce the surface tension of the culture supernatant to 25?mN/m. In all 5.30?g of biosurfactant yield was obtained after 54?h of cultivation by using molasses and NaNO(3) as carbon and nitrogen sources, respectively. The biosurfactant recovery by chloroform:methanol extraction showed a small critical micelle concentration value (8?mg/l), thermal and pH stability with respect to surface tension reduction. It also showed emulsification activity and a high level of salt concentration. The biosurfactant obtained was confirmed as a glycolipid by using a biochemical test, FT-IR and mass spectra. The crude biosurfactant showed a broad spectrum of antimicrobial activity and also had the ability to emulsify oil and enhance PAHs solubility.  相似文献   

16.
A Pseudomonas aeruginosa strain producing an extracellular surfactant (biosurfactant) was isolated. The growth of this strain, referred to as 50.3, on a mineral glycerol-containing medium produces an emulsifying activity (60%) and decreases the surface tension of the culture liquid by a factor of 2.8 (to 25 mN/m). The optimum conditions for its growth and production of biosurfactants: intense aeration, pH 7.0-8.0, and the presence of Mg2+. The optimum biosurfactant properties were achieved when glucose was used as the only source of carbon and energy and NH4Cl was used as a source of nitrogen. The biosurfactant was isolated from the culture liquid by extraction and precipitation.  相似文献   

17.
Phytoremediation efficiency of Alfa alfa (Medicago sativa) was evaluated in hydrocarbon-contaminated soil with the combined application of 1-aminocyclopropane-1-carboxylate (ACC) deaminase–producing Bacillus sp. PVMX4 and an isolated biosurfactant from this strain. Results on the plant growth–promoting (PGP) traits of Bacillus sp. PVMX4 revealed that phosphate (P) solubilization, indole-3-acetic acid (IAA) production, and ACC deaminase activity were not affected by low-concentration hydrocarbon amendment in the form of crude oil. Bacillus sp. PVMX4 was able to utilize crude oil as a sole carbon source in mineral salt medium (MSM), and this strain synthesized significant quantities of biosurfactant in growth medium quantified by an emulsification index of 69.2 EI24% and surface tension reduction of 26.2 mN/m at the end of the experimental period. Biosurfactant, when partially purified and characterized by thin-layer chromatography (TLC) and Fourier transform infrared spectroscopy (FT-IR), revealed it to be a lipopeptide-type biosurfactant. Pilot-scale phytoremediation studies conducted under growth chamber conditions in hydrocarbon-contaminated soil using Medicago sativa along with combined application of ACC deaminase–containing bacteria and biosurfactant recorded 76.4% hydrocarbon degradation.  相似文献   

18.
Observation of both tensio-active and emulsifying activities indicated that biosurfactants were produced by the newly isolated and promising strain Pseudomonas putida 21BN. The biosurfactants were identified as rhamnolipids, the amphiphilic surface-active glycolipids usually secreted by Pseudomonas spp. Their production was observed when the strain was grown on soluble substrates, such as glucose or on poorly soluble substrates, such as hexadecane, reaching values of 1.2 g l(-1). When grown on hexadecane as the sole carbon source the biosurfactant lowered the surface tension of the medium to 29 mN m(-1) and formed stable and compact emulsions with emulsifying activity of 69%.  相似文献   

19.
A Yarrowia lipolytica strain (NCIM 3589) isolated in our laboratory produced an emulsifier during the stationary phase when grown in a defined artificial sea water medium containing 1% (v/v) n -hexadecane, as the sole carbon source. The emulsifier was isolated by ultrafiltration, Sepharose 4B followed by isoelectric focusing (IEF) in a miniscale unit in the pH range of 3·0–10 and 3·5–5·0. The pI of the emulsifier was 4·0. The emulsifier is a glycolipid consisting of 5% protein, 20% carbohydrate and 75% lipid. The fatty acid, sugar and amino acid composition of the isolated emulsifier are described along with temperature stability, pH stability and stability in sodium chloride. This paper is a first report on rapid and simple isolation by IEF of a microbial emulsifier.  相似文献   

20.
Actinomycetes isolated from 10 different soil and compost samples were screened for production of pectinolytic enzyme activities when grown on pectin-containing solid and liquid media. Pectinolytic enzymes, detected by using plate diffusion tests with a medium containing ramie (Boehmeria nivea) plant material as the sole carbon source, were mainly pectate lyases, but low activities of pectinesterases were also observed. Polygalacturonases and polymethylgalacturonases were not produced. Multiple forms of pectate lyases were detected in the culture supernatants of some of the strains by using the zymogram technique of isoelectric focusing gels. Xylanolytic and cellulolytic activities were always found to be associated with pectinolytic activities. None of the pectinolytic enzymes were produced in a medium with glucose as the sole carbon source. Treatment of ramie bast fibers with crude enzyme preparations from a selection of strains showed a good correlation between the pectate lyase activity applied and the degumming effect, resulting in good separation of the bast fibers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号