首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
古代生物遗迹中DNA的PCR分析   总被引:3,自引:0,他引:3  
杨永杰 《生命科学》2000,12(1):18-20
古代生物遗迹中DNA所反映出的遗传信息正成为古生物学家研究生物进化的越来越重要的资料,而PCR则是揭示古DNA遗传信息的最简便和重要的方法。本文评述了古DNA进行PCR分析的有关方法、存在的问题及实验结果的一些甄别标准。  相似文献   

2.
Analysis of DNA from human archaeological remains is a powerful tool for reconstructing ancient events in human history. To help understand the origin of the inhabitants of Kublai Khan's Upper Capital in Inner Mongolia, we analyzed mitochondrial DNA (mtDNA) polymorphisms in 21 ancient individuals buried in the Zhenzishan cemetery of the Upper Capital. MtDNA coding and noncoding region polymorphisms identified in the ancient individuals were characteristic of the Asian mtDNA haplogroups A, B, N9a, C, D, Z, M7b, and M. Phylogenetic analysis of the ancient mtDNA sequences, and comparison with extant reference populations, revealed that the maternal lineages of the population buried in the Zhenzishan cemetery are of Asian origin and typical of present-day Han Chinese, despite the presence of typical European morphological features in several of the skeletons.  相似文献   

3.
Museum curators and living communities are sometimes reluctant to permit ancient DNA (aDNA) studies of human skeletal remains because the extraction of aDNA usually requires the destruction of at least some skeletal material. Whether these views stem from a desire to conserve precious materials or an objection to destroying ancestral remains, they limit the potential of aDNA research. To help address concerns about destructive analysis and to minimize damage to valuable specimens, we describe a nondestructive method for extracting DNA from ancient human remains. This method can be used with both teeth and bone, but it preserves the structural integrity of teeth much more effectively than that of bone. Using this method, we demonstrate that it is possible to extract both mitochondrial and nuclear DNA from human remains dating between 300 BC and 1600 AD. Importantly, the method does not expose the remains to hazardous chemicals, allowing them to be safely returned to curators, custodians, and/or owners of the samples. We successfully amplified mitochondrial DNA from 90% of the individuals tested, and we were able to analyze 1-9 nuclear loci in 70% of individuals. We also show that repeated nondestructive extractions from the same tooth can yield amplifiable mitochondrial and nuclear DNA. The high success rate of this method and its ability to yield DNA from samples spanning a wide geographic and temporal range without destroying the structural integrity of the sampled material may make possible the genetic study of skeletal collections that are not available for destructive analysis.  相似文献   

4.
The Yuansha site is located in the center of the Taklimakan Desert of Xinjiang, in the southern Silk Road region. MtDNA was extracted from fifteen human remains excavated from the Yuansha site, dating back 2,000―2,500 years. Analysis of the phylogenetic tree and the multidimensional scaling (MDS) reveals that the Yuansha population has relatively close relationships with the modern populations of South Central Asia and Indus Valley, as well as with the ancient population of Chawuhu.  相似文献   

5.
The excavation of five frozen graves at the Sytygane Syhe and Istekh-Myrane burial sites (dated at 400 years old) in central Yakutia revealed five human skeletons belonging to the Yakut population. To investigate the origin and evolution of the Yakut population as well as the kinship system between individuals buried in these two sites, DNA was extracted from bone samples and analyzed by autosomal short tandem repeats (STRs) and by sequencing hypervariable region I (HV1) of the mitochondrial DNA (mtDNA) control region. The results showed a diversity of sepulchral organizations linked probably to the social or genetic background of the subjects. Comparison of STR profiles, mitochondrial haplotypes, and haplogroups with data from Eurasian populations indicated affinities with Asian populations and suggested a relative specificity and continuity of part of the Yakut mitochondrial gene pool during the last five centuries. Moreover, our results did not support a Central Asian (with the exception of maternal lineage of West Eurasian origin) or Siberian origin of the maternal lineages of these ancient Yakut subjects, implying an ethnogenesis of the Yakut population probably more complex than previously proposed.  相似文献   

