首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Prematurely condensed chromosomes of muntjac G0 lymphocytes as well as contact-inhibited and Actinomycin D (actD)-treated fibroblasts have been stained with silver nitrate to estimate the correlation between RNA suppression and the NOR staining. The results demonstrate that actD treatment for up to 36 h does not significantly affect the staining. Only partial suppression occurs in contact-inhibited cells, whereas complete abolition is obtained in long quiescent lymphocytes. We conclude that the reduction of the staining occurs only gradually from the NORs over a number of days or even weeks. We assume that the silver staining proteins may be associated with rDNA having a regulatory or structural role to play in rDNA activity.  相似文献   

2.
Prematurely condensed chromosomes (PCC) have been obtained by polyethylene glycol (PEG) induced fusion in suspension of the Chinese hamster metaphase cultured cells with those in interphase. As alternative approach the PEG-fusion of the Chinese hamster asynchronous culture cells in monolayer with subsequent incubation in free medium was used. A comparative cytofluorimetric investigation of PCC and chromatin of the interphase nuclei of corresponding ploidy has shown some increase (up to 10%) of acridine orange and olivomycin binding with PCC chromatin. A similar slight increase in low molecular weight ligands binding with chromatin was also found in mitotic chromosomes. The data obtained confirm the opinion about the similarity of events taking place in chromatin during physiological mitosis and premature chromosome condensation. The cytochemical study of chromatin availability to low molecular weight ligands can be used as a criterion for judging on the properties of the artificially condensed chromatin.  相似文献   

3.
Mitotic CHO cells and mouse testicular cells were fused with polyethylene glycol. Several types of prematurely condensed chromosomes were observed. From chromosome morphology it was possible to determine that most of the PCC represented mouse cells. Labeling of either the CHO cells in vitro or the testicular cells in vivo with 3H-TdR prior to fusion also demonstrated that the PCC were derived from the mouse cells. In some PCC, 20 chromosomes could be counted, the haploid number for mouse. It is assumed that these PCC were induced in mouse spermatid nuclei.  相似文献   

4.
The objective of this study was to obtain pure prematurely condensed chromosomes (PCC) by a fusion between mitoplasts and interphase G1 cells. The stabilization of mitoplasts with spermine (25 μM) and a modification of the Sendai virus-mediated fusion enabled us to obtain pure PCC without contaminating mitotic chromosomes. This study clearly suggests that the factors for premature chromosome condensation induction are present in the cytoplasm of the mitotic cells. Pure PCC obtained by this method may help us to understand the nature of the factors initiating chromosome condensation and cell division.  相似文献   

5.
The objective of this study was to investigate whether G1 cells could enter S phase after premature chromosome condensation resulting from fusion with mitotic cells. HeLa cell synchronized in early G1, mid-G1, late G1, and G2 and human diploid fibroblasts synchronized in G0 and G1 phases were separately fused by use of UV-inactivated Sendai virus with mitotic HeLa cells. After cell fusion and premature chromosome condensation, the fused cells were incubated in culture medium containing Colcemid (0.05 micrograms/ml) and [3H]thymidine ([3H]ThdR) (0.5 microCi/ml; sp act, 6.7 Ci/mM). At 0, 2, 4, and 6 h after fusion, cell samples were taken to determine the initation of DNA synthesis in the prematurely condensed chromosomes (PCC) on the basis of their morphology and labeling index. The results of this study indicate that PCC from G0, G1, and G2 cells reach the maximum degree of compaction or condensation at 2 h after PCC induction. In addition, the G1-PCC from normal and transformed cells initiated DNA synthesis, as indicated by their "pulverized" appearance and incorporation of [3H]ThdR. Further, the initiation of DNA synthesis in G1-PCC occurred significantly earlier than in the mononucleate G1 cells. Neither pulverization nor incorporation of label was observed in the PCC of G0 and G2 cells. These findings suggest that chromosome decondensation, although not controlling the timing of a cell's entry into S phase, is an important step for the initiation of DNA synthesis. These data also suggest that the entry of a S phase may be regulated by cell cycle phase-specific changes in the permeability of the nuclear envelope to the inducers of DNA synthesis present in the cytoplasm.  相似文献   

