首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Two monoclonal antibodies of types IgG2b and IgG2a, anti-spermine-(Spm)-1 (ASPM-1) and anti-Spm-2 (ASPM-2) respectively were found among five clones of murine monoclonal antibodies, which were raised against Spm conjugated with bovine serum albumin via the cross-linker N-(-maleimidobutyryloxy) succinimide (GMBS). Antibody specificity was evaluated by a recently developed ELISA binding test, and led to the study of tissue sections by immunocytochemistry (ICC). ASPM-1 showed exclusive immunoreactivity with Spm, with the exception of a negligible cross-reactivity (2.0%) with spermidine (Spd). ASPM-2, on the other hand, reacted almost equally with acetylspermine (Ac-Spm) and N 1-acetylspermidine (N1-Ac-Spd) but with none of the other polyamine-related compounds tested. Complete agreement was obtained with the results of immunoblot analysis. Furthermore, results for antibody specificity obtained with the ELISA inhibition test and ICC model experiments using Sepharose gel beads strongly suggested that ASPM-1 recognizes the Spm molecule possessing at least a free terminal primary amino group, while ASPM-2 recognizes the Spm molecule acylated at both the terminal primary amino groups. An ICC method using ASPM-2 produced strong staining for polyamines (PAs) in the cytoplasm (but very few in the nuclei) of two different tumor cell lines and protein- or peptide-secreting cell systems, including exocrine and endocrine cell types; ASPM-1 showed immunoreactivity only with the tumor cell lines. These results strongly suggest that ASPM-2 may be useful for studies on actively proliferating and neoplastic cells, supporting our previously proposed idea that in immunocytochemistry PAs were converted to a variety of PA derivatives during the fixation process.  相似文献   

2.
Polyamine (PA) immunocytochemistry (ICC) was evaluated by a recently developed enzyme-linked immunosorbent assay (ELISA) binding test (ELISABT) using an anti-spermine (Spm) serum raised against Spm conjugated via the cross-linker N-(-maleimidobutyryloxy)succinimide (GMBS) with bovine serum albumin. In the test the antiserum showed strong immunoreactivity with N 1-acetylspermine (Ac-Spm) and acetylspermidine (N 1-Ac-Spd and N 8-Ac-Spd), and low immunoreactivity with Spm and Spd, which was, however, markedly enhanced after reaction with GMBS, acetic anhydride or glutaraldehyde. Complete agreement with results of immunoblot analysis was observed. PA-like immunoreactivity observed in the present PA ICC in cells in the foveolae and isthmus of rat gastric glands was completely abolished by absorption of the serum with N 1,N 12-diacetyl-Spm, Ac-Spm or N 1-Ac-Spd, but not by Spm or Spd. This absorption test was then simulated by an ELISA inhibition test (ELISAIT) with a solid phase conjugated with Ac-Spm or Spm, and by a PA ICC model system using Sepharose gel beads conjugated with each of several PAs. The results strongly suggest that the immunostaining in the gastric mucosa was mainly due to antibody species in the serum specific to acylated Spm and Spd, but not to Spm or Spd. Acetyl PAs exist at such low concentrations in animal tissues that they are virtually undetectable by current ICC methods. Therefore Spm and Spd are likely candidates for those detected, after having been converted by fixation into such PA derivatives as become reactive with the antiserum.  相似文献   

3.
We developed a mouse monoclonal antibody (ASPD-19, IgG3 sub-isotype mAb) against spermidine (Spd) conjugated to bovine serum albumin (BSA) using a mixture of glutaraldehyde (GA) and paraformaldehyde (PFA)-sodium borohydride for applications in immunoelectron microscopic studies. The antibody specificity was evaluated by an ELISA binding test simulating the immunocytochemistry (ICC) of tissue sections. The ASPD-19 mAb is highly specific for Spd and Spm, almost the same degree to each, and can distinguish alterations in the chemical structure of other polyamine (PA) analogs, showing less than 3.2% cross-reaction with N(1)-acetylspermidine, acetylspermine, or N(8)-acetylspermidine. By an indirect immunoperoxidase method using the ASPD-19 mAb, PA-like immunoreactivities were observed in different tissues fixed with Karnovsky fixative (a mixture of GA and PFA) in combination with borohydride reduction. In contrast, immunoreactivity was very low in tissues when the borohydride reduction step was omitted. The PA-like immunoreaction was completely abolished by the adsorption of the ASPD-19 mAb with 100 microg/ml of Spd or Spm, but was inhibited little or none by other PA-related compounds or amino acids. A light microscopic ICC method using ASPD-19 produced immunostaining of PAs in certain cells in rat tissues with high biosynthetic activities (small intestine, pancreas and spinal cord). A pre-embedding immunoelectron microscopic study using rat spinal cord showed PA immunoreactivity located predominantly on free (polysomes) and attached ribosomes of the rough endoplasmic reticulum (Nissl bodies) in the cytoplasm of motor neurons. These results are in complete agreement with the results obtained by our recent ICC method using another mAb (ASPM-29) produced against GA-conjugated Spm.  相似文献   

