首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The effects of prostacyclin (PGI2) and indomethacin on isolated neonatal lamb mesenteric and renal artery responses to electrical stimulation and injected norepinephrine were investigated. PGI2 (1μM) decreased baseline tension and significantly reduced vasoconstrictor responses to electrical stimulation and norepinephrine. Indomethacin raised baseline tension and potentiated the constrictor responses. PGI2 reversed completely the potentiating effects of indomethacin. These results suggest that PGI2 may modulate the responses to adrenergic stimuli in the mesenteric and renal arteries of neonatal lambs.  相似文献   

2.
The effects of prostaglandins E2 (PGE2), I2 (PGI2) and F2α (PGF2α), arachidonic acid and indomethacin on pressor responses to norepinephrine were examined in conscious rats. Intravenously infused PGE2 (0.3, 1.25 μg/kg/min), PGI2 (50, 100 ng/kg/min), PGF2α (1.8, 5.4 μg/kg/min) and arachidonic acid (0.7, 1.4 mg/kg/min) did not change the basal blood pressure. Both PGE2 and PGI2 significantly attenuated pressor responses to norepinephrine, whereas PGF2α significantly potentiated them. Arachidonic acid, a precursor of the prostaglandins (PGs), significantly attenuated pressor responses to norepinephrine. Since the attenuating effect of arachidonic acid was completely abolished by the pretreatment with indomethacin (5 mg/kg), arachidonic acid is thought to exert an effect through its conversion to PGs. On the contrary, intravenously injected indomethacin (0.2–5.0 mg/kg) facilitated pressor responses to norepinephrine in a dose-related manner without any direct effect on the basal blood pressure. These results suggest that endogenous PGs may participate in the regulation of blood pressure by modulating pressor responses to norepinephrine in conscious rats.  相似文献   

3.
A chick isolated rectum pretreated with atropine and indomethacin and superfused with the oxygenated mixed venous blood of anaesthetized cats, was selectively contracted by PGE1 and PGE2 at concentrations of <1 ng/ml. Intravenous infusion of norepinephrine (0.2 – 8.0 μg/kg/min) into the cats resulted in a contraction of the blood-bathed chick rectum. This was matched by contractions produced by PGE2 (0.4 – 7 ng/ml) infused directly over the assay organ. The appearance of a chick rectum contracting substance in the venous blood was paralleled by a decline in the pressor response to norepinephrine. A single injection of indomethacin (3 – 10 mg/kg) prevented both the formation of the prostaglandin-like material and the acute tolerance to the pressor response to norepinephrine. Both effects could then be reproduced by an intra-arterial infusion of PGE2 at a rate 0.125 – 0.5 μg/kg/min. β-Adrenoceptor blockade had no influence on the response of chick rectum and arterial blood pressure to an infusion of norepine phrine, but α-adrenoceptor blockade abolished both responses. It is postulated that the acute tolerance to norepinephrine infusions is the result of a release of PGE-like material from the contracting vascular bed.  相似文献   

4.
Sympathetic nerve stimulation of the perfused mesenteric arterial bed of the rabbit, , increase the secretion of prostaglandin (PG)I2 and PGE2. Prazosin (4.8 × 10−6), and α1 adrenergic receptor antagonist, inhibited this inrease in release of PGI2 but not of PGE2 whereas rauwolsin (10−7 M), an α2 adrenergic receptor antagonist, inhibited the increase in release of PGE2 but not of PGI2. Prazosin (10−6 M) completely blocked the vasoconstrictor response to nerve stimulation, and to norepinephrine and phenylephrine administration, suggesting there to be little of an α2 adrenergic receptor component in this response. It is concluded that the increase in PGI2 release follows the activation of α1 adrenergic receptors and is therefore post-junctional in origin, whereas the increase in PGE2 release follows the activation of α2 adrenergic receptors and may be pre- and/or post-junctional in origin.Indomethacin (2.8 × 10−7, 5.6 × 10−7 and 1.12 × 10−6 M did not affect the vasoconstrictor responses to nerve stimulation at 10 Hz, whereas rauwolsin (10−7 M) in the presence of indomethacin substantially increased them. These results indicate that PGE2 does not regulate norepinephrine release following nerve stimulation at 10 Hz to rabbit mesenteric arteries, and that the inhibition of norepinephrine release following stimulation of α2 pre-junctional receptors is independent of PG involvement.  相似文献   