6.
7.
Prematurely condensed chromosomes (PCC) of HeLa cells synchronized in different phases of the cell cycle were analyzed by high-resolution scanning electron microscopy. The purpose of this study was to examine changes in the arrangement of the basic 30-nm chromatin fiber within interphase chromosomes associated with progression through the cell cycle. These studies revealed that highly condensed metaphase chromosomes and early G1-PCC consisted of tightly packed looping fibers. Early to mid G1-PCC were more extended and exhibited gyres suggestive of a despiralized chromonema. Further attenuation of PCC during progression through G1 was associated with a gradual transition from packed looping fibers to single extended longitudinal fibers. This process occurs prior to the initiation of DNA synthesis which appears to be localized within single longitudinal fibers. Following replication of a chromosome segment, extended longitudinal fibers were rapidly reorganized into packed looping fiber clusters concomitant with the formation of a multifibered chromosome axis. This results in the characteristic “pulverized” appearance of S-PCC when viewed by light microscopy. Subsequently, adjacent looping fiber domains coalesce, resulting in the uniformly packed, looping fiber arrangement observed in G2-PCC. Spiralization of the chromonema during the G2-mitotic transition results in the formation of highly compact metaphase chromosomes.  相似文献   

8.
9.
Cell-cycle kinetics, sister-chromatid exchange (SCE) and chromosome aberrations have been studied from the skin fibroblasts of the Indian muntjac after treatment with 100 micrograms/ml of caffeine and 0.05 microgram/ml of anthramycin. The cultures were incubated for a period which was sufficient for the completion of two consecutive cell cycles and both the drugs appeared to produce a slight inhibitory effect. When anthramycin-treated cells were however post-treated with caffeine, the cells did not proceed beyond one cycle and exhibited a mitotic block. The SCE frequency in the control and the experiments with caffeine and anthramycin was 8.63, 18.32 and 34.88 per cell respectively. The SCEs were randomly distributed amongst all chromosomes unlike a non-random distribution within the X chromosomes. Caffeine and anthramycin produced only 0.5% and 3.1 cells with chromosome aberrations respectively. Potentiation of chromosome aberrations was observed when the anthramycin-treated cells were post-treated with caffeine. Caffeine potentiation presumably results from an inhibition of the cells to cycle and a failure to repair the effect of the mutagen on DNA.  相似文献   

10.
A relatively simple method has been developed to improve the resolution for measuring breaks produced in interphase chromosomes by X rays or other agents following the induction of premature chromosome condensation (PCC). Mitotic HeLa cells, which induce PCC when fused with interphase cells, were obtained from cultures grown for several generations in 5-bromodeoxyuridine (BrdU). These were fused to cells from low-passage confluent cultures of normal human fibroblasts and subsequently stained by a modified fluorescence-plus-Giemsa (FPG) technique. Following this protocol the prematurely condensed chromosomes stain intensely, whereas the mitotic chromosomes of the inducer cell(s), which are intermingled with them, stain very lightly. With this technique the interphase chromosomes and their fragments can be identified unequivocally, making scoring much easier and more accurate. The frequency of breaks produced in G1 phase AG1522 human fibroblasts immediately following X-ray doses of 58 and 117 rad was 3.68 and 7.38 per cell, respectively. Use of this technique should allow the detection of damage from ionizing radiation at doses lower than 10 rad.  相似文献   

11.
The phenomenon of premature chromosome condensation has been applied to study the kinetics of condensation-inhibition exerted by the fluorochrome 33258-Hoechst (33258-H) on the centromeric heterochromatic regions of mouse chromosomes. Asynchronous mouse A-9 cells in culture were fused with mitotic HeLa cells in the presence of 33258-H. Pronounced condensation-inhibition of the c-heterochromatin was observed in prematurely condensed early G2, S and late G1 chromosomes in the 33258-H-treated cells. It is concluded that the c-heterochromatic regions begin to condense quite early in G2, decondense again late in G1 and remain decondensed in the S phase.  相似文献   