4.
Antiserum was produced in rabbits against the polyamine spermidine (Spd) conjugated to bovine serum albumin (BSA). The reactivity of the serum to Spd and a variety of structurally related compounds was quantified by a new immunocytochemical model system incorporating an enzyme-linked immunosorbent assay (ELISA) binding test. This is based on the principle of coupling these compounds to the wells of microtiter plate activated with poly-l-lysine and glutaraldehyde and incubating the wells by the indirect immunoperoxidase method. The antiserum showed a 25% cross reaction with spermine (Spm), putrescine (Put), and cadaverine (Cad), and a 1% cross reaction with 1,3-diaminopropane (Dap), but no cross reaction with monoacetyl polyamines and amino acids. The antibody binding was inhibited most effectively by absorption of the antiserum with N 1-acetylspermidine and Spd in the ELISA inhibition test. Also, immunoblot analysis of the antiserum with nitrocellulose paper gave completely identical results to the ELISA binding tests. Spd-like immunoreactivities in human melanoma BD and neuroblastoma IMR 32 cell lines are presented as examples of the staining pattern obtained with the antiserum. Absorption of the serum with N 1-acetylspermidine and Spd was demonstrated to abolish the immunostaining reaction. The immunohistochemical model is simple: amines and amino acids are bound in the same way as in aldehyde-fixed tissues and, in comparison to immunoblot analysis, the immunoreactivity can be more easily and accurately quantified by assay with the antibody. The model should prove useful in assessing the specificity of other antisera.  相似文献   

5.
We developed a mouse monoclonal antibody (mAb; APUT-32, IgG1 subisotype mAb) against putrescine (Put) conjugated to bovine serum albumin using a glutaraldehyde (GA)-sodium borohydride procedure, for applications in immunocytochemistry (ICC). The antibody specificity was evaluated by an ELISA binding test, simulating the ICC of tissue sections. APUT-32 mAb was highly specific to Put, and distinguished alterations in the chemical structure of other polyamine (PA) analogs, showing 3.8% crossreaction with cadaverine, 3.3% with spermidine (Spd), and 2.3% with 1,3-diaminopropane. Comparable results in immunoreactivity of APUT-32 mAb were obtained with the ELISA inhibition test. By the indirect immunoperoxidase method using the APUT-32 mAb, Put-like immunoreactivities were observed in the cytoplasm of HeLa and MCF-7 cell lines fixed with GA in combination with NaBH4 reduction, but almost no immunoreaction was seen in the cytoplasm of the human melanoma BD cell line. On the other hand, the same method but using a previously prepared ASPM-29 mAb, specific for spermine (Spm) and Spd, produced intense immunostaining in the cytoplasm of all the three cell types. The Put-like immunoreaction was completely abolished by absorption of the APUT-32 mAb with 10 microg/ml Put-human serum albumin conjugate prepared using GA and NaBH4. HPLC analysis was also performed for the levels of each of the PAs in the three types of cell, showing that the levels of Put detected were much lower than those of Spm and Spd, and were strikingly different in the three cell lines among which the human melanoma BD cell line contained the lowest levels of Put. These results strongly suggest that APUT-32 mAb reacts specifically with Put in the tumor cells and therefore has the potential as a new tool for elucidating the biological roles of Put in cells and tissues.  相似文献   

