首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 27 毫秒
1.
The white sturgeon ( Acipenser transmontanus ) of the Kootenai River was listed as endangered on September 6, 1994 by the United States Fish and Wildlife Service. This transboundary population, residing in Kootenay Lake and Kootenay River in Canada, and the Kootenai River in the US, has been in general decline since the mid-1960's. There has been very little recruitment to this population in the last 20 years.
This population became isolated from other white sturgeon populations of the Columbia River basin during the last ice age of approximately 10,000 years ago. The population adapted to the pre-development conditions of the Kootenai system, with a high spring freshet and extensive side channel and low-lying delta marshlands. Modification of the Kootenai River by human activities, such as industrial developments, floodplain dyking, and dam construction has changed the hydrograph of the Kootenai River, altering sturgeon spawning, incubation and rearing habitats and reducing overall biological productivity.
A Kootenai River white sturgeon draft recovery plan was prepared by the US Fish and Wildlife Service in cooperation with other agencies in the US and Canada. The plan was peer reviewed and there was a parallel public consultation process, where public commentary was invited from both sides of the international border. The short-term recovery objectives of the recovery plan are to prevent extinction and re-establish successful natural recruitment. The identified long-term objectives are the re-establishment of a self sustaining population and the restoration of productive habitat, in order to downlist to threatened status and subsequently delist this population when recovery is well established. Specific actions needed for recovery include spring flow augmentation during the reproduction period; a conservation aquaculture program to prevent near-term extinction; habitat restoration, and research and monitoring programs to evaluate recovery progress.  相似文献   

2.
Serum and cutaneous mucus antibodies were monitored in white sturgeon for 15 weeks following intraperitoneal immunization. Ten fish were immunized (50 microg) with white sturgeon iridovirus (WSIV) or white sturgeon gonad (WSGO) tissue culture cells emulsified with or without FCA. An additional group was immunized with FITC:KLH+FCA. Fish were booster immunized at 6 weeks. Fish immunized with FITC:KLH+FCA produced significant serum antibodies to FITC by 6 weeks and this response peaked at 12 weeks (average titer 31,000). Mucosal antibodies to FITC were first detected at 12 weeks and significantly elevated by 15 weeks (average titer 18). Anti-WSIV antibody titers were detected in the serum by 9 weeks in fish immunized with WSIV and WSIV+FCA, but only a small number responded to immunization. At 15 weeks, four fish immunized with WSIV produced serum antibodies (average titer 838) and one fish immunized with WSIV+FCA had a serum titer of 1600. Mucosal anti-WSIV antibody titers of 8 and 16 were observed in two fish from the WSIV group at 12 weeks while four different fish from this group responded at 15 weeks (average titer 4). Western Blot using a monoclonal antibody confirmed immunoglobulin in mucus, and specificity to WSIV was further demonstrated by immunocytochemistry using serum from fish immunized with WSIV. Specific antibody was not detected in mucus of fish immunized with WSIV+FCA, WSGO, or WSGO+FCA. Collectively, these experiments demonstrate that white sturgeon can generate a specific antibody response following immunization, and is the first report showing mucosal immunoglobulin is present in this species.  相似文献   

3.
The Kootenai River white sturgeon Acipenser transmontanus population in Idaho, US and British Columbia (BC), Canada became recruitment limited shortly after Libby Dam became fully operational on the Kootenai River, Montana, USA in 1974. In the USA the species was listed under the Endangered Species Act in September of 1994. Kootenai River white sturgeon spawn within an 18‐km reach in Idaho, river kilometer (rkm) 228.0–246.0. Each autumn and spring Kootenai River white sturgeon follow a ‘short two‐step’ migration from the lower river and Kootenay Lake, BC, to staging reaches downstream of Bonners Ferry, Idaho. Initially, augmented spring flows for white sturgeon spawning were thought to be sufficient to recover the population. Spring discharge mitigation enhanced white sturgeon spawning but a series of research investigations determined that the white sturgeon were spawning over unsuitable incubation and rearing habitat (sand) and that survival of eggs and larvae was negligible. It was not known whether post‐Libby Dam management had changed the habitat or if the white sturgeon were not returning to more suitable spawning substrates farther upstream. Fisheries and hydrology researchers made a team effort to determine if the spawning habitat had been changed by Libby Dam operations. Researchers modeled and compared velocities, sediment transport, and bathymetry with post‐Libby Dam white sturgeon egg collection locations. Substrate coring studies confirmed cobbles and gravel substrates in most of the spawning locations but that they were buried under a meter or more of post‐Libby Dam sediment. Analysis suggested that Kootenai River white sturgeon spawn in areas of highest available velocity and depths over a range of flows. Regardless of the discharge, the locations of accelerating velocities and maximum depth do not change and spawning locations remain consistent. Kootenai River white sturgeon are likely spawning in the same locations as pre‐dam, but post‐Libby Dam water management has reduced velocities and shear stress, thus sediment is now covering the cobbles and gravels. Although higher discharges will likely provide more suitable spawning and rearing conditions, this would be socially and politically unacceptable because it would bring the river elevation to or in excess of 537.66 m, which is flood stage. Thus, support should be given to habitat modifications incorporated into a management plan to restore suitable habitat and ensure better survival of eggs and larvae.  相似文献   