5.
Endothelial cells synthesize and release nitric oxide (NO) and prostacyclin (PGI2) which are involved in the regulation o f vascular tone and blood pressure. Our objective was to evaluate the effects of inhibiting NO synthesis on vascular prostaglandin (PG) and cyclic nucleotide production, as well as the pressor response to norepinephrine (NE). Isolated mesenteric arterial beds were perfused with Krebs-Henseleit solution containing 100 μM NG-monomethyl-L-arginine (L-NMMA), 100 μM L-arginine (LA), or vehicle. After a 30 min equilibration 0.1, 0.5, 1, or 5 μM NE was infused into the superior mesenteric artery and the perfusion pressure was monitored. The basal perfusion pressure did not differ significantly between groups. The pressure-response curve was shifted to the right in the L-NMMA group vs. the LA and control groups. Perfusion was similarly performed with a Krebs-Henseleit solution containing 100 μM L-NMMA, LA, D-arginine, or vehicle. Perfusates were collected before and after NE infusion for the measurement of PGE2, 6-keto-PGF, TxB2, cAMP, and cGMP. In the L-NMMA group the release of PGE2 and 6-keto-PGF1α was decreased, and the release of cGMP was prevented. Production of cAMP did not differ between the four groups before NE infusion, and NE increased cAMP release in the L-NMMA group and controls. The results indicate that inhibition of NO synthesis by L-NMMA enhanced the pressor response to NE, possibly mediated by the decreased cGMP and PGI2 production in resistance vessels.  相似文献   

6.
The hypothesis that prostaglandins have a modulatory role in adrenergic neurotransmitter release was tested in the anesthetized dog. Inhibition of prostaglandin synthesis with indomethacin (10 mg/kg, i.v.) did not alter positive chronotropic responses to cardioaccelerator nerve stimulation or blood pressure responses to exogenous norepinephrine. In the presence of indomethacin, infusions of PGE2 (0.01 and 0.1 μg kg−1 min−1) also failed to influence the responses to cardioaccelerator nerve stimulation although the blood pressure responses to exogenous norepinephrine were reduced in a dose-related manner. It was concluded that endogenous prostaglandins and exogenous PGE2, the purported physiological inhibitor of neurotransmitter release in cardiac tissue, do not play a role in modulating chronotropic responses during cardioaccelerator nerve stimulation in the anesthetized dog.  相似文献   

7.
To determine whether the renal vascular effect of arginine vasopressin (AVP) is modulated by renal prostaglandin E2 (PGE2) were determined during the infusion of AVP in dogs during control conditions and after the administration of the inhibitor of prostaglandin synthesis, indomethacin. During control conditions, intrarenal administration for 10 min of a dose of AVP calculated to increase arterial renal plasma AVP concentration by 75 pg/ml produced a slight renal vasodilation (p<0.01) and an increase in renal venous plasma concentration of PGE2. Renal venous PGE2 concentration during control and AVP infusion averaged 33 ± 7 and 52 ± 12 pg/ml (p<0.05), respectively. After administration of indomethacin, the same dose of AVP induced renal vasoconstriction (p<0.05) and failed to enhance renal venous PGE2 concentration (9 ± 1 to 8 ± 1 pg/ml). Intrarenal administration of 20 ng/kg. min of AVP for 10 min induced a marked renal vasoconstriction (p<0.01) and increased renal venous plasma PGE2. Renal venous PGE2 during control and AVP infusion averaged 31 ± 10 and 121 ± 31 pg/ml (p<0.01), respectively. Administration of the same dose of AVP following indomethacin produced a significantly greater and longer lasting renal vasoconstriction (p<0.01) and failed to increase renal venous plasma PGE2 (10 ± 1 to 9 ± 1 pg/ml). These results indicate that a concentration of AVP comparable to that observed in several pathophysiological conditions induces a slight renal vasodilation which is mediated by renal prostaglandins. The results also indicate that higher doses of AVP induce renal vasoconstriction and that prostaglandin synthesis induced by AVP attenautes the renal vasoconstriction produced by this peptide.  相似文献   

