首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Using newly developed nanofabricated cantilever force transducers, we have measured the mechanical properties of isolated thick filaments from the anterior byssus retractor muscle of the blue mussel Mytilus edulis and the telson levator muscle of the horseshoe crab Limulus polyphemus. The single thick filament specimen was suspended between the tip of a flexible cantilever and the tip of a stiff reference beam. Axial stress was placed on the filament, which bent the flexible cantilever. Cantilever tips were microscopically imaged onto a photodiode array to extract tip positions, which could be converted into force by using the cantilever stiffness value. Length changes up to 23% initial length (Mytilus) and 66% initial length (Limulus) were fully reversible and took place within the physiological force range. When stretch exceeded two to three times initial length (Mytilus) or five to six times initial length (Limulus), at forces approximately 18 nN and approximately 7 nN, respectively, the filaments broke. Appreciable and reversible strain within the physiological force range implies that thick-filament length changes could play a significant physiological role, at least in invertebrate muscles.  相似文献   

2.
Under in vitro movement assay conditions, actin filaments move about 10 times faster toward, than away from, the center of large bipolar thick filaments of molluscan smooth muscle. Using thick filaments isolated from the anterior byssus retractor muscle of Mytilus edulis, the two speed modes of movement were studied in detail. Some thick filaments crossed over each other on the surface of the assay chamber, allowing actin filaments that moved into the crossover region to transfer to other thick filaments. When an actin filament that had been moving in the low speed mode crossed over to another thick filament and the speed changed to fast, the entire actin filament started to move in the high speed mode at the moment of transfer of its leading end, leaving the trailing part still in contact with the original thick filament. This indicates that myosin cross-bridges interacting in the slow mode do not impose a significant load on the cross-bridges interacting in the fast mode. Assuming the theoretical model of Tawada and Sekimoto [Biophys. J. 59, 343-356 (1991)], we suggest that the magnitude of force developed, as well as the speed of unloaded movement, differs greatly, depending on the orientation of the myosin cross-bridges.  相似文献   

3.
By quantitative sodium dodecyl sulfate-polyacrylamide gel electrophoresis, paramyosin:myosin heavy chain molecular ratios were calculated for three molluscan muscles:Aequipecten striated adductor, Mercenaria opaque adductor, and Mytilus anterior byssus retractor; and four arthropodan muscles:Limulus telson, Homarus slow claw. Balanus scutal depressor, and Lethocerus air tube retractor. These ratios correlate positively with both thick filament dimensions and maximum active tension development in these tissues. The role of paramyosin in these muscles is discussed with respect to the following characteristics: force development, "catch," and extreme reversible changes in length.  相似文献   

4.
Summary Myofilaments were isolated by gently homogenizing smooth muscle cells isolated from the pedal retractor muscle (PRM) of Mytilus edulis, and observed by electron microscopy. The thick filaments isolated in the presence of ATP (10–20 mM) had projections of myosin heads except near their centre (central bare zone). After extraction of myosin, the paramyosin core of the thick filaments showed a Bear-Selby net or a striated pattern with a main periodicity of 14.5 nm. Both the Bear-Selby net and the striated patterns had a polarity that reversed at the centre of the filament where the patterns were obscured. The thin filaments were attached to dense bodies. Decoration of the thin filaments with heavy meromyosin showed that they have opposite polarity on opposing sides of the dense body. The results indicate that the thick filaments are bipolar and also that the dense bodies are functionally analogous to the Z-disk of the striated muscle.  相似文献   

5.
An X-Ray Diffraction Study of Contracting Molluscan Smooth Muscle   总被引:1,自引:0,他引:1       下载免费PDF全文
The living anterior byssus retractor muscle of Mytilus (ABRM), a smooth, “catch” muscle, has been studied by X-ray diffraction while relaxed and while tonically contracted. X-ray reflections were observed from the actin and paramyosin filaments and from the α-helical substructure of the paramyosin filaments. No differences in spacings or relative intensities were observed when the relaxed and contracting muscle patterns were compared. This result is consistent with a sliding filament mechanism involving an interaction between actin and paramyosin filaments.  相似文献   

6.
The anterior byssal retractor muscle (ABRM) of a bivalve mollusc Mytilus edulis is known to exhibit catch state, i.e. a prolonged tonic contraction maintained with very little energy expenditure. Two different hypotheses have been put forward concerning the catch state; one assumes actin-myosin linkages between the thick and thin filaments that dissociate extremely slowly (linkage hypothesis), while the other postulates a load-bearing structure other than actin-myosin linkages (parallel hypothesis). We explored the possible load-bearing structure responsible for the catch state by examining the arrangement of the thick and thin filaments within the ABRM fibers, using techniques of quick freezing and freeze substitution. No thick filament aggregation was observed in the cross-section of the fibers quickly frozen not only in the relaxed and actively contracting states but also in the catch state. The thick filaments were, however, occasionally interconnected with each other either directly or by distinct projections in all the three states studied. The proportion of the interconnected thick filaments relative to the total thick filaments in a given cross-sectional area was much larger in the catch state than in the relaxed and actively contracting states, providing evidence that the thick filament interconnection is responsible for the catch state.  相似文献   