6.
We successfully extracted DNA from a bone sample of a Neolithic skeleton (dated 3,600 +/- 60 years BP) excavated in northeastern Yakutia (east Siberia). Ancient DNA was analyzed by autosomal STRs (short tandem repeats) and by sequencing of the hypervariable region I (HV1) of the mitochondrial DNA (mtDNA) control region. The STR profile, the mitochondrial haplotype, and the haplogroup determined were compared with those of modern Eurasian and Native American populations. The results showed the affinity of this ancient skeleton with both east Siberian/Asian and Native American populations.  相似文献   

7.
Recovery of ancient DNA has become an increasingly important tool in elucidating the origins of past populations and their relationships. Unfortunately, many human skeletal remains do not contain original DNA amplifiable by polymerase chain reaction (PCR). Amino-acid racemization has proven to be a useful predictor of ancient DNA results. We analyzed the relative levels of amino-acid preservation and racemization of human samples from two highland dry-cave sites in Sri Lanka, and found that amino-acid enantiomer ratios were inconsistent with successful authentic DNA recovery. A review of the literature reveals that these results are consistent with a global pattern of poor DNA preservation in the tropics.  相似文献   

8.
Molecular genetic analysis of ancient human remains is mostly based on mtDNA owing to its better preservation in human bones in comparison with nuclear DNA. A study was made of mtDNA extracted from human skeletons found in graves in Yakutia, in order to determine the haplotypes and to compare them with lineages of modern populations. Ancient DNA was extracted from fragments of three skeletons of Yakut graves at At-Dabaan, Ojuluun, and Jaraama sites (dating back to the 18th century) and two skeletons of the Late Neolithic Kerdugen grave (2000–1000 B.C.). All graves were found in central Yakutia (Churapchinskii, Khangalasskii, and Megino-Khangalasskii districts of Yakutia). Five different haplotypes belonging to specific Asian haplogroups were identified. The mtDNA lineages of Yakut graves belong to haplogroups C4a, D5a2, and B5b. The results indicate the continuity of mitochondrial lineages in the Yakut gene pool in the past 300 years. The haplotypes of two humans from the Kerdugen site graves belong to haplogroups A4 and G2a/D. These haplotypes were compared with those of 40000 Eurasian individuals, including 900 from Yakutia. No exact matches were found in Paleo-Asian populations of Chukchi, Eskimos, Koryaks, and Itelmen. Phylogenetically close haplotypes (±1 mutation) were found in Yakut and Evenk populations, as well as in some populations of China and South and West Siberia.  相似文献   

9.
Nineteen cattle bones from the Viking 10th and early 11th century levels in Dublin were assessed for presence of reliable genotypes from three autosomal markers. Due to the good preservational condition of the samples, it was possible to amplify and type at least two out of three of the microsatellite markers (CSRM60, HEL1 and ILSTS001) in 11 specimens. Full three-loci genotypes were obtained from a subset of seven of these samples. A comparative analysis was performed using data from the same three markers in 11 extant British, Irish and Nordic cattle breeds. Although the medieval remains displayed lower levels of diversity than the modern European breeds, the results fit within the ranges obtained from the extant populations. The results indicate a probable origin for the ancient Irish cattle as the remains group significantly more closely with breeds from the British Isles than with those from Scandinavia. The data collected indicate that microsatellites may be useful for the further study of ancient cattle.  相似文献   

10.
11.
Ancient DNA (aDNA) sequences, especially those of human origin, are notoriously difficult to analyze due to molecular damage and exogenous DNA contamination. Relatively few systematic studies have focused on this problem. Here we investigate the extent and origin of human DNA contamination in the most frequently used sources for aDNA studies, that is, bones and teeth from museum collections. To distinguish contaminant DNA from authentic DNA we extracted DNA from dog (Canis familiaris) specimens. We monitored the presence of a 148-bp human-specific and a 152-bp dog-specific mitochondrial DNA (mtDNA) fragment in DNA extracts as well as in negative controls. The total number of human and dog template molecules were quantified using real-time polymerase chain reaction (PCR), and the sequences were characterized by amplicon cloning and sequencing. Although standard precautions to avoid contamination were taken, we found that all samples from the 29 dog specimens contained human DNA, often at levels exceeding the amount of authentic ancient dog DNA. The level of contaminating human DNA was also significantly higher in the dog extracts than in the negative controls, and an experimental setup indicated that this was not caused by the carrier effect. This suggests that the contaminating human DNA mainly originated from the dog bones rather than from laboratory procedures. When cloned, fragments within a contaminated PCR product generally displayed several different sequences, although one haplotype was often found in majority. This leads us to believe that recognized criteria for authenticating aDNA cannot separate contamination from ancient human DNA the way they are presently used.  相似文献   