4.
Recovery efforts for the endangered pallid sturgeon (Scaphirhynchus albus) include supplementation of wild stocks with hatchery reared progeny. Identifying the extent of genetic stock structure, which has previously been detected in samples from the range extremes, will help to determine whether stock transfers might be harmful. DNA microsatellite genotypes were screened in pallid sturgeon from the upper Missouri River, lower Missouri River, middle Mississippi River and Atchafalaya River and analyzed using a combination of Bayesian model‐based and more traditional F‐statistic based methods to characterize genetic differentiation. Scaphirhynchus specimens were collected by researchers active in the recovery effort and genotypes were screened at 16 microsatellite loci. Because there is considerable genetic and morphological overlap between pallid sturgeon, shovelnose sturgeon, and their hybrids, a combination of morphological and genetic techniques were used to eliminate shovelnose and possible hybrids from the sample. Genetic differentiation was detected among samples (overall θ = 0.050, P = 0.001). Pairwise θ, genetic distances, and Bayesian assignment testing reveal that pallid sturgeon from the upper Missouri River are the most distinct group with pairwise comparisons of pallid sturgeon among all the remaining samples exhibiting lower θ values, higher genetic distances, and self assignment scores. Our results indicate that using local broodstock, when available, should be used for pallid sturgeon propagation. If local broodstock are not available, geographically proximate individuals would limit genetic differences between native and stocked individuals.  相似文献   

5.
Ultrasonic telemetry was used to assess habitat features utilized by 36 endangered juvenile white sturgeon, Acipenser transmontanus, in the lower 120 km of the Kootenai River of Idaho, USA and British Columbia, Canada during the summer and early fall of 1999 and 2000. All 36 fish were initially captured in pools using gillnets and released there, but most of the subsequent telemetry contacts were in glides, indicating these fish moved freely between the two macro-habitats. The low electivity indices indicated little preference between glides and pools. Most contacts were in glides, in the outside bend of the river channel (50), and in or near a visually defined thalweg. Contacts were most often associated with sand substrates and no cover. Physical habitat characteristics (nose [bottom] water velocity, depth, substrate, and cover) were recorded at 168 contact locations. The combination of significantly greater velocities and depths at contact sites vs. non-contact sites (p < 0.01) indicated these fish actively found and used areas of higher velocity and greater depth within the Kootenai River. There was little cover found for fish in the river other than large sand dunes and depth. The combination of depth and nose velocity data supported the idea that large sand dunes are providing refugia in the form of velocity breaks.  相似文献   

6.
The primary objective of this study was to identify and characterize juvenile white sturgeon (Acipenser transmontanus) habitat in the Lower Fraser River downstream of Hope, BC, Canada. A secondary objective was to estimate the juvenile white sturgeon population in the Lower Fraser River. A total of 1867 white sturgeon was captured with gill nets at 26 sites in the Lower Fraser River. The greatest numbers of sturgeon were caught in three sloughs; all but three sturgeon were captured in the June to August period. These three sloughs all had water deeper than 5 m and current that was multidirectional. Turbidity ranged greatly from 1.5 NTU (Nephelometric Units) to 67.0 NTU and the substrate of most sites was fine sediments, fine sand, silt and clay. Stomach contents were mysid shrimp (Mysidacea), midge larvae (Chironomidae) and peamouth chub (Mylocheilus caurinus). We identified three of 26 sites with appreciable numbers of juvenile sturgeon, identified water quality parameters of these sites, identified any incidental species that might be prey and also determined that between 1985 and 1993 the juvenile white sturgeon population had declined.  相似文献   