6.
Putrescine (Put), spermidine (Spd), and spermine (Spm) are the major polyamines (PAs) in plant, which are not only involved in the regulation of plant developmental and physiological processes, but also play key roles in modulating the defense response of plants to diverse environmental stresses. In this study, Cucumis sativus L. seedlings were cultivated in nutrient solution and sprayed with three kinds of PAs (Put, Spd, and Spm). The effects of PAs were investigated on excess nitrate stress tolerance of C. sativus by measuring growth and nitrogen (N) metabolism parameters. The contents of NO3-?N, NH4-+N, proline and soluble protein in leaves were increased; while plant height, leaf area, shoot fresh and dry weight, root fresh weight were decreased under 140 mM NO3? treatment for 7 d. In addition, the activities of nitrate reductase (NR), glutamate synthase (GOGAT), and glutamate dehydrogenase (GDH) were significantly inhibited under 140 mM NO3? treatment for 7 d. With foliar treatment by 1 mM Spd or Spm under stress treatment, the contents of Spm, Put, and Spd in leaves increased significantly, except that Spm content decreased under Spd treatment. The activities of NR, glutamine synthetase (GS), GOGAT and GDH and plant height, leaf area, shoot fresh and dry weights were significantly increased. The contents of proline and soluble protein in leaves were significantly enhanced. In contrast, the accumulation of NO3-?N and NH4-+N were significantly decreased. However, there were minor differences in activities of N metabolism enzymes and the content of osmotic adjustment substances under 1 mM Put treatment. These findings suggest that 1 mM exogenous Spm or Spd could enhance the capacity of N metabolism, promote growth and increase resistance to high concentrations of NO3?. The ameliorating effect of Spd was the best, and that of Put the worst.  相似文献   

7.
To investigate the effect of exogenous Spermidine (Spd) and Spermine (Spm) on drought-induced damage to seedlings of Cerasus humili, relative water content (RWC), malondialdehyde content, relative electrolyte leakage, superoxide (O2 ?, SOD) generation rate, hydrogen peroxide (H2O2), endogenous polyamines (PAs), antioxidant enzymes [SOD and peroxidase (POD)] activities, PA-biosynthetic enzymes [arginine decarboxylase (ADC), ornithine decarboxylase (ODC), S-adenosylmethionine decarboxylase (SAMDC)] activities, as well as photosynthetic parameters, were measured in greenhouse cultured seedlings of C. humili. The results showed that either exogenous Spd or Spm (0.2 mM) significantly enhanced the level of RWC and prevented drought-induced lipid peroxidation. They also significantly enhanced photosynthetic capability and decreased O2 ? generation rate and H2O2 content. In addition, Spd and Spm helped to maintain SOD and POD activities in C. humili seedlings subjected to water stress, suggesting that they exerted a positive effect on antioxidant systems. The contents of endogenous free putrescine, Spd and Spm were increased to different extents in water-stressed C. humili seedlings. By the end of drought treatment (21 days) with exogenous Spd or Spm, the contents of free Spd increased by 30 and 38 %, respectively, and endogenous Spm increased by 41 and 26 %, respectively, compared with water-stressed plants. Furthermore, exogenous Spd or Spm enhanced the activities of ADC, ODC, and SAMDC. The pretreatment with Spd or Spm prevents oxidative damage induced by drought, and the protective effect of Spd was found to be greater than that of Spm.  相似文献   

8.
The relationship between polyamines (PAs) metabolism and adventitious shoot morphogenesis from cotyledons of cucumber was investigated in vitro. The endogenous levels of free putrescine (Put) and spermidine (Spd) in the explants decreased sharply, whereas endogenous spermine (Spm) increased during adventitious shoot morphogenesis. The presence of 1–15 mM Put, 1–2 mM Spd, 0.05–1 mM Spm, 5–10 M aminoethoxyvinylglycine (AVG) or 5 M AVG together with 50 M 1-aminocyclopropane-1-carboxylic acid (ACC) in the regeneration medium could promote adventitious shoot formation. Conversely, 1–5 mM D-arginine (D-Arg) or 0.01–0.1 mM methylglyoxal bis-guganylhydrazone (MGBG) inhibited regeneration; and 0.005–0.05 mM ACC displayed little or no evident effects. The explants growing on medium containing 5 M AVG produced higher levels of free Put and Spm, and on medium containing 5 mM Put the explants responded similarly to the AVG-treated explants. However, the exogenous use of 1 mM D-Arg reduced the levels of Put, Spd and Spm, and 0.1 mM MGBG reduced the levels of free Spd and Spm. Moreover, although the explants cultured on medium containing Put and MGBG enhanced ethylene production, AVG and D-Arg inhibited ethylene biosynthesis. This study shows the PAs requirement for the formation of adventitious shoot from cotyledons of cucumber in vitro and the enhanced adventitious shoot morphogenesis may be associated with the elevated level of endogenous free Spm, albeit the promotive effect of PAs on adventitious shoot morphogenesis may not be related to ethylene metabolism.  相似文献   

