首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The glycoprotein nature of legumin and vicilin, the reserve globulins in the cotyledons of Pisum sativum was studied. Legumin from mature seed was found to contain 1% neutral sugars (mannose and glucose) and 0.1% amino sugar (glucosamine), whereas vicilin contained 0.3% neutral sugar (mannose) and 0.2% amino sugar (glucosamine). On the basis of the incorporation of 14C-labeled glucosamine, it appeared that not all of the component subunits of the reserve proteins are glycosylated to the same extent. In addition, it has been established that glycosylation occurs after peptide synthesis. During seed development there was a change in neutral sugars and amino sugar ratio in vicilin. During germination, the neutral sugars and the amino sugar content of the glycoproteins declined. These findings are discussed in relation to the synthesis and degradation of the glycosyl component of the glycoproteins.  相似文献   

2.
Extracts of bean (Phaseolus vulgaris L. cv. Greensleeves) cotyledons contained two abundant proteins: vicilin and phytohemagglutinin. Vicilin, a 6.9 S protein fraction at neutral pH, associated to an 18.0 S form at pH 4.5 and had 3 non-identical subunits with molecular weights (MW) of 52,000, 49,000 and 46,000. Phytohemagglutinin, a 6.4 S protein fraction, had 2 non-identical subunits with MW of 34,000 and 36,000. Phytohemagglutinin could be separated by isoelectrofocusing into a mitogenic and non-erythroagglutinating protein with a single subunit of MW=34,000, and a mitogenic and erythroagglutinating protein fraction which contained both subunits. Vicilin is apparently identical with the so called glycoprotein II (A. Pusztai and W.B. Watt, Biochim. Biophys. Acta 365, 57–71, 1970) and with globulin G1 (R.C. McLeester, T.C. Hall, S.M. Sun, F.A. Bliss, Phytochem. 2, 85; 1973), while phytohemagglutinin is identical with globulin G2 (McLeester et al., 1973). Since vicilin and phytohemagglutinin are internationally used names there is no need to introduce new names to describe P. vulgaris reserve proteins. Both proteins are catabolized in the course of seedling growth and are located in the protein bodies, indicating that they are reserve proteins. Vicilin isolated in its 18.0 S form from the cotyledons of young seedlings contains substantial quantities of smaller polypeptides, in addition the 3 original ones. We suggest that the presence of these small polypeptides represents partial breakdown of the vicilin prior to its complete catabolism.  相似文献   

3.
Phaseolus coccineus storage globulins were extracted from mature cotyledons, purified and characterized. Three major proteins were separated. A component showing erythroagglutinating activity was thoroughly purified by thyroglobulin-Sepharose chromatography. The relative molecular masses of the three fractions are Mr = 330, 178, and 500 kDa as determined by polyacrylamide gel electrophoresis (PAGE). They correspond to the proteins found in other systems and classified as phytohaemagglutinin (PHA), vicilin and legumin, respectively. Electrophoretic analyses under denaturating conditions (SDS-PAGE) evidenced the major subunits for the three proteins. Isoelectrofocusing of the isolated proteins indicated a large heterogeneity for vicilin. Part I.  相似文献   

4.
Intact pea (Pisum sativum L.) cotyledons were incubated with [14C]glucosamine at several stages of seed development and the resultant radioactive proteins were analysed by gel electrophoresis combined with immunoaffinity chromatography and sucrose gradient fractionation. Glucosamine was incorporated into at least five vicilin polypeptides (approx. molecular weight 70,000; 50,000, two components; 14,000, two components). No incorporation was detected into the subunits of legumin. Tunicamycin at 50 g/ml largely inhibited glucosamine incorporation but had little effect on the incorporation of 14C-labelled amino acids into cotyledon proteins, including vicilin. The assembly of vicilin polypeptides into full-sized protein oligomers (7–9 S) was also unaffected by tunicamycin. Chromatography on concanavalin A confirmed that glycosylation of cotyledon proteins was inhibited by tunicamycin. It is concluded that glycosylation of most cotyledonary proteins involves lipid-linked sugar intermediates, but that glycosylation itself is not an essential step in the synthesis of vicilin polypeptides nor in their assembly into oligomers.Abbreviations IgG immunoglobulin G - M Wt approximate molecular weight based on electrophoretic mobility relative to that of protein standards - SDS-PAGE Na-dodecyl sulfate-polyacrylamide gel electrophoresis  相似文献   