7.
White sturgeon ( Acipenser transmontanus ) in the Columbia River in Canada have recently been listed as Endangered/Critically Imperiled, based on a shift in size and age-class composition from a population dominated by juveniles in the early 1980s to one presently dominated by adults. This shift has been attributed to a poor survival of early life stages. To determine the causes for this poor survival, investigations conducted annually since 1990 have focussed on identifying white sturgeon movement patterns, population dynamics, reproductive biology, and critical habitats. The reasons for the low recruitment remain poorly understood but river regulation and reservoir formation due to dam construction and pollution from municipal and industrial effluent inputs are suspected as contributing factors.
The history of dam development on the Columbia River and implications to white sturgeon are discussed from a historical perspective. A synopsis of post-1990 study results is provided and discussed in the framework of management strategies that include: 1) angling regulations, 2) flow enhancement strategies during spawning, 3) development of a population stabilization plan, 4) investigations into the feasibility of artificial stock supplementation, and 5) proposed future study programs to identify factors limiting recruitment.  相似文献   

8.
We reared white sturgeon Acipenser transmontanus under laboratory conditions and found that a random-forest model containing scute counts and total length predicted age significantly better than total length alone. Scute counts are rapid, inexpensive and non-lethal meristics to gather in the field. This technique could improve age estimates of imperilled sturgeon populations.  相似文献   

9.
Green sturgeon (Acipenser medirostris) and white sturgeon (A. transmontanus) are closely related, sympatric species that inhabit the San Francisco estuary. Green sturgeon have a more marine life history but both species spawn in the Sacramento River and reside for some duration in San Francisco Bay. These sturgeons are of conservation concern, yet little is known about their dietary competition when they overlap in space and time. To examine evidence of dietary differentiation, we collected whole blood and blood plasma from 26 green sturgeon and 35 white sturgeon in San Francisco Bay. Using carbon and nitrogen stable isotope analyses, we compared their relative trophic levels and foraging locations along the freshwater to marine gradient. Sampling blood plasma and whole blood allowed comparison of dietary integration over shorter and longer time scales, respectively. Plasma and whole blood δ13C values confirmed green sturgeon had more marine dietary sources than white sturgeon. Plasma δ15N values revealed white sturgeon fed at lower trophic levels than green sturgeon recently, however, whole blood δ15N values demonstrated the two species fed at the same trophic level over longer time scales. Larger individuals of both species had higher δ13C values than smaller individuals, reflecting more marine food sources in adulthood. Length did not affect δ15N values of either species. Isotope analyses supported the more marine life history of green than white sturgeon and potentially highlight a temporary trophic differentiation of diet between species during and preceding the overlapping life stage in San Francisco Bay.  相似文献   

10.
A total of 35, age 1 juvenile Kootenay River white sturgeon ( Acipenser transmontanus ), were fitted with sonic tags in 2005 and released as part of larger hatchery release groups at five sites to evaluate dispersal and subsequent movements (seven tags per site). Juvenile sturgeon released at three locations within the deep, low gradient reach (typical gradient of 0.02 m km−1 and velocities of <0.4 m s−1) of the Kootenay River below Bonners Ferry, ID showed substantial dispersal both up and downstream; however, downstream redistribution was more common. White sturgeon from all three release locations overlapped during dispersal, with 9% of tagged fish moving from river release sites into Kootenay Lake. The three hatchery release locations in this low gradient reach produced good dispersal of hatchery progeny into available habitats. Tagged fish released above Bonners Ferry in the shallow, higher gradient reach (typical gradient of 0.6 m km−1, and velocities >0.8 m s−1) at two additional sites all moved downstream of the gradient break at Bonners Ferry, ID into the lower gradient reach within 2 months of release. In total, 93% of these tagged fish relocated to the low gradient section within 25 days of release, with some fish undertaking this movement within 1 day. In general, age 1 hatchery release juveniles were mobile and capable of substantial movements.  相似文献   