8.
Prostaglandins PGE2, PGE1, PGF, and PGA1 substantially increase automaticity in SA-nodal, right atrial preparations excised from guinea pigs. This natural pacemaker tissue is sensitive to nanomolar doses of PG with, for example, 10−8 M PGE2, increasing SA rate by about 20%. If these preparations are pretreated with 2 μM indomethacin, a blocker of endogenous prostaglandin synthesis, then spontaneous rate drops and subsequent rate increases due to PGE2 administration can be more easily demonstrated. Guinea pig pacemaker tissue differs from similar rabbit tissue not only in that it is directly responsive to PGE2, but also in that PGE2 does not depress the absolute response to transmural stimulation (adrenergically mediated rate increase). The positive chronotropic responses to PGE2 also occur when the guinea pig tissue is pretreated in 0.6 μM propranolol, which causes blockade of beta-adrenergic receptors.The pacemaker myocardium in the guinea pigs thus appears to be directly stimulated by exogenous PGE2 at very low doses. The observation that 2 μM indomethacin reduces SA-nodal rate suggests the presence of a very sensitive, functionally important, PGE-like system which modulates heart rate in this mammalian species.  相似文献   

9.
Experiments were performed in rats to study the effect of infusion of PGI2, PGE2, and PGF on tubuloglomerular feedback responses (i.e. the change of SNGFR in response to a change of loop of Henle flow rate) in the presence and absence of simultaneous inhibition of endogenous PG synthesis with indomethacin. Infusion of PGI2 or PGE2 at rates that did not alter arterial blood pressure did not significantly modify the magnitude of feedback responses (PGI2) 8.5 μg/hr, PGE2 85 μg/hr). Some inhibition of feedback responses was seen when PGI2 and PGE2 were administered at higher rates were associated with a reduction of blood pressure (PGI2 20 μg/hr, PGE2 200 μg/hr). PGI2 (8.5 μg/hr) and PGE2 (85 μg/hr) largely prevented feedback inhibition induced by indomethacin. When given subsequent to indomethacin PGI2 and PGE2 restored feedback responsiveness almost to normal. In contrast, PGF did not influence feedback inhibition caused by indomethacin. Infusion of PGI2 induced partial restoration of feedback responses in DOCA-salt treated animals in which the feedback system is virtually completely inactive. Our results indicate that availability of PGI2 or PGE2 is necessary for the normal operation of the tubuloglomerular feedback mechanism for control of nephron filtration rate.  相似文献   

10.
The possible role of PGs in hyoscine-resistant nerve mediated responses of the rat urinary bladder was investigated. Responses to electrical stimulation were inhibited by cinchocaine (30 μmol/l) but were only partially inhibited by a high concentration of hyoscine (25 μmol/l) or by the choline uptake inhibitors, hemicholinium-3 (500 μmol/l) and troxypyrrolidinium (500 μmol/l). Indomethacin (50 μmol/l) produced partial blockade (30%) of responses to electrical stimulation without markedly affecting responses to acetylcholine and the degree of blockade was of a similar order in the presence of hyoscine or troxypyrrolidinium. PGE2 (0.028 – 2.8 μmol/l) or F2α (0.029 – 2.9 μmol/l) produced a slowly developing increase in tone and spontaneous activity. Responses to electrical stimulation were at most only slightly increased in the presence of either PG. However, the PGs always increased the responses to electrical stimulation after indomethacin, indomethacin plus hyoscine or indomethacin plus troxypyrrolidinium. Responses to acetylcholine in the presence of indomethacin were not increased by PGE2. It is concluded that PGE2 and F do not function as transmitters responsible for resistance to anti-muscarinic drugs in the bladder but may exert a modulating effect on nervous transmission.  相似文献   

11.

Background

In addition to their proliferative and differentiating effects, several growth factors are capable of inducing a sustained airway smooth muscle (ASM) contraction. These contractile effects were previously found to be dependent on Rho-kinase and have also been associated with the production of eicosanoids. However, the precise mechanisms underlying growth factor-induced contraction are still unknown. In this study we investigated the role of contractile prostaglandins and Rho-kinase in growth factor-induced ASM contraction.