12.
Metaphase chromosomes were isolated from a male Indian muntjac cell line, were stained with ethidium bromide and were analyzed by flow microfluorometry to establish a deoxyribonucleic acid (DNA)-based karyotype. Five major peaks were evident on the chromosomal DNA distribution corresponding to the five chromosome types in this species. The amount of DNA in each chromosome was confirmed by cytophotometric measurements of intact metaphase spreads. The five chromosome types were separated by flow sorting at rates up to several hundred chromosomes per second. The sorted chromosomes were identified by morphology and by Giemsa banding patterns. The automsomes, Numbers 1, 2 and 3, and the X + 3 composite chromosome were separated with a high degree of purity (90%). The centromere region of the X + 3 chromosome was fragile to mechanical shearing, and during isolation a small proportion of these chromosomes broke into four segiments: the long arm, the short arm, the short arm plus centromere and the centromere region. A large fraction of the constitutive heterochromatin of this species is present in the centromere region of the X + 3 chromosome and in the Y chromosome; these two regions possess similar amounts of DNA and therefore sort together. Chromosome flow sorting is rapid, reproducible and precise; it allows the collection of microgram quantities of purified chromosomes.  相似文献   

13.
The object of this study was to develop a map of G1 phase on the basis of the progressive changes taking place in the morphology of the prematurely condensed chromosomes as the cells traverse through G1 and then use this technique to determine the cell cycle location of normal and transformed cell populations in plateau phase. The morphology of the prematurely condensed chromosomes (PCC) of G1 cells in random populations was found to be highly variable. For a better understanding of the relationship between the morphology of the G1-PCC and their position within G1 phase, synchronized populations of Chinese hamster ovary (CHO) cells in early, mid-, and late G1 phase were fused with mitotic cells. Early G1 cells resulted in highly condensed G1-PCC, while late G1 cells gave very extended G1-PCC. Mid-G1 cells resulted in PCC of intermediate condensation. To test the validity of these criteria for mapping the position of a cell in the cell cycle, synchronous G1 cell populations were treated with a variety of metabolic inhibitors. Cycloheximide and actinomycin D were shown to block cell in early G1 phase, while excess thymidine and hydroxyurea blocked cells in early S phase. The results presented here indicate that, upon reaching plateau phase, normal cell populations (BALB-C mouse 3T3, human PA-2, and WI 38) stop in early G1, while most cells in transformed cell lines (CHO, HeLa, and mouse SV-3T3) accumulate in late G1.  相似文献   

14.
The identification, morphology, and banding pattern of the chromosomes of the Indian muntjac (Muntiacus muntjak) are described. A diagrammatic representation of the banding pattern as revealed by various techniques is presented following the nomenclature suggested by Paris Conference (1971) for human chromosomes. The Y2 chromosome and the neck of the X chromosome are late replicating based on observations made with the use of a bromodeoxuridine plus Giemsa technique. Most of the G-bands are early replicating, contrary to earlier findings based on autoradiography.  相似文献   

15.
16.
Mammalian chromosome replication was studied by the aid of premature chromosome condensation (PCC). After induction of PCC the sites of DNA replication appear as “gaps” between condensed chromosomal regions. These condensed particles are unineme before and bineme after DNA replication. The two phases are due mainly to the unineme or bineme nature of the particles. During early S-phase almost all particles are unineme, during late S-phase they are bineme and there is only one transitory stage between these two main stages. Premature chromosome condensation was studied in detail on a specific human chromosome 22 which is marked by its heterochromatin constitution. This led to easy identification of these elements in S-phase PCC (S-PCC) preparations. For each stage of the S-phase there was a reproducible pattern of condensed chromosomal particles making up the whole chromosome. The number of these particles was rather limited and a complementary pattern was found in early versus late S-phase. The pattern of early S-PCC corresponded to the banding pattern of G-banded prometaphase chromosomes; the pattern of late S-PCC, to R-banded prometaphase chromosomes. Thus, “gaps” and condensed particles as observed after PCC induction are obviously homologous to chromosome replication units. Replication of constitutive heterochromatin occurred during the very late S-phase. During this stage PCC induction led to condensation of the heterochromatin into several small, highly fluorescent particles.  相似文献   