5.
A simple and rapid affinity chromatographic method for the isolation of aspartate transcarbamylase from germinated seedlings of mung bean (Phaseolus aureus) was developed. A partially purified preparation of the enzyme was chromatographed on an affinity column containing aspartate linked to CNBr-activated Sepharose 4B. Aspartate transcarbamylase was specifically eluted from the column with 10 mm aspartate or 0.5 m KCl. The enzyme migrated as a single sharp band during disc electrophoresis at pH 8.6 on polyacrylamide gels. Electrophoresis of the sodium dodecyl sulfate-treated enzyme showed two distinct protein bands, suggesting that the mung bean aspartate transcarbamylase was made up of nonidentical subunits. Like the enzyme purified by conventional procedures, this enzyme preparation also exhibited positive homotropic interactions with carbamyl phosphate and negative heterotropic interactions with UMP. This method was extended to the purification of aspartate transcarbamylase from Lathyrus sativus, Eleucine coracona, and Trigonella foenum graecum.  相似文献   

6.
A cysteine proteinase that possibly participates in the degradation of phaseolin, the main storage protein of kidney bean ( Phaseolus vulgaris L. cv. Moldavian) was isolated from germinating kidney bean seeds and partially characterized. According to its properties it may be classified as a member of a group of homologous cysteine proteinases A, also present in germinating seeds of a number of other plants. The proteinase of this group hydrolyze storage proteins to short peptides. Similarly, the kidney bean proteinase hydrolyzes vicilin, the reserve protein of vetch ( Vicia sativa ). However, its action on phaseolin is limited to the cleavage of subunits into two approximately equal parts and to the splitting off a small number of short peptides. An explanation of phaseolin resistance to the action of this proteinase is proposed on the basis of the differences of its structure from that of other homologous 7S proteins.  相似文献   

7.
Citrate lyase from Streptococcus diacetilactis has been purified to yield a protein that was homogeneous as judged by sedimentation velocity and sedimentation equilibrium experiments. The enzyme's sedimentation coefficient is 16.8 S and its molecular weight is around 585,000. It contains three nonidentical subunits of about 53,000, 34,000, and 10,000 daltons. The enzyme in its active form contains an acetyl group which turns over during the citrate cleavage reaction. Removal of the acetyl group inactivates the enzyme. The deacetyl enzyme can be partially reactivated by acetylation with acetic anhydride. The enzyme undergoes slow "reaction-inactivation." The rate of inactivation is first order and the rate constant of inactivation is much lower than that for a similar inactivation process of the citrate lyase from Klebsiella aerogenes. Like the latter enzyme it contains stoichiometric amounts of phosphopantothenate. The enzyme is inactivated at pH greater than 8.1 and the presence of citrate provides protection against this inactivation. Sedimentation studies of the enzyme at pH 8.7 indicate that the enzyme is dissociated, which may account for the inactivation. The enzyme is immunologically different from citrate lyases of K. aerogenes and Escherichia coli.  相似文献   

8.
Functionally active “hybrid” 50 S ribosomal subunits can be reconstituted using 23 S RNA from Staphylococcus aureus (strain 1206) and 5 S RNA, as well as 50 S ribosomal proteins from Bacillus stearothermophilus. Using this system, resistance of S. aureus 50 S subunits to lincomycin and spiramycin was analyzed. When 23 S RNA from either phenotypically resistant (“induced resistance”) S. aureuscells or derived genetically resistant (“constitutive resistance”) S. aureus cells, were used, the reconstituted 50 S subunits showed the resistant phenotype similar to that seen in native 50 S subunits obtained from resistant cells; only very weak inhibition by the antibiotics was observed in poly (U) - directed polyphenylalanine synthesis involving these 50 S subunits. In contrast, the 50 S particles reconstituted using 23 S RNA from uninduced (sensitive) S. aureus were subject to greater inhibition by the antibiotics in cell-free poly-peptide synthesis. It is concluded that modification of 23 S RNA, presumably the previously observed methylation to form dimethyladenine, is responsible for the resistance to the antibiotics in this strain of S. aureus.  相似文献   