9.
Common polyamines, putrescine (Put), spermidine (Spd), and spermine (Spm), are cationic compounds known as beneficial factors for many cellular processes including cell division, proliferation, differentiation, and stress response in all living organisms. Effects of exogenous Spm on the protective responses of Synechocystis sp. PCC 6803 exposed to UVA were investigated. The presence of 0.5 mM Spm in the culture medium significantly reduced cell growth after 60 min under white light condition but protected the cells after growing for 60 min under UVA. The stress-tolerant response of Synechocystis cells represented by the ratio of putrescine/spermidine (Put/Spd) showed about a 6-fold increase after 60 min UVA in the presence of Spm. In addition, those levels of chlorophyll a, carotenoids, and photosynthetic oxygen evolution were increased by Spm supplementation in UVA-treated cells. Exogenous Spm induced the activity of catalase but not superoxide dismutase in cells under UVA treatment. On the other hand, Spm treatment enabled cells to apparently decrease the intracellular free radical H2O2 and malonaldehyde (MDA) levels. Overall results suggested that Spm supplementation could protect Synechocystis sp. PCC 6803 cells via the increase of Put/Spd ratio and the reduction of both H2O2 and MDA levels in conjunction with the induction of catalase activity. Interestingly, UVA-treated cells as compared to non-treated cells with exogenous Spm showed a decrease of Spm with an increase of Put and no change in Spd. This suggested the back conversion of Spm to Spd and finally to Put as cellular mechanism in response to UVA.  相似文献   

10.
Incorporation of L-[U-14C] arginine or L-[U-14C] ornithine into putrescine (Put), spermidine (Spd) and spermine (Spm) in embryonectomized barley seeds (Hordeum vulgare L. cv. Himalaya) was studied following imbition with methylglyoxal-bis (guanylhydrazone) (MGBG) and abscisic acid (ABA). Both radiolabeled amino acids were incorporated into the amines as a result of active polyamine biosynthesis in the seed during imbibition. In the aleurone layer, the Spd and Spn existed mainly in the free form (acid soluble). However about 50% of Put was recovered in conjugated form(s) (acid insoluble). Imbibition with 5 and 10M ABA for 3 days increased the accumulation of the free form of 14C-Put, probably as a result of inhibition (70%) of 14C-Spd accumulation. The ABA treatment showed no significant effect on levels of the conjugated form of Put and Spd. Imbibition with millimolar concentrations of MGBG resulted in (i) abnormal accumulation of the free form of Put and incorporation of 14C-amino acids into the diamine, (ii) progressive inhibition of the accumulation of the free forms of 14C-Spd and Spm, and (iii) reduction of the 14C incorporation into the conjugated forms of Put and Spd. Uptake of 14C-amino acids was not affected by MGBG treatment. The results indicate that MGBG may inhibit not only the synthesis of Spd and Spm, but the catabolism (e.g. oxidation) of Put in the aleurone layer.This paper is published with the approval of the director of the Kentucky Agricultural Experiment Station.  相似文献   

11.
The effect of up-regulation of putrescine (Put) production by genetic manipulation on the turnover of spermidine (Spd) and spermine (Spm) was investigated in transgenic cells of poplar (Populus nigra × maximowiczii) and seedlings of Arabidopsis thaliana. Several-fold increase in Put production was achieved by expressing a mouse ornithine decarboxylase cDNA either under the control of a constitutive (in poplar) or an inducible (in Arabidopsis) promoter. The transgenic poplar cells produced and accumulated 8–10 times higher amounts of Put than the non-transgenic cells, whereas the Arabidopsis seedlings accumulated up to 40-fold higher amounts of Put; however, in neither case the cellular Spd or Spm increased consistently. The rate of Spd and Spm catabolism and the half-life of cellular Spd and Spm were measured by pulse-chase experiments using [14C]Spd or [14C]Spm. Spermidine half-life was calculated to be about 22–32 h in poplar and 52–56 h in Arabidopsis. The half-life of cellular Spm was calculated to be approximately 24 h in Arabidopsis and 36–48 h in poplar. Both species were able to convert Spd to Spm and Put, and Spm to Spd and Put. The rates of Spd and Spm catabolism in both species were several-fold slower than those of Put, and the overproduction of Put had only a small effect on the overall rates of turnover of Spd or Spm. There was little effect on the rates of Spd to Spm conversion as well as the conversion of Spm into lower polyamines. While Spm was mainly converted back to Spd and not terminally degraded, Spd was removed from the cells largely through terminal catabolism in both species.  相似文献   