17.
Length measurements on C-banded prematurely condensed no. 1 human chromosomes of G0 and G1 lymphocytes, as well as of synchronized G1 HEp cells revealed that (i) no length difference exists between mitotic chromosomes and G0 chromosomes; (ii) 1 h after PHA stimulation a clear increase in length is detectable; (iii) in isolated cases an increase by the factor 5 can be observed during G1; (iv) the increase is significantly less for constitutive heterochromatin than for euchromatin. The possibility is discussed that these conformational changes of chromatin reflect physiological differences, i.e. the rate of RNA synthesis during interphase.  相似文献   

18.
In fused interphase-mitotic cells, either interphase nuclei are induced to premature chromosome condensation (PCC) or mitotic chromosomes are induced to telophase-like nuclei (TLN) formation. This study concerns structural and functional changes in centrioles of fused cells in which PCC or TLN are induced. Embryonic pig kidney cells were fused using a modified PEG-DMSO-serum method. Cell cycle period of the nuclei was determined before cell fusion using double-labeling autoradiography. Polykaryons containing desirable type of PCC or interphase nuclear combination in TLN were selected on the basis of isotope labeling after being embedded in epon. Selected cells were cut into serial sections and studied under electron microscope. The data obtained showed that centrioles at every interphase period undergo mitotic activation when their nuclei are induced to PCC. They acquire fibrillar halo and form half-spindles. Daughter centrioles at G1, S and G2 periods are also capable of mitotic activation when separated from their mother centriole. Inert centrioles were found in some cells with G1-PCC. When mitotic nuclei are induced to TLN formation, their centrioles also become inactivated. They lose fibrillar halo and mitotic spindles break down. Some mitotic centrioles develop features characteristic of interphase period such as satellites and vacuoles. Induced nuclear and centriolar changes are simultaneous and may be controlled by the same factor. Mitotic factor of mitotic cell partner which induces PCC may also induce interphase centrioles to mitotic activation. Degradation of the mitotic factor leading to TLN formation may also cause the loss of the mitotic activity of centrioles and disorganization of mitotic spindles.  相似文献   

19.
DNA replication patterns of individual chromosomes and their various euchromatic and heterochromatic regions were analyzed by means of quantitative autoradiography. The cultured cells of the skin fibroblast of a male Indian muntjac were pulse labeled with 3H-thymidine and chromosome samples were prepared for the next 32 h at 1–2 h intervals. A typical late replication pattern widely observed in heterochromatin was not found in the muntjac chromosomes. The following points make the DNA replication of the muntjac chromosomes characteristics: (1) Heterochromatin replicated its DNA in a shorter period with a higher rate than euchromatin. (2) Two small euchromatic regions adjacent to centromeric heterochromatin behaved differently from other portions of euchromatin, possessing shorter Ts, higher DNA synthetic rates and starting much later and ending earlier their DNA replication. (3) Segmental replication patterns were observed in the chromosomes 2 and 3 during the entire S phase. (4) Both homologues of the chromosome 3 showed a synchronous DNA replication pattern throughout the S phase except in the distal portion of the long arms during the mid-S phase.  相似文献   

20.
The mechanisms of replicative senescence by telomere shortening are not fully understood. The Indian muntjac has the fewest chromosomes of all mammals, greatly simplifying the analysis of each telomere over time. In this study, telomere shortening was observed throughout the life span of cultured normal muntjac cells by quantitative fluorescence in situ hybridization and terminal restriction fragment analysis. Ectopic expression of the human telomerase catalytic subunit in these cells reconstituted telomerase activity, extended telomere lengths, and immortalized the cells, demonstrating that the Indian muntjac cells can serve as a telomere-based replicative senescence model for human cells. In one strain, two chromosome ends had significantly shorter telomeres than the other ends, which led to a variety of chromosome abnormalities. Near senescence, additional ends became telomere signal free, and chromosome aberrancies increased dramatically. Interstitial telomere sequences coincided with fragile sites, suggesting that these remnants of chromosome fusion events might contribute to genome instability. One SV40-immortalized cell line lacked telomerase, and its genetic instability was corrected by the ectopic expression of telomerase, confirming that too-short telomeres were the source of abnormalities. Indian muntjac cells provide an excellent system for understanding the mechanism of replicative senescence and the role of telomerase in the elongation of individual telomeres.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号