12.
The ability to retrieve DNA from ancient specimens has been one of the greatest achievements of the past decade, and has opened a totally new field of research with applications in seemingly distant domains such as archeobotany, the molecular phylogeny of extinct genomes, human paleopathology and the genetic of ancient human populations. However, extraction of ancient DNA has often a very low rate of success, prompting researchers to develop screening methods for the selection of promising specimens. With this goal in mind, we studied the amino acid content of nine human bones of ancient origin. We demonstrate that a single HPLC chromatogram is indicative of the integrity of ancient bone proteins. Among five specimens containing amplifiable DNA, four exhibited a protein content similar to that of contemporary bone protein content. Three of the four specimens, from which we were unable to extract any amplifiable DNA, had an amino acid content strikingly different from that of contem-porary bone. A non-parametric statistical test, Kendall's tau, was used to show that protein content and PCR products, are probably correlated (at a 95% confidence level). In addition, the D/L Asp and D/L Glu racemization ratios obtained are indicative of the presence of ancient organic compounds. We propose that protein analysis should be systematically performed in studies where there are many samples in order to select the specimens that are most likely to contain retrievable ancient DNA.  相似文献   

13.
14.
Twenty-eight specimens obtained either from organ bundles in the body cavities of intact mummies, from damaged mummies, or from isolated canopic jars were examined for tissue identification and histopathologic study. The methods of rehydration and fixation were optimized by application to 40 dehydrated modern samples before studies of mummified tissue were undertaken. The tissue of origin could be definitely identified in 24 of the 28 specimens. Even small fragments obtained from isolated canopic jars proved suitable for histologic study. Six lung specimens were selected for more detailed study. All six showed focal deposition of anthracotic pigment. Electron diffraction and electron microprobe analysis of one of the small, polarizable crystals associated with the anthracosis indicated a mineral content of silica, aluminum, and iron. Two specimens showed focal areas of calcification consistent with old mycobacterial disease. Other histopathologic findings included evidence of pulmonary edema, emphysema, and pneumonia.  相似文献   

15.
We have used a systematic protocol for extracting, quantitating, sexing and validating ancient human mitochondrial and nuclear DNA of one male and one female Beothuk, a Native American population from Newfoundland, which became extinct approximately 180 years ago. They carried mtDNA haplotypes, which fall within haplogroups X and C, consistent with Northeastern Native populations today. In addition we have sexed the male using a novel-sexing assay and confirmed the authenticity of his Y chromosome with the presence of the Native American specific Y-QM3 single nucleotide polymorphism (SNP). This is the first ancient nuclear SNP typed from a Native population in the Americas. In addition, using the same teeth we conducted a stable isotopes analysis of collagen and dentine to show that both individuals relied on marine sources (fresh and salt water fish, seals) with no hierarchy seen between them, and that their water sources were pooled or stored water. Both mtDNA sequence data and Y SNP data hint at possible gene flow or a common ancestral population for both the Beothuk and the current day Mikmaq, but more importantly the data do not lend credence to the proposed idea that the Beothuk (specifically, Nonosabasut) were of admixed (European-Native American) descent. We also analyzed patterns of DNA damage in the clones of authentic mtDNA sequences; there is no tendency for DNA damage to occur preferentially at previously defined mutational hotspots, suggesting that such mutational hotspots are not hypervariable because they are more prone to damage.  相似文献   