12.
The role of exogenous spermidine (Spd) in alleviating fruit granulation in the grafted seedlings of a Citrus cultivar (Huangguogan) was investigated. Granulation resulted in increased electrical conductivity, cell membrane permeability, and total pectin, soluble pectin, cellulose, and lignin contents. However, it decreased the activities of superoxide dismutase, peroxidase, and catalase, as well as the (Spd + Spm):Put ratio. The application of exogenous Spd onto Huangguogan seedlings significantly increased proline and ascorbate contents, but decreased the H2O2 and O 2 levels, which suggested that exogenous Spd provided some protection from oxidative damage. In addition, exogenous Spd decreased cell membrane permeability and MDA content, and increased the (Spd + Spm):Put ratio. The activities of antioxidant enzymes, such as catalase, peroxidase, and superoxide dismutase, were increased in Spd-treated seedlings affected by fruit granulation, resulting in a decrease in oxidative stress levels. The protective effects of Spd were reflected by a decrease in superoxide levels through osmoregulation, increased proline and ascorbate contents, and increased antioxidant activities. Our observations reveal the importance of exogenous Spd in alleviating citrus fruit granulation.  相似文献   

13.
Biogenic amines spermine (Spm) and spermidine (Spd) are essential for cell growth. Polyamine analogs are widely used to investigate the enzymes of polyamine metabolism and the functions of spermine and spermidine in vitro and in vivo. It was demonstrated recently that α-methylated derivatives of Spm and Spd are able to fulfill the key cellular functions of polyamines, moreover, in some cases, the effects of (R) and (S) isomers were actually different. Using these α-methylated analogs of Spm and Spd, it turned possible to prevent the development of acute pancreatitis in SSAT-transgenic rats with controllable expression of the Spm/Spd N1-acetyltransferase gene. The analogs made it possible to reveal dormant stereospecificity of polyamine oxidase, Spm oxidase, and deoxyhypusine synthase. An original approach was suggested to regulate the stereospecificity of polyamine oxidase. Depletion of the intracellular polyamine pool was found to have both hypusine-related consequences and consequences unrelated to posttranslational modification of the eukaryotic translation initiation factor eIF5A. Possible applications of a new family of C-methylated polyamine analogs for the investigation and regulation of polyamine metabolism in vitro and in vivo are discussed.  相似文献   

14.
Effects of exogenous spermidine (Spd) on the reactive oxygen species level and polyamine metabolism against copper (Cu) stress in Alternanthera philoxeroides (Mart.) Griseb leaves were investigated. Cu treatment induced a marked accumulation of Cu and enhanced contents of malondialdehyde (MDA), hydrogen peroxide (H2O2) and the generation rate of O2 ·−. It also significantly increased putrescine (Put) levels but lowered spermidine (Spd) and spermine (Spm) levels. The activities of arginine decarboxylase (ADC), ornithine decarboxylase (ODC) and polyamine oxidase (PAO) were all elevated with the increase of Cu concentration. However, application of exogenous Spd effectively decreased H2O2 content and the generation rate of O2 ·−, prevented Cu-induced lipid peroxidation and reduced Cu accumulation. Moreover, it declined level of endogenous Put and increased levels of Spd and Spm. Activities of ADC, ODC and PAO were all inhibited by exogenous Spd. The results indicated that application of exogenous Spd could enhance the tolerance of A. philoxeroides to Cu stress by reducing the reactive oxygen level and balancing polyamine metabolism.  相似文献   

