首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
MicroRNAs (miRNAs) are a newly discovered, yet powerful mechanism for regulating protein expression via mRNA translational inhibition. Loss of all miRNA function within mice leads to embryonic lethality with a loss of the stem cell population in the epiblast and failure to form a primitive streak. These data suggest that miRNAs play a major role in embryonic development. As critical regulation of protein expression is also important for controlling the balance between self-renewal and differentiation in stem cells, the study of miRNAs within this model system is rapidly expanding. New data suggest that stem cells have discrete miRNA expression profiles, which may account for, or contribute to, the intrinsic stem cell properties of self-renewal and pluripotency. Specifically, miRNAs have been implicated in downregulation of cell cycle checkpoint proteins during germ stem cell division. Other data demonstrate that changes in miRNA expression can promote or inhibit stem or progenitor cell differentiation within different cell lineages, including hematopoietic cells, cardiomyocytes, myoblasts, and neural cells. In this review we detail the established functional roles of miRNAs in the embryonic and adult stem cell model systems. Finally, we explore new techniques that exploit endogenous miRNA processing and function for applications in basic and clinical research.  相似文献   

3.
microRNA与肿瘤   总被引:7,自引:0,他引:7  
周凡  庄诗美 《生命科学》2008,20(2):207-212
microRNA(miRNA)是近年来发现的一类长度为19—25个核苷酸的非编码小分子RNA。它主要通过与靶标基因3’UTR的完全或不完全配对,降解靶标基因mRNA或抑制其翻译,从而参与调控个体发育、细胞凋亡、增殖及分化等生命活动。实验证据表明,miRNA可通过调控其靶标基因参与的信号通路,影响肿瘤的发生和发展,发挥着类似于癌基因或抑癌基因的功能。miRNA的发现为肿瘤发病机制的研究提供了新的思路,为肿瘤诊断和治疗提供了新的策略。本综述主要介绍近年来miRNA与肿瘤发生发展相关性研究领域的进展。  相似文献   

4.
Metazoan growth and development is maintained by populations of undifferentiated cells, commonly known as stem cells. Stem cells possess several characteristic properties, including dividing through self-renewing divisions and generating progeny that differentiate to have specialized cell fates. Multiple signaling pathways have been identified which coordinate stem cell proliferation with maintenance and differentiation. Relatively recently, the small, non-protein coding microRNAs (miRNAs) have been identified to function as important regulators in stem cell development. Individual miRNAs are capable of directing the translational repression of many mRNAs targets, generating widespread changes in gene expression. In addition, dysfunction of miRNA expression is commonly associated with cancer development. Cancer stem cells, which are likely responsible for initiating and maintaining tumorigenesis, share many similarities with stem cells and some mechanisms of miRNA function may be in common between these two cell types.Key words: stem cell, miRNA, mammalian, neuroblast, pluripotency, cancer, ESC, self-renewal  相似文献   

5.
Metazoan growth and development is maintained by populations of undifferentiated cells, commonly known as stem cells. Stem cells possess several characteristic properties, including dividing through self-renewing divisions and generating progeny that differentiate to have specialized cell fates. Multiple signaling pathways have been identified which coordinate stem cell proliferation with maintenance and differentiation. Relatively recently, the small, non-protein coding microRNAs (miRNAs) have been identified to function as important regulators in stem cell development. Individual miRNAs are capable of directing the translational repression of many mRNAs targets, generating widespread changes in gene expression. In addition, dysfunction of miRNA expression is commonly associated with cancer development. Cancer stem cells, which are likely responsible for initiating and maintaining tumorigenesis, share many similarities with stem cells and some mechanisms of miRNA function may be in common between these two cell types.  相似文献   

6.
7.
8.
9.
microRNA在肌肉发育中的功能研究进展   总被引:1,自引:0,他引:1  
microRNA(miRNA)是一类非编码的小RNA分子,它通过对靶mRNA的翻译抑制和降解对基因表达起负调节作用。现在人们已经清楚地知道miRNA参与了增殖、分化、凋亡、发育等许多生物过程。一些miRNA在肌肉中特异表达,参与肌肉发育。该文重点介绍了参与肌肉发育的miRNA。已有证据表明肌肉miRNA在肌肉的增殖和分化过程中起了重要的调节作用,miRNA的调节异常和肌肉疾病有关。因此,miRNA是一类新的肌肉调控因子,它有可能成为畜禽肉产量提高和肌肉相关疾病治疗的新型靶标。  相似文献   