7.
Ohtani M  Aimoto S  Muneoka Y 《Peptides》2000,21(8):1193-1201
Fifty-seven kinds of APGWamide-related peptides and a peptide library consisting of 38 peptide mixtures, each of which contained 19 kinds of APGWamide-related peptides, were synthesized with a multipeptide synthesizer, and their APGWamide-agonistic or -antagonistic effects were examined on the anterior byssus retractor muscle of the bivalve Mytilus edulis and the crop of the land snail Euhadra congenita. The peptide mixtures having agonistic or antagonistic effects were subjected to HPLC purification to isolate the active peptides using the muscles as bioassay systems. Many peptides having agonistic or antagonistic effects were obtained. Of the antagonists, APGWGNamide, isolated from the peptide mixture of APGWGXamide, was the most potent. At 10(-4) M, APGWGNamide almost completely blocked the actions of 10(-6) M APGWamide on the anterior byssus retractor muscle of M. edulis and the crop of E. congenita.  相似文献   

8.
Catch force maintenance in invertebrate smooth muscles is probably mediated by a force-bearing tether other than myosin cross-bridges between thick and thin filaments. The phosphorylation state of the mini-titin twitchin controls catch. The C-terminal phosphorylation site (D2) of twitchin with its flanking Ig domains forms a phosphorylation-sensitive complex with actin and myosin, suggesting that twitchin is the tether (Funabara, D., Osawa, R., Ueda, M., Kanoh, S., Hartshorne, D. J., and Watabe, S. (2009) J. Biol. Chem. 284, 18015-18020). Here we show that a region near the N terminus of twitchin also interacts with thick and thin filaments from Mytilus anterior byssus retractor muscles. Both a recombinant protein, including the D1 and DX phosphorylation sites with flanking 7th and 8th Ig domains, and a protein containing just the linker region bind to thin filaments with about a 1:1 mol ratio to actin and K(d) values of 1 and 15 μM, respectively. Both proteins show a decrease in binding when phosphorylated. The unphosphorylated proteins increase force in partially activated permeabilized muscles, suggesting that they are sufficient to tether thick and thin filaments. There are two sites of thin filament interaction in this region because both a 52-residue peptide surrounding the DX site and a 47-residue peptide surrounding the D1 site show phosphorylation-dependent binding to thin filaments. The peptides relax catch force, confirming the region's central role in the mechanism of catch. The multiple sites of thin filament interaction in the N terminus of twitchin in addition to those in the C terminus provide an especially secure and redundant mechanical link between thick and thin filaments in catch.  相似文献   

9.
Y Tajima  K Kamiya    T Seto 《Biophysical journal》1983,43(3):335-343
In the small-angle x-ray diffraction pattern of the living relaxed anterior byssus retractor muscle of Mytilus edulis, the thin filaments showed the following features. The 59.8-A reflection was much stronger and a little farther from the meridian than the 51.9-A reflection, although they are both contributions of the first-order Bessel function and are comparable with each other in the height from the equator. The 381-A reflection, given by the second-order Bessel function, was weaker than the 59.8-A reflection by more than the difference between the peak values of the first- and second-order Bessel functions, and was not so distant radially from the latter as estimated from the amount of peak shift brought about by the alteration of the Bessel order. A model of the thin filament was made on the basis of inverse Fourier transformation of the scattering amplitude, and the above features were explained by the characteristic shape of actin shown in this model. The actin subunits are elongated along the genetic left-hand helix with a pitch of 59.8 A, and are bonded together along the genetic helix in the inner part of the filament.  相似文献   

10.
1. The content of 14 different nucleotides, including cAMP, in isolated muscle fibres of the anterior byssus retractor muscle of Mytilus edulis was analysed. The nucleotide levels were determined after the muscle fibres performed phasic, tonic, or tetanic contractions and after serotonin-induced relaxation of tonic contraction. 2. Isolated resting muscle fibres revealed a lower energy charge than freshly-dissected ones. 3. During active force development adenosine energy charge decreased to stay at the same low level during catch, tetanus and serotonin-induced relaxation of catch respectively. 4. The energy charges of the guanosine, uridine and cytidine systems did not show changes parallel to the adenosine system. 5. The levels of cyclic AMP were only changed under the influence of serotonin.  相似文献   

