首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 19 毫秒
1.
2.
3.
4.
5.
We have previously reported that antioxidant response element (ARE)-regulated genes, such as heme oxygenase 1 (HO-1), sequestosome 1 (SQSTM1), and NAD(P)H quinone oxidoreductase 1 (NQO1), are induced in human umbilical vein endothelial cells (HUVEC) upon exposure to laminar shear stress. In the present study, we have confirmed a critical role for NF-E2-related factor 2 (Nrf2) in the induction of gene expression in HUVEC exposed to laminar shear stress. Although the mRNA levels of Nrf2 were unchanged during exposure to shear stress, the protein levels of Nrf2 were markedly increased. Small interfering RNA (SiRNA) against Nrf2 significantly attenuated the expression of Nrf2-regulated genes such as HO-1, SQSTM1, NQO1, glutamate-cysteine ligase modifier subunit (GCLM), and ferritin heavy chain. Nrf2 was rapidly degraded in cells treated with cycloheximide under static conditions, but shear stress decreased the rate of Nrf2 degradation. Incubation with the thiol antioxidant N-acetylcysteine strongly inhibited both the Nrf2 accumulation and the expression of Nrf2-regulated genes such as HO-1, GCLM, and SQSTM1. Nitric oxide (NO) production was increased with the strength of shear stress but neither the inhibitor of endothelial NO synthase (eNOS) nor the siRNA against eNOS affected the expression of Nrf2-regulated genes. A xanthine oxidase inhibitor oxypurinol and the flavoprotein inhibitor diphenyleneiodonium, which inhibits NAD(P)H oxidase and mitochondrial respiratory chain, markedly suppressed the expression of these genes. Moreover, diphenylpyrenlphosphine, a reducing compound of lipid hydroperoxides, also significantly suppressed Nrf2-regulated gene expression. Taken together, these findings suggest that shear stress stabilizes Nrf2 protein via the lipid peroxidation elicited by xanthine oxidase and flavoprotein mediated generation of superoxide, resulting in gene induction by the Nrf2-ARE signaling pathway.  相似文献   

6.
Human NRH:quinone oxidoreductase 2 (NQO2) is a cytosolic protein that catalyzes the metabolic reduction of quinones and provides protection against myelogenous hyperplasia and chemical carcinogenesis. NQO2 gene expression is induced in response to antioxidant tert-butylhydroquinone (tBHQ). Sequence analysis revealed six putative antioxidant response elements (ARE1 through 6) in the human NQO2 gene promoter. Deletion mutagenesis and transfection studies suggested that the ARE region between nucleotides -1433 and -1424 is essential for basal expression and antioxidant induction of NQO2 gene expression. Mutation of this ARE from 3.8 kb NQO2 gene promoter significantly repressed expression and abrogated the induction in response to antioxidant in transfected cells. Band shift, supershift, and chromatin immunoprecipitation (ChIP) assays demonstrated binding of nuclear factors Nrf2 and JunD with human NQO2 gene ARE. Coimmunoprecipitation experiments revealed an association between Nrf2 and JunD. Overexpression of Nrf2 upregulated and overexpression of Nrf2 dominant-negative mutant downregulated ARE-mediated NQO2 gene expression. The treatment of Hep-G2 cells with Nrf2-specific RNAi significantly reduced Nrf2 and NQO2 gene expression and tBHQ induction. The results combined demonstrated that Nrf2 associates with JunD, binds to ARE at nucleotide -1433, and regulates human NQO2 gene expression and induction in response to antioxidants.  相似文献   