9.
Legumin and vicilin,storage proteins of legume seeds   总被引:3,自引:0,他引:3  
The structure, location in the seed and distribution of the storage protein of legume seeds are described. Methods which have been employed for the extraction, purification and characterisation of seed globulins are reviewed in relation to modern biochemical practice. The physical, chemical and immunological characteristics of the classical legumin and vicilin preparations from Pisum sativum are summarised and the distributions of proteins with sedimentation coefficients and/or immunological determinants similar to those of legumin and vicilin, are tabulated. The structure and composition of various purified legumin and vicilin-type proteins from a variety of legumes, are compared.  相似文献   

10.
From the storage proteins of the pea (Pisum sativum), the fraction which interacts with the pea lectin by the sugar-binding site was studied. By electrophoretical subunit patterns and other criteria, this fraction resembles the group of the 7S storage proteins (vicilins). The fraction was resolved into subunits by micropreparative SDS PAGE. The N-terminal sequences of the individual subunits were determined. Most of these are identical with published vivilin subunit sequences; therefore this lectin-binding fraction belongs to the vicilins. Selected subunits and tryptic fragments were analysed for amino-acid compositions. Though unequivocal assignments to vicilin segments were possible, significant differences could be recognized, in particular in the tryptic fragments.  相似文献   

11.
Aims: To characterize the interaction between cell surface carbohydrates and Staphylococcus aureus. Methods and Results: In the present study, in vitro adherence of S. aureus to Detroit 562 cells, amount of cell surface desialylation and effect of subterminal monosaccharides on desialylated glycoproteins on adherence was studied with colony counting, HPLC, fluorescence microscopy and fluorometric techniques. According to our findings, S. aureus adherence to pharynx cells was enhanced (40%) after neuraminidase treatment, and neuraminidase also cleave great amount of Detroit 562 cells surface sialic acid (39–60%). Adherence assay with various monosaccharides‐pretreated bacteria, and lectin competitive inhibition, showed that the residual subterminal galactose, fucose and N‐acetyl‐d ‐glucosamine remaining on desialylated Detroit 562 cell surface glycoproteins responsible for this binding. Conclusion: The results are the first to show that galactose, fucose and N‐acetyl‐d ‐glucosamine remaining on desialylated pharynx cell surface glycoproteins serve as the adhesine receptors for S. aureus. Significance and Impact of the Study: This study may explain the predisposition of severe S. aureus pneumonia complication in respiratory viral infections.  相似文献   

12.
An 11S seed globulin has been isolated from Phaseolus aureus and P. vulgaris by zonal isoelectric precipitation and the MWs of the constituent subunits determined. The protein of P. vulgaris occurs in the protein body fraction and its chemical composition, including the N-terminal amino acids and amino acid composition has been determined. The similarity between the 11S globulin of the two Phaseolus spp. and legumin from other leguines is discussed.  相似文献   

13.
The asparagine-linked oligosaccharide chains of glycoproteins can be processed to form a wide variety of structures. The Golgi complex is the main compartment involved in this processing. In mammalian cells the first enzyme acting along the Golgi processing pathway is mannosidase I, whose action is a prerequisite for any further processing and which is inhibited by the mannose analog 1-deoxymannojirimycin (dMM). To have insights into the processing pathway in plant cells, we have studied the in vivo effect of dMM on the processing of the bean (Phaseolus vulgaris) storage proteins phaseolin and phytohemagglutinin, two well characterized plant glycoproteins. Cotyledons obtained from developing seeds were labeled with radioactive leucine, glucosamine, or fucose in the presence or absence of dMM. Treatment with dMM fully inhibited the acquisition of resistance to endo-β-N-acetylglucosaminidase H by phaseolin and phytohemagglutinin and the incorporation of fucose into protein. Furthermore, the apparent molecular weight of the polypeptides of phaseolin and phytohemagglutinin synthesized in dMM-treated cotyledons was consistent with the exclusive presence of oligommanose oligosaccharide chains which had not been processed in the Golgi complex. The inhibition of processing did not prevent exit from the Golgi complex, and most probably the storage proteins were correctly targeted to the protein bodies as indicated by the post-translational polypeptide cleavage of phaseolin. These results indicate that the action of a mannosidase is the first obligatory step of Golgi-mediated processing also in a plant cell and, together with data obtained in other laboratories on the in vitro specificity of glycosidases and glycosyltransferases present in the Golgi complex of plant cells, support the hypothesis that the key early reactions in Golgi-mediated processing are similar if not identical in plants and mammals.  相似文献   