Methods

Growth factor-induced contractions of guinea pig open-ring tracheal preparations were studied by isometric tension measurements. The contribution of Rho-kinase, mitogen-activated protein kinase (MAPK) and cyclooxygenase (COX) to these reponses was established, using the inhibitors Y-27632 (1 μM), U-0126 (3 μM) and indomethacin (3 μM), respectively. The Rho-kinase dependency of contractions induced by exogenously applied prostaglandin F(PGF) and prostaglandin E2 (PGE2) was also studied. In addition, the effects of the selective FP-receptor antagonist AL-8810 (10 μM) and the selective EP1-antagonist AH-6809 (10 μM) on growth factor-induced contractions were investigated, both in intact and epithelium-denuded preparations. Growth factor-induced PGF-and PGE2-release in the absence and presence of Y-27632, U-0126 and indomethacin, was assessed by an ELISA-assay.

Results

Epidermal growth factor (EGF)-and platelet-derived growth factor (PDGF)-induced contractions of guinea pig tracheal smooth muscle preparations were dependent on Rho-kinase, MAPK and COX. Interestingly, growth factor-induced PGF-and PGE2-release from tracheal rings was significantly reduced by U-0126 and indomethacin, but not by Y-27632. Also, PGF-and PGE2-induced ASM contractions were largely dependent on Rho-kinase, in contrast to other contractile agonists like histamine. The FP-receptor antagonist AL-8810 (10 μM) significantly reduced (approximately 50 %) and the EP1-antagonist AH-6809 (10 μM) abrogated growth factor-induced contractions, similarly in intact and epithelium-denuded preparations.

Conclusion

The results indicate that growth factors induce ASM contraction through contractile prostaglandins – not derived from the epithelium – which in turn rely on Rho-kinase for their contractile effects.  相似文献   

12.
Prostaglandin E2 (PGE2) applied cumulatively (1 nM − 1 μM) induced concentration-dependent tonic contractions in the longitudinal muscle of isolated rat rectum. The PGE2 effects were not altered by guanethidine (50 μM), whereas atropine (3 μM), guanethidine plus atropine or tetrodotoxin (0.1 μM) reduced them to an almost equal extent and increased the EC50 values for PGE2. The after-contractions following electrical stimulation were enhanced by PGE2 (10 nM) and inhibited by atropine. Diphloretin phosphate (DPP, 100 μM) shifted the regression lines for PGE2 to the right in both untreated and tetrodotoxin-treated preparations, and thereby increased the EC50 values. Slopes of the concentration-effect lines for PGE2 before and after DPP differed in the presence of tetrodotoxin. The regression line for PGE2 with SC 19220 (100 μM) in tetrodotoxin-treated preparations was shifted to the right in a parallel fashion. It is concluded that PGE2 exerted both a neural (cholinergic) and a smooth muscle effect. There may be a competitive antagonism between SC 19220 and PGE2 but the block by DPP may be nonselective.  相似文献   

13.
The action of prostaglandins and indomethacin on gastric mucosal cyclic nucleotide concentrations was evaluated in 18 anesthetized mongrel dogs. Prostaglandins E1 (PGE1) and E2 (PGE2) (25 μg/kg bolus, then 2 μg/kg/min) were administered both intravenously (4 experiments; femoral vein) and directly into the gastric mucosal circulation (10 experiments; superior mesenteric artery). The possible synergistic effect of pre-treatment and continuous arterial infusion of indomethacin (5 mg/kg bolus for 5 min, then 5 mg/min), a prostaglandin synthetase inhibitor, with PGE2 was studied in 4 experiments. Antral and fundic mucosa were biopsied and measured by radioimmunoassay for cyclic nucleotides. Doses of PGE1 and PGE2 which inhibited histamine-stimulated canine gastric acid secretion did not significantly alter antral or fundic mucosal cyclic nucleotide concentrations. Concomitant infusion of PGE2 with indomethacin did not potentiate the mucosal nucleotide response compared to PGE2 alone. These studies fail to implicate cyclic nucleotides as mediators of the inhibitory acid response induced by PGE1 or PGE2 in intact dog stomach.  相似文献   

14.
The effect of levamisole on prostaglandin E2 (PGE2)-evoked contractions was studied on guinea-pig isolated ileum. Addition of levamisole (10 μg/ml) to the organ bath produced a pronounced increase in the amplitude of the PGE2-evoked responses. Levamisole (10 μg/ml) also sensitized the guinea-pig isolated ileum to 5-hydroxytryptamine and bradykinin, but not to histamine. The effect of the levamisole was not due to stimulation of autonomic ganglia or cholinergic activity since it was unaffected by hexamethonium or atropine, but it was prevented by indomethacin.  相似文献   