11.
The Missouri River sturgeon iridovirus (MRSIV) is an important factor contributing to losses during the hatchery rearing of juvenile pallid Scaphirhynchus albus and shovelnose S. platorynchus sturgeon. As the virus has not been isolated in cell culture, current detection procedures rely upon a combination of light and electron microscopy. Detection of characteristic virus-infected cells in the integument, usually of the fins, in hematoxylin and eosin (H&E)-stained tissue sections provides a presumptive finding. Confirmation requires observation by electron microscopy of characteristic doubly enveloped hexagonal virions of the appropriate size in the host cell cytoplasm. To improve these diagnostic procedures, a conventional polymerase chain reduction (PCR) assay was developed as a sensitive and specific method for detection of MRSIV DNA as found in numerous tissues of both naturally and experimentally infected pallid and shovelnose sturgeon. Sequences of amplicons obtained from testing of wild-caught shovelnose sturgeon and juvenile pallid sturgeon during hatchery outbreaks were identical, suggesting that the viruses found in both sturgeon are similar or closely related. In addition, a TaqMan PCR was developed that allowed estimates of the concentrations of MRSIV DNA present in the tissues of pallid and shovelnose sturgeon during acute and persistent infection. These new PCR assays are improved methods to detect MRSIV, but equally importantly, they provide insights into to the biology of the agent for more effective management of viral diseases in captive and wild Missouri River sturgeon populations.  相似文献   

12.
Age and growth of pallid sturgeon in the free-flowing Mississippi River   总被引:1,自引:1,他引:0  
Trotlines were used to capture pallid sturgeon in the free‐flowing Mississippi River, which extends from the Gulf of Mexico to the mouth of the Missouri River. Trotlines were baited with worms, and set overnight usually along the channel border. The pectoral fin rays of 165 pallid sturgeon caught in the Mississippi River were aged; 118 were from the lower Mississippi River (LMR) between the Gulf and mouth of the Ohio River, and 47 were from the middle Mississippi River (MMR) between the mouths of the Ohio and Missouri rivers. Initial agreement within ±1 year between two readers ranged from 53% for the LMR specimens, which were read first, to 84% for the MMR. Final age was agreed upon by both readers. For LMR pallid sturgeon, final age estimates ranged from 3 to 21 years with a mean (±SD) of 11.0 ± 4.7. For MMR pallid sturgeon, final age estimates ranged from 5 to 14 years with a mean of 9.5 ± 2.1. Seven pallid sturgeon marked with coded wire tags (CWT), indicating hatchery origin, were collected in the MMR. Age estimates for CWT fish were 7–8 years representing 1997 stocked fish, and 11–12 years representing 1992 progeny stocked in 1994. Von Bertalanffy growth equations for length indicated that pallid sturgeon in the MMR had higher growth rates for a given age than pallid sturgeon in the LMR. However, there were no significant differences (anova , P > 0.5) in the length–weight relationships between reaches. In the LMR, pallid sturgeon fully recruited to trotlines at age 11 and instantaneous total mortality (Z; slope of catch curve) was estimated at −0.12 (n = 10 year classes, r2 = 0.55, P = 0.01). Of the 118 sectioned rays from the LMR, 28 could not be reliably aged (only one section from the MMR could not be aged). Therefore, age was predicted from length using the von Bertalanffy equation. The catch curve was re‐calculated using the predicted ages of the 28 pallid sturgeon in the LMR resulting in Z = −0.07. In the MMR, pallid sturgeon fully recruited to trotlines at age 9 and Z was estimated at −0.36 (n = 6 year classes, r2 = 0.67, P = 0.04), which was significantly higher (anova , P = 0.04) than the LMR estimate. Higher mortality in the MMR may be due to habitat limitations compared to a larger, more diverse channel in the LMR, and incidental take of larger, older individuals during commercial harvesting of shovelnose sturgeon. Commercial take of shovelnose does not occur in the LMR except in the northern portion of the reach. Considering the presence of pallid sturgeon with CWT, recruitment of older individuals in the MMR may have been influenced by stocking a decade earlier. Management strategies for this endangered species should consider the differences in mortality rates among reaches, the impacts of commercial fishing on recovery of pallid sturgeon in the MMR, and the long‐term effects of hatchery fish now recruiting into the free‐flowing Mississippi River.  相似文献   