14.
Developing pea (Pisum sativum L.) cotyledons were labeled with radioactive amino acids, glucosamine, and mannose in pulse an pulse- chase experiments to study the synthesis, glycosylation, and transport of the reserve proteins vicilin and legumin to the protein bodies. Tissue extracts were fractionated on sucrose gradients to isolate either the endoplasmic reticulum (ER) or the protein bodies. Immunoaffinity gels were used to determine radioactivity in the reserve proteins (legumin and vicilin). After pulse-labeling for 45 min with amino acids, about half the total incorporated radioactivity coincided closely with the position of the ER marker enzyme NADH-cytochrome c reductase at a density of 1.13 g . cm-3 on the sucrose gradient. Both radioactivity and enzyme activity shifted to a density of 1.18 g . cm-3 in the presence of 3 mM MgCl2 indicating that the radioactive proteins were associated with the rough ER. Approximately half of the incorporated radioactivity associated with the rough ER was in newly synthesized reserve protein and this accounted for 80% of the reserve protein synthesized in 45 min. Trypsin digestion experiments indicated that these proteins were sequestered within the ER. In pulse-chase experiments, the reserve proteins in the ER became radioactive without appreciable lag and radioactivity chased out of the ER with a half-life of 90 min. Radioactive reserve proteins became associated with a protein body-rich fraction 20-30 min after their synthesis and sequestration by the ER. Pulse-chase experiments with radioactive glucosamine and mannose in the presence and absence of tunicamycin indicated that glycosylation of vicilin occurs in the ER. However, glycosylation is not a prerequisite for transport of vicilin from ER to protein bodies. Examination of the reserve protein polypeptides by SDS PAGE followed by fluorography showed that isolated ER contained legumin precursors (Mr 60,000-65,000) but not the polypeptides present in mature legumin (Mr 40,000 and 19,000) as well as the higher molecular weight polypeptides of vicilin (Mr 75,000, 70,000, 50,000, and 49,000). The smaller polypeptides of vicilin present in vicilin extracted from protein bodies (Mr 12,000-34,000) were absent from the ER. The results show that newly synthesized reserve proteins are preferentially and transiently sequestered within the ER before they move to the protein bodies, and that the ER is the site of storage protein glycosylation.  相似文献   

15.
The major storage protein of jackbean (Canavalia ensiformis) has been purified by a protocol involving ammonium-sulphate precipitation, gel filtration and ion-exchange chromatography. The protein was shown by partial amino-acid-sequence data to be homologous to vicilin, a major storage protein of pea (Pisum sativum), and is thus a member of the family of legume 7S proteins exemplified by pea vicilin. This protein is thus referred to as jack-bean vicilin rather than canavalin or precanavalin as previously used. Other properties of the jack-bean vicilin (e.g. subunit relative molecular mass (Mr) and structure, resistance to proteolysis) show similarity to phaseolin, the major 7S storage protein ofPhaseolus vulgaris. Jack-bean vicilin contained no detectable -mannosidase activity, either as isolated from mature or germinating seeds, or after proteolytic treatment. -Mannosidase was also purified from jack beans, and was shown to have a subunit Mr of approx. 120,000; it was separated completely from jack-bean vicilin by a similar protocol to that used for purifying the latter. The -mannosidase was proteolytically cleaved after seed germination, but did not give polypeptides of the same Mr as jackbean vicilin. It was concluded that -mannosidase and jack-bean vicilin are not related proteins.Abbreviations DE diethylaminoethyl - M relative molecular mass - SDS sodium dodecyl sulphate - PAGE polyacrylamide-gel electrophoresis  相似文献   