11.
Native thick filaments isolated from freshly prepared rabbit psoas muscle were found to be resistant to pressure-induced dissociation. With increasing pressure application and release, a bimodal distribution of filament lengths was observed. The shorter filament length is associated with filament breakage at the center of the bare zone, while the longer length is associated with relatively intact filaments. Intact filaments and filament halves decrease in length by no more than 20% after exposure to and release of 14,000 psi. Bimodal distributions were not observed in equivalent experiments performed on filaments isolated from muscle glycerinated and stored at -20 degrees C for 6 months. Instead, filament dissociation proceeds linearly as a function of increasing pressure. Filaments prepared from muscle glycerinated and stored for 2 and 4 months exhibited pressure-induced behavior intermediate between the filaments prepared from fresh muscle and filaments prepared from muscle stored for 6 months. Since there appears to be no difference in the protein profiles of the various muscle samples, it is possible that stabilization of the native thick filament against hydrostatic pressure arises from trapped ions that are leached out over time.  相似文献   

12.
1. Five species of Mytilus inhibitory peptides, MIP1-5, were isolated from acetone extracts of the anterior byssus retractor muscle (ABRM) of Mytilus edulis. MIP1 and MIP2 were shown to be S2-MIP and A2-MIP, respectively, first isolated from the pedal ganglia of the animal. 2. All the five peptides had a common C-terminal structure of -Pro-Xaa-Phe-Val-NH2, which was shown to be important for their biological activity. 3. The five MIPs showed similar inhibitory effects on contractions of the ABRM but did not affect catch tension and its relaxation. 4. In addition to the MIPs, catch-relaxing peptide (CARP) was also found in the ABRM.  相似文献   

13.
Equatorial intensity distributions of x-ray diffraction patterns from relaxed and contracted states of the anterior byssus retractor muscle, ABRM, are compared with distributions of non-physiological reference states and with calculations based on various packing models of the actin filaments. Relaxed and contracted muscles provide distributions that agree with models, in which actin filaments are packed hexagonally in discrete areas containing 12 to 16 filaments. The crystalline fractions of actin filaments in the relaxed and contracted states are 0.91 and 0.57 respectively. Contracting muscles, however, show deviations from the calculated distributions at small angles of diffraction. This is interpreted as being due to the fact that actin filaments, outside crystalline areas, are decorated by crossbridges as about every 6th actin monomer.  相似文献   

14.
Summary The anterior byssus retractor muscle (ABRM) ofMytilus edulis was skinned by freeze drying. Tension transients in response to quick length steps were recorded during isometric contraction induced in ATP salt solution containing 2×10–6 M Ca2+. These transients consisted of four phases similar to those described by Huxley (1974) in skeletal muscle. Under certain conditions (stretch amplitude not larger than 0.6% LO), and in particular in the presence of cyclic AMP, we observed a delayed tension rise following a quick stretch (stretch activation) which appears to be similar to the stretch activation of insect flight muscle (Jewell and Rüegg 1966).  相似文献   

15.
Summary The presence and distribution pattern of paramyosin have been examined in different invertebrate muscle cell types by means of Western blot analysis and electron microscopy immunogold labelling. the muscles studied were: transversely striated muscle with continuous Z lines (flight muscle fromDrosophila melanogaster), transversely striated muscle with discontinuous Z lines (heart muscle from the snailHelix aspersa), obliquely striated body wall muscle from the earthwormEisenia foetida, and smooth muscles (retractor muscle from the snail and pseudoheart outer muscular layer from the earthworm). Paramyosin-like immunoreactivity was localized in thick filaments of all muscles studied. Immunogold particle density was similar along the whole thick filament length in insect flight muscle but it predominated in filament tips of fusiform thick filaments in both snail heart and earthworm body wall musculature when these filaments were observed in longitudinal sections. In obliquely sectioned thick filaments, immunolabelling was more abundant at the sites where filaments disappeared from the section. These results agree with the notion that paramyosin extended along the whole filament length, but that it can only be immunolabelled when it is not covered by myosin. In all muscles examined, immunolabelling density was lower in cross-sectioned myofilaments than in longitudinally sectioned myofilaments. This suggests that paramyosin does not form a continuous filament. The results of a semiquantitative analysis of paramyosin-like immunoreactivity indicated that it was more abundant in striated than in smooth muscles, and that, within striated muscles, transversely striated muscles contain more paramyosin than obliquely striated muscles.  相似文献   