13.
Males and females of cultured white sturgeon, Acipenser transmontanus, mature at an average age of 4 and 8 years, respectively. However, the onset of ovarian vitellogenesis and puberty are highly asynchronous in the female stock. Gonadal cycles are annual in males and biennial in females, and gametogenesis is influenced by season. Neuroendocrine regulation of reproduction appears to involve a dual gonadotropin system controlling gonadal development and spawning. Labile puberty and sex-specific duration of the gonadal cycle are distinct characteristics of cultured and wild sturgeon. Photoperiod and temperature play a significant role in environmental regulation of the reproductive cycle, but further studies are necessary to elucidate the roles of endogenous and environmental factors in sturgeon reproduction which is critically important for both aquaculture and conservation of endangered wild stocks.  相似文献   

14.
Long‐term population trends of pallid sturgeon Scaphirhynchus albus in the lower Missouri River were evaluated via a discrete and stochastic age‐structure population viability model. The intent of this model was to (i) estimate the local pallid sturgeon population size, (ii) quantify the contribution of hatchery‐reared fish to the overall population, (iii) predict the level of natural production needed to create a self‐sustaining population, and (iv) determine the parameters that produce the largest model sensitivity. The model estimated that the wild, adult population size was approximately 6000 fish that remained in the lower Missouri River in 2012 compared to approximately 42 000 hatchery‐reared pallid sturgeon. Under the assumption of no natural recruitment, the population size will continue to decline at approximately 8% annually, with an annual egg to age‐1 survival rate of 0.00011 predicted to maintain a stable population. The model was most sensitive to survival rates of fish ≥ age‐1 and less sensitive to age‐0 survival rates and fecundity. Decreasing or increasing the female spawning interval by 1 year had minimal effect on the overall population trajectory. Recovery management planning for a species such as pallid sturgeon, which is slow‐growing, late‐maturing, and has intermittent spawning would require several years to access recovery potential and management decisions. Barring any unforeseen natural catastrophe, the pallid sturgeon population in the lower Missouri River is not in immediate danger of local extirpation; however, the population appears to be far from viable and self‐sustaining.  相似文献   

15.
Population characteristics of pallid sturgeon Scaphirhynchus albus in the lower Missouri River are relatively unknown. Therefore, data collected from the Nebraska Game and Parks Commission Pallid Sturgeon Population Assessment Program was synthesized to (i) document the population structure of pallid sturgeon by origin (hatchery‐reared or wild), gender, and reproductive readiness, (ii) document the minimum size and age‐at‐maturity by gender, and (iii) document the fecundity rates of the fish that were successfully spawned in the hatchery. During this 4‐year study (2008–2011), relative abundance for wild and hatchery‐reared pallid sturgeon collected with gill nets did not significantly change whereas relative abundance for wild fish using trot lines declined significantly. The proportion of hatchery‐reared pallid sturgeon increased annually, with the population being composed primarily of hatchery‐reared fish. The proportion of reproductively ready females to non‐reproductively ready females was 1 : 2.0, compared to male ratios at 1 : 0.9. Minimum fork length‐at‐maturity was estimated for females at 788 mm and for males at 798 mm. Minimum age‐at‐maturity for hatchery‐reared released fish was age‐9 for females and age‐7 for males. Highest relative fecundity, based on the ovosomatic index, was 10% with an overall mean of 7%. The number of eggs per ml (egg size) was not correlated with fork length (P = 0.0615) or weight (P = 0.0957). Relative condition factor (Kn) for females was significantly different by reproductive condition (P = 0.0014) and Kn for males did not differ between reproductive conditions (P = 0.2634). Detecting shifts in population characteristics are essential not only to understand population dynamics since hatchery inputs and natural perturbations continue to change the population structure but also to assess species recovery efforts to ensure long‐term species sustainability.  相似文献   

16.
Fifty white sturgeon (Acipenser transmontanus) eleutheroembryos (average size 0.17 g) were placed onto each of four quadrants (0.45 m2 quadrant−1; 200 fish tank−1) of different sized substrates in four circular tanks (approximately 562 L). Each of three quadrants had a different size substrate and the fourth quadrant was left bare. We used one replicate of smaller size substrates (0.5–11.9 mm) and one replicate of larger size substrates (21.7–88 mm). It was found that the white sturgeon eleutheroembryos preferred substrate with an average size (longest diameter) of 12 mm (11.9) in the smaller substrate range and 22 mm (21.7) in the larger substrate range. These data improve our knowledge of white sturgeon early life history, and if confirmed in the wild can be used to protect areas that are crucial for white sturgeon recruitment and survival.  相似文献   