15.
16.
Exogenous polyamines [cadaverine (Cad), putrescine (Put), spermidine (Spd) and spermine (Spm)] elicit the production of volatiles in Lima bean (Phaseolus lunatus). Among the tested PAs, Spm induces the production of some volatile terpenoids that are known to be induced by the spider mite Tetranychus urticae. Spm treatment elicits the biosynthesis of Jasmonic acid (JA), a phytohormone known to regulate the production of the volatile terpenoids. The treatment with JA together with Spm resulted in the increased volatile emission, and predatory mites Phytoseiulus persimilis preferred JA and Spm-treated leaves over those treated with JA alone.5 JA and Spm treatment has no effects on polyamine oxidase (PAO) and Cu-amine oxidase (CuAO) but has a significant induction of calcium influx, ROS production, enzyme activities for NADPH-oxidase complex, superoxide dismutase, catalase, ascorbate peroxidase, glutathione reductase and glutathione peroxidase, and gene expressions except for NADPH-oxidase complex.5 Here, we report that a plasma membrane potential (Vm) depolarization was observed after polyamine perfusion with an increasing trend: Spm, Cad, Put and Spd. JA perfusion did not alter Vm but the perfusion of JA and the polyamines significantly increased Cad and Put Vm depolarization. When JA was perfused with polyamines, a negative correlation was found between Vm depolarization and the number of amino group of the polyamines tested.Key words: polyamines, lima bean, herbivore-induced volatile organic compounds, calcium and ROS signalling, jasmonic acid, quantitative gene expression, transmembrane potentialPolyamines are involved in plants’ stress responses and growth. By activating biosynthesis of nucleic acids, polyamines concern the plant growth and differentiation.13 Furthermore, it has been reported that polyamines are involved in the response against environmental stress and plant disease.14 We recently reported that exogenously applied polyamines ∼diamines [cadaverine (Cad), putrescine (Put)], triamine [spermidine (Spd)] and tetraamine ]spermine (Spm)]∽ induce volatile emission in Lima bean leaves.5 Membrane potentials (Vm) and intracellular calcium variations were also studied in Lima bean leaves after perfusion with the polyamines and with these addition of JA and here we report on these additional results.The primary candidate for intercellular signaling in higher plants is the stimulus-induced change in Vm.6 The plasma membrane potential (Vm), which lies in the range of −50 to −200 mV in Lima bean leaves,7 may be shifted either to more negative (hyperpolarization) or to more positive values (depolarization) in response to various biotic or abiotic stresses.Measurement of Vm were performed and data statistically treated as previously described (ANOVA and Tukey-Kramer’s HSD test).7 Perfusion with the polyamines (Fig. 1 single arrow) shows a specific response of the leaf tissues with a different Vm depolarization, depending on the polyamine. In general, a Vm depolarization was observed after polyamine perfusion with an increasing trend: Spm, Cad, Put and Spd (Fig. 1). Spm and Spd Vm depolarization values were significantly different (p < 0.05) from all other polyamines, whereas no significant difference was found between Put and Cad Vm depolarization (p = 0.435). In all cases, Vm depolarization was reversed by washing polyamine-treated leaves with a fresh buffer solution (Fig. 1 double arrow); however, a full recovery of the Vm was observed only for Put (Fig. 1). The linearization of the data from Figure 1 allowed to calculate the rate of Vm depolarization after perfusion of the polyamines which was higher for Spd (6.0 mV min−1; R = 0.96), equal for Put and Cad (4.8 mV min−1; Put R = 0.95; Cad R = 0.97) and lower for Spm (3.0 mV min−1; R = 0.96).Open in a separate windowFigure 1Effect of 1 mM polyamines (arrow) on the Vm of Lima bean palisade cells. Spermine (Spm) caused the lowest Vm depolarization, whereas spermidine (Spd) showed the highest values of Vm depolarization. intermediate values were found when putrescine (Put) and cadaverine (cad) were perfused. after washing the tissues with fresh buffer (double arrow) Vm was always hyperpolarized, however the initial potential was recovered only for Put, while for all other polyamines the Vm never reached the initial values. Metric bars indicate standard deviation.Perfusion with JA caused a slight and not significant (p = 0.332) Vm depolarization (Fig. 2) with respect to control. The addition of JA caused a significant increase (p < 0.01) in Vm depolarization when perfused with Cad, with respect to the sole perfusion with Cad (Fig. 1). The same was observed when JA was perfused with Put, whereas not significant differences were observed when Spm (p = 0.513) and Spd (p = 0.107) were perfused with JA (Fig. 2), with respect to the sole perfusion with Spm and Spd (Fig. 1). The linearization of the data from Figure 2 allowed to calculate the rate of Vm depolarization after perfusion of the polyamines + JA, which was higher for Cad (24.40 mV min−1; R = 0.99), almost equal for Put and Spd (Put: 14.21 mV min−1, R = 0.99; Spd: 13.49 mV min−1, R = 0.99) and lower for Spm (1.34 mV min−1; R = 0.93). For JA the rate of Vm depolarization was 0.19 mV min−1 (R = 0.96). With the addition of JA, a negative correlation was found between Vm depolarization and the number of amino group of the polyamines tested.Open in a separate windowFigure 2Effect of 1 mM polyamines + 0.1 mMJA (arrow) on the Vm of Lima bean palisade cells. the perfusion with Ja did not cause any variation in the Vm. addition of JA to Spm and Spd caused the same Vm depolarization observed in the absence of JA, whereas when JA was added to Put and Cad a stronger and significantly different Vm depolarization was observed. even in this case washing the tissues with fresh buffer (double arrow) caused a Vm hyperpolarized, however in this case Spd reached Vm values significantly more negative that the initial Vm. Metric bars indicate standard deviation. For abbreviations see Figure 1.Since ion fluxes through channels directly influence Vm, it seems reasonable to assume that molecules able to act on channel activity might be considered as important factors inducing electrical signals. Among the various channels, calcium and potassium channels are predominantly involved in cell signaling.8 In the present study, rapid and reversible Vm depolarization observed upon perfusion of Lima bean mesophyll cells with polyamines was found to be significantly increased when JA was added to Cad and Put. The reversibility of the Vm may be linked to the overall physico-chemical amphiphilic properties of polyamines, probably depending on non covalent interaction with plasma membrane molecules, as polyamines occur in plants in free form, bound electrostatically to negatively charged molecules, and conjugated to small molecules and proteins.9 Liu et al.10 showed that Spm, Spd, Cad and Put strongly inhibited opening and closing of stomata in Vicia faba, suggesting that polyamines target inward potassium channels in guard cells and modulate stomatal movements, so providing a link between abiotic stress, polyamine levels and stomatal regulation. Moreover, the transport of polyamines across the plasma membrane of plant cells is energy-dependent and calcium is involved in the uptake mechanism.1,11 Both mechanisms can be correlated to the observed Vm depolarization, and the positive correlation between intracellular Ca2+ concentration5 and Vm depolarizing activity of polyamines confirms the involvement of Ca2+ during polyamine uptake.11  相似文献   