15.
Infusion of norephinephrine (NE) (1 – 3 μg/ml/min) into the isolated mesenteric vascular preparation of rabbit resulted in a rise in perfusion pressure, which was associated with the release of a prostaglandin E-like substance (PGE) at a concentration of 2.81 ± 0.65 ng/ml in terms of PGE2. Indomethacin (3 μg/ml) abolished the NE-induced release of PGE. Arachidonic acid (0.2 μg/ml) in the presence of indomethacin did not restore the NE-induced release of PGE. Hydrocortisone (10 – 30 μg/ml) and dexamethasone (2 – 5 μg/ml) also inhibited the NE-induced release of PGE. The inhibitory action of both corticosteroids was abolished by arachidonic acid (0.2 μg/ml). Antigen-induced release of a prostaglandin-like substance(PGs) (43.1 ± 3.8 ng/ml in terms of PGE2 and a rabbit aorta contracting substance (RCS) from perfused lungs of sensitized guinea pigs was completely abolished by indomethacin (5 μg/ml) or by hydrocortisone (100 μg/ml). Indomethacin, however, increased histamine release up to 280% of the control level, which was 470 ± 54 ng/ml, while hydrocortisone diminished histamine release down to 30% of the control level. A superimposed infusion of arachidonic acid (1 μg/ml) into the pulmonary artery reversed the hydrocortisone-induced blockade of the release of RCS and PGs. It may be concluded that corticosteroids neither inhibit prostaglandin synthetase nor influence prostaglandin transport through the membranes but they do impair the availability of the substrate for the enzyme.  相似文献   

16.
Infusion of norephinephrine (NE) (1 – 3 μg/ml/min) into the isolated mesenteric vascular preparation of rabbit resulted in a rise in perfusion pressure, which was associated with the release of a prostaglandin E-like substance (PGE) at a concentration of 2.81 ± 0.65 ng/ml in terms of PGE2. Indomethacin (3 μg/ml) abolished the NE-induced release of PGE. Arachidonic acid (0.2 μg/ml) in the presence of indomethacin did not restore the NE-induced release of PGE. Hydrocortisone (10 – 30 μg/ml) and dexamethasone (2 – 5 μg/ml) also inhibited the NE-induced release of PGE. The inhibitory action of both corticosteroids was abolished by arachidonic acid (0.2 μg/ml). Antigen-induced release of a prostaglandin-like substance (PGs) (43.1 ± 3.8 ng/ml in terms of PGE2 and a rabbit aorta contracting substance (RCS) from perfused lungs of sensitized guinea pigs was completely abolished by indomethacin (5 μg/ml) or by hydrocortisone (100 μg/ml). Indomethacin, however, increased histamine release up to 280% of the control level, which was 470 ± 54 ng/ml, while hydrocortisone diminished histamine release down to 30% of the control level. A superimposed infusion of arachidonic acid (1 μg/ml) into the pulmonary artery reversed the hydrocortisone-induced blockade of the release of RCS and PGs. It may be concluded that corticosteroids neither inhibit prostaglandin synthetase nor influence prostaglandin transport through the membranes but they do impair the availability of the substrate for the enzyme.  相似文献   

17.
Rat pancreas pieces spontaneously released PGE2 (2.3 ng/100 mg × 45 min) and PGF (7.6 ng/100 mg × 45 min). This release corresponds probably to a neo-synthesis since it was abolished by indomethacin. Carbamylcholine (≥ 10 μM), caerulein (≥ 10 nM) and secretin (≥ 10 nM) stimulated the release of PGE2 and PGF : the concentrations of stimulators required to increase PGs release were thus much higher than those which trigger enzyme secretion. Atropine specifically inhibited the cholinergic stimulation, whereas indomethacin blocked the stimulatory effects of all secretagogues. Stimulation of PGE2 and PGF release was reduced in a Ca++-free medium, abolished by EGTA and mimicked by the ionophore A23187, underscoring the crucial role of Ca++ in the regulation of PGs synthesis by the pancreas. Neither PGE2 nor PGF stimulated enzyme secretion in this system and indomethacin did not inhibit the secretory effect of carbamylcholine. Increased synthesis of prostaglandins in response to pancreatic secretagogues does not appear to be involved in the process of enzyme secretion.  相似文献   