10.
11.
microRNAs (miRNAs) are identified as a class of non-protein regulators and a new source for broad control of gene expression in eukaryotes. The past years have witnessed substantial progress in understanding miRNA functions and mechanisms, although a few controversies remain. Various hypotheses and models have been suggested for the mechanisms of miRNA repression, including translational inhibition at the level of initiation or elongation, rapid degradation of the nascent peptide, mRNA degradation, and mRNA sequestration into P bodies (processing bodies) and SGs (stress granules) for degradation or/and storage. Recently, some noncanonical miRNA regulation, such as miRNA activation and de-repression of miRNA inhibition, have been uncovered. This review discusses some recent advances about how miRNAs regulate their targets and various modes of miRNA function.  相似文献   

12.
龙茹  李玉花  徐启江 《生命科学》2007,19(2):127-131
microRNAs(miRNAs)是生物体内源长度约为20—23个核苷酸的非编码小RNA,通过与靶mRNA的互补配对而在转录后水平上对基因的表达进行负调控,导致mRNA的降解或翻译抑制。到目前为止,已报道有几千种miRNA存在于动物、植物、真菌等多细胞真核生物中,进化上高度保守。在植物和动物中,miRNA虽然都是通过与其靶基因的相互作用来调节基因表达,进而调控生物体的生长发育,但miRNA执行这种调控作用的机理却不尽相同。同时miRNA在动植物体内的形成过程也存在很多的不同之处。本文综述了动植物miRNA的生物合成、作用机理、生物功能等方面的研究进展。  相似文献   

13.
14.
MiRNAs are a newly discovered class of small noncoding RNAs that regulate gene expression by translational repression and mRNA degradation. It has become evident that miRNAs are involved in many important biological processes, including tissue differentiation and development. The role of miRNAs in the eye is beginning to be explored following their recent detection by miRNA expression analyses. Many of the target genes for these ocular miRNAs remain undefined. This review summarizes the current information about ocular miRNA expression. Future research should focus on the function of ocular miRNAs in eye development.  相似文献   

15.
16.
17.
MicroRNAs (miRNAs) can control cancer and cancer stem cells (CSCs), and this topic has drawn immense attention recently. Stem cells are a tiny population of a bulk of tumor cells that have enormous potential in expansion and metastasis of the tumor. miRNA have a crucial role in the management of the function of stem cells. This role is to either promote or suppress the tumor. In this review, we investigated the function and different characteristics of CSCs and function of the miRNAs that are related to them. We also demonstrated the role and efficacy of these miRNAs in breast cancer and breast cancer stem cells (BCSC). Eventually, we revealed the metastasis, tumor formation, and their role in the apoptosis process. Also, the therapeutic potential of miRNA as an effective method for the treatment of BCSC was described. Extensive research is required to investigate the employment or suppression of these miRNAs for therapeutics approached in different cancers in the future.  相似文献   

18.
张进威  罗毅  王宇豪  何刘军  李明洲  王讯 《遗传》2015,37(12):1175-1184
脂肪组织不仅在维持机体能量代谢和稳态上发挥重要作用,同时也是重要的内分泌器官。脂肪细胞分化是由间充质干细胞(Mesenchymal stem cells, MSC)向成熟脂肪细胞分化的复杂生理过程,该过程由大量转录因子、激素、信号通路分子协同调控。miRNA作为内源性非编码RNA,主要通过抑制转录后翻译等机制来调控基因表达。近年来越来越多的证据表明miRNA通过调控脂肪细胞分化相关的转录因子和重要信号分子进而影响动物脂肪细胞的分化和脂肪形成。本文对miRNA影响动物白色、棕色和米色脂肪细胞分化的作用机制及其相关调控通路和关键因子进行了归纳总结,以期为肥胖等代谢性疾病的治疗提供一定的理论指导和新的治疗思路。  相似文献   

19.
20.
MicroRNAs (miRNAs) are 22 nt non-coding RNAs that regulate expression of downstream targets by messenger RNA (mRNA) destabilization and translational inhibition. A large number of eukaryotic mRNAs are targeted by miRNAs, with many individual mRNAs being targeted by multiple miRNAs. Further, a single miRNA can target hundreds of mRNAs, making these small RNAs powerful regulators of cell fate decisions. Such regulation by miRNAs has been observed in the maintenance of the embryonic stem cell (ESC) cell cycle and during ESC differentiation. MiRNAs can also promote the dedifferentiation of somatic cells to induced pluripotent stem cells. During this process they target multiple downstream genes, which represent important nodes of key cellular processes. Here, we review these findings and discuss how miRNAs may be used as tools to discover novel pathways that are involved in cell fate transitions using dedifferentiation of somatic cells to induced pluripotent stem cells as a case study.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号