7.
The Nrf2/antioxidant response element (ARE) signaling pathway plays a key role in activating cellular antioxidants, including heme oxygenase-1 (HO-1), NADPH quinone oxidoreductase-1 (NQO1), and glutathione. Protein kinase C (PKC) may also regulate these antioxidants, as PKC phosphorylates Nrf2 in vitro. This study examined the role of PKC in ARE-mediated gene regulation in human monocytes by curcumin, a potent inducer of the Nrf2/ARE pathway. Curcumin increased HO-1 and glutamyl cysteine ligase modulator (GCLM) expression and stimulated Nrf2 binding to the ARE. Curcumin also rapidly stimulated PKC phosphorylation and Ro-31-8220, a pan-PKC inhibitor, decreased curcumin-induced GCLM and HO-1 mRNA expression and ARE binding. Rottlerin (a PKC delta inhibitor) and PKC delta antisense oligonucleotides significantly inhibited curcumin-induced GCLM and HO-1 mRNA expression and ARE binding. Furthermore, a p38 MAP kinase inhibitor reduced GCLM and HO-1 expression and rottlerin inhibited curcumin-induced p38 phosphorylation. In summary, curcumin activates ARE-mediated gene expression in human monocytes via PKC delta, upstream of p38 and Nrf2.  相似文献   

8.
Nrf2 mediates inducer-dependent activation of the heme oxygenase-1 (HO-1) gene (Alam, J., Stewart, D., Touchard, C., Boinapally, S., Choi, A. M., and Cook, J. L. (1999) J. Biol. Chem. 274, 26071-26078), but the mechanism by which HO-1 inducers regulate Nrf2 function is not known. Treatment of mouse hepatoma (Hepa) cells with 50 microm CdCl(2) increased the amount of Nrf2 protein in a time-dependent manner; induction was observed within 30 min, prior to the accumulation of HO-1 mRNA. Cadmium did not significantly affect the steady-state level of Nrf2 mRNA or the initial rate of Nrf2 protein synthesis but increased the half-life of Nrf2 from approximately 13 to 100 min. Proteasome inhibitors, but not other protease inhibitors, enhanced the expression of Nrf2, and ubiquitinylated Nrf2 was detected after proteasome inhibition. Cycloheximide inhibited cadmium-stimulated Nrf2 expression and DNA binding activity and attenuated HO-1 mRNA accumulation. Conversely, proteasome inhibitors enhanced HO-1 mRNA and protein accumulation by a Nrf2-dependent mechanism. Together, these results indicate that Nrf2 is targeted for rapid degradation by the ubiquitin-proteasome pathway and that cadmium delays the rate of Nrf2 degradation leading to ho-1 gene activation.  相似文献   

9.
10.
11.
12.
13.
14.
15.
16.
17.
18.
19.
Nuclear import and export signals in control of Nrf2   总被引:10,自引:0,他引:10  
Nrf2 binds to the antioxidant response element and regulates expression and antioxidant induction of a battery of chemopreventive genes. In this study, we have identified nuclear import and export signals of Nrf2 and show that the nuclear import and export of Nrf2 is regulated by antioxidants. We demonstrate that Nrf2 contains a bipartite nuclear localization signal (NLS) and a leucine-rich nuclear export signal, which regulate Nrf2 shuttling in and out of the nucleus. Immunofluorescence and immunoblot analysis revealed that Nrf2 accumulates in the nucleus within 15 min of antioxidant treatment and is exported out of nucleus by 8 h after treatment. Nrf2 mutant lacking the NLS failed to enter the nucleus and displayed diminished expression and induction of the downstream NAD(P)H:quinone oxidoreductase 1 gene. The Nrf2 NLS sequence, when fused to green fluorescence protein, resulted in the nuclear accumulation of green fluorescence protein, indicating that this signal sequence was sufficient to direct nuclear localization of Nrf2. A nuclear export signal (NES) was characterized in the C terminus of Nrf2, the deletion of which caused Nrf2 to accumulate predominantly in the nucleus. The Nrf2 NES was sensitive to leptomycin B and could function as an independent export signal when fused to a heterologous protein. Further studies demonstrate that NES-mediated nuclear export of Nrf2 is required for degradation of Nrf2 in the cytosol. These results led to the conclusion that Nrf2 localization between cytosol and nucleus is controlled by both nuclear import and export of Nrf2, and the overall distribution of Nrf2 is probably the result from a balance between these two processes. Antioxidants change this balance in favor of nuclear accumulation of Nrf2, leading to activation of chemopreventive proteins. Once this is achieved, Nrf2 exits the nucleus for binding to INrf2 and degradation.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号