18.
The effects of prostaglandin E1 (PGE1) and indomethacin on isolated fetal and neonatal lamb mesenteric artery responses to norepinephrine were investigated. PGE1 (1.5 micrometer) significantly reduced vasoconstriction responses to 0.5 to 5 micrometer norepinephrine. Indomethacin (1 micrometer) markedly potentiated the constrictor effects of 0.5 to 10 micrometer norepinephrine. PGE1 prevented the potentiating effect of indomethacin. Neither PGE1 nor indomethacin altered basal muscle tension. These results suggest that endogenous PGs modify adrenergic responses in the isolated mesenteric arteries of preterm and newborn lambs.  相似文献   

19.
The ability of prostaglandin E2 (PGE2) to initiate luteinization was demonstrated using a system of in vitro incubation of ovarian follicles followed by transplantation. Follicles from diestrous rats were incubated with 0.05 to 50 μg/ml PGE2, 10 μg/ml luteinizing hormone (LH), or alone in Krebs-Ringer bicarbonate buffer plus glucose for 2 hr. Then follicles were transplanted under the kidney capsules of hypophysectomized recipients, with follicles exposed to PGE2 on one side and those exposed to LH or buffer only on the other side. As determined at autopsy 4 days later and confirmed by histological examination, follicles exposed to PGE2 at concentrations of 0.5 μg/ml or greater, or to LH, transformed into corpora lutea, but control follicles regressed. Incubation of follicles with LH in the presence of indomethacin, an inhibitor of prostaglandin synthesis, significantly reduced the incidence of luteinization. Prostaglandin E2 (10 μg/ml) was able to override the inhibition of luteinization by indomethacin (150 μg/ml). The prostaglandin analogue 7-oxa-13-prostynoic acid (100 μg/ml) failed to prevent luteinization in response to either 5 μg/ml LH or 1 μg/ml PGE2. Results with PGE2 and with indomethacin suggest a role for prostaglandins in the luteinizing action of LH.We have reported previously that in vitro exposure of diestrous rat follicles to luteinizing hormone (LH) will result in transformation of the follicles to corpora lutea following transplantation under the kidney capsules of hypophysectomized rats. Dibutyryl cyclic AMP (DBC) mimics this effect of LH, and transplants produce progesterone in measurable amounts after both LH and DBC exposure when prolactin is administered in vivo to recipients.Kuehl et al. have suggested that prostaglandins may act as obligatory intermediates in the effect of LH on the ovary, acting between LH and adenylate cyclase. Preliminary results indicated that prostaglandin E2 (PGE2) could induce luteinization in our system. The extent of prostaglandin involvement in luteinization was further investigated in this work, using two reported antagonists of prostaglandin action, indomethacin and 7-oxa-13-prostynoic acid. Indomethacin has been found to inhibit synthesis of prostaglandins E2 and F; 7-oxa-13-prostynoic acid, which acts as a competitive antagonist of prostaglandins, prevented the effect of LH and prostaglandins E1 and E2 on cyclic AMP production in mouse ovaries.  相似文献   

20.
Ascorbic acid reduces airway reactivity to inhaled bronchoconstrictor agents in man and guinea pigs. The precise mechanism(s) responsible for this effect are unknown, but in both species an acute indomethacin treatment reverses the action of the ascorbic acid. To determine if ascorbic acid promotes prostanoid synthesis and/or inhibits degradation, human lung parenchymal slices (100–200mg) were incubated for 60 minutes in oxygenated Tyrode's solution alone or with sodium ascorbate (0.001M–1M) and/or methacholine (1μM–100μM) and/or indomethacin (0.17μM–17μM). Aliquots of the incubation medium were assayed by radioimmunoassay for PGE2, PGF, thromboxane B2 and 6-keto-PGF. Ascorbic acid increased the accumulation of all four prostanoids in the incubation medium, especially thromboxane B2 and 6-keto-PGF. This stimulatory effect of ascorbic acid was concentration-dependent and was inhibited by indomethacin. We conclude that ascorbic acid can alter prostanoid generation by human lung tissue and this effect may, in part, explain its antibronchoconstrictor activity in man.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号