16.
17.
The study of recent human evolution, or the origin of modern humans, is currently dominated by two theories. The recent African origin hypothesis holds that there was a single origin of modern humans in Africa about 100,000 years ago, after which these humans dispersed throughout the rest of the world, mixing little or not at all with nonmodern populations. The multiregional evolution hypothesis holds that there was no single origin of modern humans but, instead, that the mutations and other traits that led to modern humans were spread in concert throughout the old world by gene flow, leading to genetic continuity among old world populations during the past million years. Although both of these theories are based on observations stemming from the fossil record, much discussion and controversy during the past six years has focused on the application and interpretation of studies of DNA variation, particularly mitochondrial DNA (mtDNA). The past year, especially, has brought new data, interpretations, and controversies. Indeed, I initially resisted writing this review, on the grounds that new information would be likely to render it obsolete by the time it was published. However, now that the dust is starting to settle, it seems timely to review various investigations and interpretations and where they are likely to lead. While the focus of this review is the mtDNA story, brief mention is made of studies of nuclear DNA variation (both autosomal and Y-chromosome DNA) and the implications of the genetic data with regard to the fossil record and our understanding of recent human evolution.  相似文献   

18.
Mummified remains have long attracted interest as a potential source of ancient DNA. However, mummification is a rare process that requires an anhydrous environment to rapidly dehydrate and preserve tissue before complete decomposition occurs. We present the whole-genome sequences (3.94 X) of an approximately 1600-year-old naturally mummified sheep recovered from Chehrābād, a salt mine in northwestern Iran. Comparative analyses of published ancient sequences revealed the remarkable DNA integrity of this mummy. Hallmarks of postmortem damage, fragmentation and hydrolytic deamination are substantially reduced, likely owing to the high salinity of this taphonomic environment. Metagenomic analyses reflect the profound influence of high-salt content on decomposition; its microbial profile is predominated by halophilic archaea and bacteria, possibly contributing to the remarkable preservation of the sample. Applying population genomic analyses, we find clustering of this sheep with Southwest Asian modern breeds, suggesting ancestry continuity. Genotyping of a locus influencing the woolly phenotype showed the presence of an ancestral ‘hairy’ allele, consistent with hair fibre imaging. This, along with derived alleles associated with the fat-tail phenotype, provides genetic evidence that Sasanian-period Iranians maintained specialized sheep flocks for different uses, with the ‘hairy’, ‘fat-tailed’-genotyped sheep likely kept by the rural community of Chehrābād''s miners.  相似文献   

19.
More than an order of magnitude difference in substitution rate exists among sites within hypervariable region 1 of the control region of human mitochondrial DNA. A two-rate Poisson mixture and a negative binomial distribution are used to describe the distribution of the inferred number of changes per nucleotide site in this region. When three data sets are pooled, however, the two-rate model cannot explain the data. The negative binomial distribution always fits, suggesting that substitution rates are approximately gamma distributed among sites. Simulations presented here provide support for the use of a biased, yet commonly employed, method of examining rate variation. The use of parsimony in the method to infer the number of changes at each site introduces systematic errors into the analysis. These errors preclude an unbiased quantification of variation in substitution rate but make the method conservative overall. The method can be used to distinguish sites with highly elevated rates, and 29 such sites are identified in hypervariable region 1. Variation does not appear to be clustered within this region. Simulations show that biases in rates of substitution among nucleotides and non-uniform base composition can mimic the effects of variation in rate among sites. However, these factors contribute little to the levels of rate variation observed in hypervariable region 1.  相似文献   

20.
We analysed the historical genetic diversity of human populations in Europe at the mtDNA control region for 48 ancient Britons who lived between ca AD 300 and 1000, and compared these with 6320 modern mtDNA genotypes from England and across Europe and the Middle East. We found that the historical sample shows greater genetic diversity than for modern England and other modern populations, indicating the loss of diversity over the last millennium. The pattern of haplotypic diversity was clearly European in the ancient sample, representing each of the modern haplogroups. There was also increased representation of one of the ancient haplotypes in modern populations. We consider these results in the context of possible selection or stochastic processes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号