16.
Structure of short thick filaments from Limulus muscle   总被引:3,自引:0,他引:3  
Shortened Limulus thick filaments, isolated from stimulated muscle, are structurally similar to long filaments, isolated from unstimulated muscle, except for length. Both have 3-fold screw symmetry with a helical repeat at approximately 43 nm, axial spacing of 14.5 nm between successive crowns of crossbridges and 4-fold rotational symmetry as estimated from the Bessel argument, by analysis of optical transforms of electron micrograph negatives of negatively stained samples. Both short and long filaments also have similar radii for the location of their crossbridges, thus similar diameters. Equal numbers of subunits/helical strand are also apparent on images of metal-shadowed long and short filaments. Since these data argue against molecular reorganization during filament shortening, it is suggested that the change in length of Limulus thick filaments may occur by reversible disaggregation of constituent protein molecules.  相似文献   

17.
1. The anterior byssus retractor muscle (ABRM) of Mytilus edulis is innervated by at least two kinds of nerves, excitatory and relaxing nerves. The principal neurotransmitters released from these nerves have been shown to be acetylcholine and serotonin, respectively. 2. Some other monoamines, such as dopamine and octopamine, and various peptides, such as FMRFamide-related peptides, Mytilus inhibitory peptides, SCP-related peptides and a catch-relaxing peptide, may also be involved in the regulation of the muscle as neurotransmitters or neuromodulators. 3. The ABRM seems to be typical of invertebrate muscles controlled by multiple neurotransmitters and neuromodulators.  相似文献   

18.
When relaxed striated muscle cells are stretched, a resting tension is produced which is thought to arise from stretching long, elastic filaments composed of titin (also called connectin). Here, I show that single skinned rabbit soleus muscle fibers produce resting tension that is several-fold lower than that found in rabbit psoas fibers. At sarcomere lengths where the slope of the resting tension-sarcomere length relation is low, electron microscopy of skinned fibers indicates that thick filaments move from the center to the side of the sarcomere during prolonged activation. As sarcomeres are stretched and the resting tension sarcomere length relation becomes steeper, this movement is decreased. The sarcomere length range over which thick filament movement decreases is higher in soleus than in psoas fibers, paralleling the different lengths at which the slope of the resting tension-sarcomere length relations increase. These results indicate that the large differences in resting tension between single psoas and soleus fibers are due to different tensions exerted by the elastic elements linking the end of each thick filament to the nearest Z-disc, i.e., the titin filaments. Quantitative gel electrophoresis of proteins from single muscle fibers excludes the possibility that resting tension is less in soleus than in psoas fibers simply because they have fewer titin filaments. A small difference in the electrophoretic mobility of titin between psoas and soleus fibers suggests the alternate possibility that mammalian muscle cells use at least two titin isoforms with differing elastic properties to produce variations in resting tension.  相似文献   

19.
Recent experiments on permeabilized anterior byssus retractor muscle (ABRM) of Mytilus edulis have shown that phosphorylation of twitchin releases catch force at pCa > 8 and decreases force at suprabasal but submaximum [Ca2+]. Twitchin phosphorylation decreases force with no detectable change in ATPase activity, and thus increases the energy cost of force maintenance at subsaturating [Ca2+]. Similarly, twitchin phosphorylation causes no change in unloaded shortening velocity (Vo) at any [Ca2+], but when compared at equal submaximum forces, there is a higher Vo when twitchin is phosphorylated. During calcium activation, the force-maintaining structure controlled by twitchin phosphorylation adjusts to a 30% Lo release to maintain force at the shorter length. The data suggest that during both catch and calcium-mediated submaximum contractions, twitchin phosphorylation removes a structure that maintains force with a very low ATPase, but which can slowly cycle during submaximum calcium activation. A quantitative cross-bridge model of catch is presented that is based on modifications of the Hai and Murphy (1988. Am. J. Physiol. 254:C99-C106) latch bridge model for regulation of mammalian smooth muscle.  相似文献   

20.
Changes in thick filament length in Limulus striated muscle   总被引:4,自引:4,他引:0       下载免费PDF全文
Here we describe the change in thick filament length in striated muscle of Limulus, the horseshoe crab. Long thick filaments (4.0 microns) are isolated from living, unstimulated Limulus striated muscle while those isolated from either electrically or K+-stimulated fibers are significantly shorter (3.1 microns) (P less than 0.001). Filaments isolated from muscle glycerinated at long sarcomere lengths are long (4.4 microns) while those isolated from muscle glycerinated at short sarcomere lengths are short (2.9 microns) and the difference is significant (P less than 0.001). Thin filaments are 2.4 microns in length. The shortening of thick filaments is related to the wide range of sarcomere lengths exhibited by Limulus telson striated muscle.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号