17.
We present here the comparative protective potentiality of exogenously applied polyamines (PAs), namely spermidine (Spd) and spermine (Spm), in mitigating NaCl toxicity and inducing short-term salinity tolerance in three indica rice varieties, namely M-1-48 (salt-sensitive), Nonabokra (salt-tolerant) and Gobindobhog (highly sensitive). The retardation in root length or shoot length and toxic Na+ accumulation or K+ loss, the considerable increment in malondialdehyde/H2O2 accumulation or lipoxygenase activity, all of which were particularly noteworthy in M-1-48 and Gobindobhog during salinity stress, was appreciably reduced by co-treatment with Spd or Spm. Both the PAs also inhibited the extent of salt-induced protein carbonylation in all the varieties and enhanced protease activity, especially in Gobindobhog. The prevention of chlorophyll degradation was better with Spd in Nonabokra and Gobindobhog. While the salt-induced increase in anthocyanin or reducing sugar level was further prompted by Spd or Spm in all the varieties, the proline content was elevated by Spd particularly in Gobindobhog. During salinity stress, both the PAs were effective in lowering the putrescine accumulation in M-1-48 and Gobindobhog, and strikingly increasing the Spm level in all the varieties, the highest being in Gobindobhog. In addition, they enhanced the activity of peroxidases and compensated for the decreased catalase activity in all the varieties. Thus the two PAs could recuperate all the three varieties from salt-induced damages to different degrees. The salt injuries, encountered in M-1-48 and Gobindobhog, both of which showed greater susceptibility to salinity stress, were more pronouncedly alleviated and counteracted by the PAs, than the salt-tolerant Nonabokra. The reversal of inhibitory effect of salinity stress was conferred by preventing growth inhibition or various forms of cellular damages, maintaining proper K+/Na+ balance or triggering the level of osmolytes and activity of antioxidant enzymes. Our communication offers a referenced evidence for an understanding of the mechanism by which higher PAs relieve the damages particularly in salt-sensitive rice varieties.  相似文献   

18.
The effects of polyamines (Putrescine— Put; Spermidine—Spd; and Spermine—Spm) on␣salt tolerance of seedlings of two barley (Hordeum vulgare L.) cultivars (J4, salt-tolerant; KP7, salt-sensitive) were investigated. The results showed that, the salt-tolerant cultivar J4 seedlings accumulated much higher levels of Spd and Spm and lower Put than the salt-sensitive cultivar KP7␣under salt stress. At the same time, the dry weight of KP7 decreased significantly than that of␣J4. After methylglyoxal bis(guanylhydrazone) [MGBG, an inhibitor of S-adenosylmethionine decarboxylase (SAMDC)] treatment, Spd and Spm levels together with the dry weight of both cultivars were reduced, but the salt-caused dry weight reduction in two cultivars could be reversed by the concomitant treatment with Spd. MGBG decreased the activities of tonoplast H+-ATPase and H+-PPase too, but the experiments in vitro indicated that MGBG was not able to affect the above two enzyme activities. However, the polyamines, especially Spd, promoted their activities obviously. These results suggested that the conversion of Put to Spd and Spm and maintenance of higher levels of Spd and Spm were necessary for plant salt tolerance.  相似文献   