17.
Sixty-eight primer sets for microsatellite loci were developed from microsatellite motif enriched genomic libraries of pooled DNA from the polyploid green and white sturgeon (Acipenser medirostris and A. transmontanus). Four individuals from each species were screened for polymorphism at these loci. Forty-eight loci amplified in both species, and some exhibited species-specific amplification for white or green sturgeon (8 and 12 loci, respectively). The number of alleles per locus ranged from one to 12. At least 68% of the green and 65% of the white sturgeon loci we developed are polysomic.  相似文献   

18.
The effect of substratum on growth and metabolic rate was assessed in larval white sturgeon Acipenser transmontanus. Yolk‐sac larvae (YSL) were reared in bare tanks or tanks with gravel as substratum from hatch until approximately 16 days post hatch (dph). The effect of an artificial substratum was also evaluated on growth alone. Substratum had a significant effect on mass, with larvae reared in gravel and artificial substrata being larger than those reared without substratum. Routine metabolic rates were significantly lower and relative aerobic scope (the difference between maximum and routine metabolic rate) was significantly higher for YSL and feeding larvae (FL) reared in gravel relative to those reared in bare tanks, particularly before fish started feeding exogenously. Furthermore, gravel‐reared larvae had higher whole‐body glycogen concentrations relative to bare‐tank‐reared larvae. Routine factorial scope (maximum metabolic rate divided by routine metabolic rate) was relatively low in all treatments (< 1·7) indicating a limited ability to elevate metabolic rate above routine early in development and mass exponents for metabolic rate exceeded 1. Taken together, these data indicate that YSL reared without substratum may divert more of their energy to non‐growth related processes impairing growth. This finding underscores the importance of adequate rearing substratum for growth of A. transmontanus and may provide support for habitat restoration and alternative hatchery rearing methods associated with sturgeon conservation.  相似文献   

19.
Synopsis Blood samples from cannulated young adult (2.5–15 kg) white sturgeon, acclimated to San Francisco Bay water (24 ppt) had plasma values of 248.8 ± 13.5 mOsm kg−1 H2O, [Na+] = 125 ± 8.0 mEq 1−1, [K+] = 2.6 ± 0.8 mEq 1−1 and [CL] = 122 ± 3.0 mEq 1−1. Freshwater acclimated sturgeon had an osmolality of 236 ± 7, [Na+] = 131.6 + 4.4, [K+] = 2.5 ± 0.7 and [CL] = 110.6 ± 3.6. Freshwater acclimated fish gradually exposed to sea water (increase of 5 ppt h−1) had higher plasma osmolalities than did the bay water acclimated fish. These young adult sturgeon are able to tolerate transfer from fresh water to sea water as well as gradual transfer from sea water to fresh water. Plasma electrolytes in transferred fish are regulated, but tend to differ from long term acclimated fish at the same salinities. There is a gradual increase in the upper salinity tolerance (abrupt transfer) of juvenile white sturgeon with weight: 5–10 ppt for 0.4–0.9 g fish, 10–15 ppt for 0.7–1.8 g fish, and 15 ppt for 4.9–50.0 g fish. The ability of juveniles to regulate plasma osmolality is limited. The young adult fish are able to tolerate higher salinities (35 ppt) than juvenile sturgeon but probably are also characterized by low activity of the necessary ion exchange mechanisms in the gills which permit rapid adjustment of blood electrolytes with graduate change in external salinity.  相似文献   

20.
Gut contents of shovelnose and pallid sturgeon from the lower and middle Mississippi River were obtained by colonic flushing, a safe and easily implemented alternative to gastric lavage. Diets of both species were dominated numerically by immature Trichoptera, Ephemeroptera, and Diptera. Primary prey, based on volume, for shovelnose sturgeon were Trichoptera, and for pallid sturgeon were various fishes. Geographic and seasonal nuances in diet were observed for both species, but the general dichotomy of shovelnose sturgeon as browser on invertebrates and pallid sturgeon as predator on fishes did not change. Data indicate that both species require hard substrates for feeding. Data demonstrate that colonic flushing is an effective technique for describing diet and inferring ecological and behavioral information about sturgeon.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号