16.
An antiserum specific for the legumin and vicilin of Vicia faba was used to examine extracts of seeds of taxa of the Fabeae and Trifolieae for the presence of related storage proteins, Proteins related to legumin were found to be widely distributed, indicating considerable conservation of the genetic information for this protein. Only Pisum sativum contained a protein immunochemically identical with the vicilin of V. faba; the equivalent proteins of all other genera tested here were immunochemically different from vicilin.  相似文献   

17.
A third storage protein, distinct from legumin and vicilin, has been purified from the seeds of pea (Pisum sativum L.). This protein has been named 'convicilin' and is present in protein bodies isolated from pea seeds. Convicilin has a subunit mol.wt. of 71 000 and a mol.wt. in its native form of 290 000. Convicilin is antigenically dissimilar to legumin, but gives a reaction of identity with vicilin when tested against antibodies raised against both proteins. However, convicilin contains no vicilin subunits and may be clearly separated from vicilin by non-dissociating techniques. Unlike vicilin, convicilin does not interact with concanavalin A, and contains insignificant amounts of carbohydrates. Limited heterogeneity, as shown by isoelectric focusing, N-terminal analysis, and CNBr cleavage, is present in convicilin isolated from a single pea variety; genetic variation of the protein between pea lines has also been observed.  相似文献   

18.
Ribosomal subunits are isolated from potato tuber mitochondria devoid of contaminating organelles. The sedimentation constants of the two mitochondrial ribosomal subunits are 33S and 50S respectively. The apparent sizes of the high molecular weight RNAs are 19S and 25S.The proteins of these ribosomes have been analyzed by two-dimensional electrophoresis in SDS polyacrylamide gels to determine their number and molecular weights. The small subunit contains 35 protein species ranging from 8 to 60 kDa. The 50S large subunit contains 33 protein species ranging from 12 to 46 kDa. These preliminary results are the first analysis made on mitochondrial ribosomes from a higher plant.  相似文献   

19.
Cytyledons of the common bean, Phaseolus vulgaris L., were incubated with radioactive amino acids at different stages of seed development. The proteins were fractionated by ion-exchange chromatography, sucrose gradients, and sodium dodecylsulfate (SDS) polyacrylamide gel electrophoresis. From 16 to 28 d after flowering about 40% of the incorporated radioactivity was associated with the polypeptides of vicilin and 10% with those of phytohemagglutinin.Polysomes were isolated from developing cotyledons 20–25 d after flowering and free polysomes were separated from membrane-bound polysomes. Aurintricarboxylic acid, an inhibitor of initiation in cell-free translation systems, did not inhibit the incorporation of amino acids into in-vitro synthesized proteins, indicating that synthesis was limited to the completion of already initiated polypeptides. Autofluorography of SDS-polyacrylamide gels showed that the two classes of polysomes made two different sets of polypeptides and that there was little overlap between these two sets.Four polypeptides similar in size to the 4 polypeptides of vicilin were made by membrane-bound polysomes and not by free polysomes. Antibodies specific for vicilin bound to those 4 polypeptides. Free polysomes made only polypeptides which did not bind to antibodies specific for vicilin. Antibodies against phytohemagglutinin did not bind to any of the invitro synthesized polypeptides.The membranes to which the polysomes were bound were characterized on sucrose gradients and by electron microscopy. Polysomes recovered from membranes which banded on top of 35 and 50% sucrose synthesized the vicilin polypeptides most rapidly. These membrane fractions were rich in vesicles of rough endoplasmic reticulum (ER). The ER marker-enzyme NADH-cytochrome-c reductase banded with an average density of 1.18 g/cm3 (40% w/w sucrose) on continuous gradients. These experiments demonstrate that the ER is the site of vicilin synthesis in developing bean cotyledons. Quantitative determinations of several ER parameters (RNA and lipid-phosphate content, NADH-cytochrome-c-reductase activity) show that expansion of the cotyledons is accompanied by a 4-6-fold increase in ER.  相似文献   

20.
Nucleotide-sequence analysis of a complementary-DNA clone for convicilin, one of the storage proteins from pea (Pisum sativum L.) seeds, shows it to be homologous with the 7S legume seed storage proteins vicilin, conglycinin and phaseolin. Convicilin is more similar to vicilin than to phaseolin or to conglycinin. Significant areas of sequence difference are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号