19.
Monocotyledonous leaves subjected to osmotica used for protoplast isolation accumulate a massive amount of putrescine (Put), lose chlorophyll and senesce rapidly. Treatment with spermidine (Spd) or spermine (Spm) prevents the loss of chlorophyll, indicating preservation of the thylakoid membranes at the site of the chlorophyll-protein complexes. Using several recently produced antibody probes, the effects on the stabilization of thylakoid membranes of applying either difluoromethylarginine (DFMA), a specific inhibitor of putrescine synthesis via arginine decarboxylase, or the polyamines Spd, Spm, or diaminopropane (Dap) to osmotically shocked oat leaves (Avena sativa L.) have been investigated. High protein levels were maintained in thylakoid membranes of leaf tissue incubated in the dark in the presence of 0.6 M sorbitol when pretreated with DFMA. After 48 h incubation, the level of the thylakoid protein D1, at the core of photosystem II, was higher in the DFMA-pretreated leaves as was the stromal protein ribulose-1,5-bisphosphate carboxylase-oxygenase (Rubisco; as indicated by the level of large subunits). Applications of Spd, Spm or Dap were effective in retarding the loss of D1, D2 and cytochrome f from the thylakoid membranes as well as Rubisco large subunits and chlorophyll from the leaf tissue. The effects of polyamine applications may be mediated through Dap since most of the added Spd or Spm was converted to Dap within 6 h. The possible mechanisms of action of polyamine applications and DFMA-pretreatment on stabilizing the composition of the thylakoid membrane are also discussed.Abbreviations Cyt cytochrome - Dap diaminopropane - DFMA DL--difluoromethylarginine - LSU large subunit (of Rubisco) - Put putrescine - Rubisco ribulose-1,5-bisphosphate carboxylase-oxygenase - Spd spermidine - Spm spermine - SDS-PAGE sodium dodecyl sulphate-polyacrylamide gel electrophoresis This research was supported by the Agricultural and Food Research Council and by the British-Spanish joint research programme Acción Integrade HB-079 (R.T.B. and A.F.T.), British Council SPN/BAR/991 (R.T.B.) and Comision Interministerial de Cienica y Tecnologia 90-130 (A.F.T.). We thank Merrell Dow Research Center (Cincinnati, Ohio) for the gift of DFMA and Teresa Capell and Xavier Figueras (Univ. Barcelona) for help and suggestions.  相似文献   

20.
Soil flooding is a seasonal factor that negatively affects plant performance and crop yields. In order to investigate the effects of spermidine (Spd) and spermine (Spm) on the waterlogging stress, it was checked that the content of relative water content (RWC), proline, chlorophyll and malondialdehyde (MDA), net photosynthesis, the rate of hydrogen peroxide (H2O2) and superoxide radicals (O2?) generation and the antioxidant enzyme activities of superoxide dismutase (SOD) (EC 1.15.1.1), catalase (CAT) (EC 1.11.1.6), ascorbate peroxidase (APX) (EC 1.11.1.11) and glutathione reductase (GR) (EC 1.6.4.2) in Welsh onion (Allium fistulosum L) plants. Pretreatment with 2 mM of Spd and Spm effectively maintained the balance of water content in plant leaves and roots under flooding stress. In addition, the data indicate that the protective role of proline should be considered minimal, as its accumulation was found to be inversely correlated with tolerance to stress; it also significantly retarded the loss of chlorophyll, enhanced photosynthesis, decreased the rate of O2? generation and H2O2 content, and prevented flooding-induced lipid peroxidation. Spd and Spm helped to maintain antioxidant enzyme activities under flooding; however, APX activity was found to increase slightly in response to Spm. The antioxidant system, an important component of the water-stress-protective mechanism, can be changed by PAs, which are able to moderate the radical scavenging system and to lessen in this way the oxidative stress. The results suggest that pretreatment with Spd and Spm prevents oxidative damage, and the protective effect of Spd was found to be greater than that of Spm.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号