首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Human leukemic cells corresponding to the earliest identifiable stages of intrathymic T cell differentiation lack cell surface expression of the T cell receptor(TCR alpha/beta)-T3 complex but transcribe TCR beta mRNA from either germ-line configuration (1/13) or partially (DJ) or fully (VDJ) rearranged (12/13) genes. These cells do not produce TCR alpha mRNA, but do contain T3 delta and T3 epsilon mRNA and accumulate T3 polypeptides, primarily in the perinuclear envelope. Equivalent normal T cells isolated from thymus have a predominantly germ-line configuration of TCR beta but contain intracellular T3 proteins. T3 gene expression is therefore a very early event in T cell differentiation. TCR alpha chain production appears to be the limiting maturation-linked event in the transport, assembly, and cell surface membrane insertion of the TCR alpha/beta-T3 complex.  相似文献   

2.
The antigen T cell receptor (TCR)-CD3 complexes present on the cell surface of CD4(+) T lymphocytes and T cell lines express CD3 epsilon chain isoforms with different isoelectric points (pI), with important structural and functional consequences. The pI values of the isoforms fit the predicted pI values of CD3 epsilon chains lacking one, two, and three negatively charged amino acid residues present in the N-terminal region. Different T cells have different ratios of CD3 epsilon chain isoforms. At a high pI, degraded CD3 epsilon isoforms can be better recognized by certain anti-CD3 monoclonal antibodies such as YCD3-1, the ability of which to bind to the TCR-CD3 complex is directly correlated with the pI of CD3 epsilon. The abundance of CD3 epsilon isoforms can be modified by treatment of T cells with the proteinase inhibitor phenanthroline. In addition, these CD3 epsilon isoforms have functional importance. This is shown, first, by the different structure of TCR-CD3 complexes in cells possessing different amounts of isoforms (as observed in surface biotinylation experiments), by their different antigen responses, and by the stronger interaction between low pI CD3 epsilon isoforms and the TCR. Second, incubation of cells with phenanthroline diminished the proportion of degraded high pI CD3 epsilon isoforms, but also the ability of the cells to deliver early TCR activation signals. Third, cells expressing mutant CD3 epsilon chains lacking N-terminal acid residues showed facilitated recognition by antibody YCD3-1 and enhanced TCR-mediated activation. Furthermore, the binding avidity of antibody YCD3-1 was different in distinct thymus populations. These results suggest that changes in CD3 epsilon N-terminal chains might help to fine-tune the response of the TCR to its ligands in distinct activation situations or in thymus selection.  相似文献   

3.
Most T lymphocytes express on their surfaces a multisubunit receptor complex, the T cell antigen receptor (TCR) containing alpha, beta, gamma, delta, epsilon, and zeta molecules, that has been widely studied as a model system for protein quality control. Although the parameters of TCR assembly are relatively well established, little information exists regarding the stage(s) of TCR oligomerization where folding of TCR proteins is completed. Here we evaluated the modification of TCR glycoproteins by the endoplasmic reticulum folding sensor enzyme UDP-glucose:glycoprotein glucosyltransferase (GT) as a unique and sensitive indicator of how TCR subunits assembled into multisubunit complexes are perceived by the endoplasmic reticulum quality control system. These results demonstrate that all TCR subunits containing N-glycans were modified by GT and that TCR proteins were differentially reglucosylated during their assembly with partner TCR chains. Importantly, these data show that GT modification of most TCR subunits persisted until assembly of CD3alpha beta chains and formation of CD3-associated, disulfide-linked alpha beta heterodimers. These studies provide a novel evaluation of the folding status of TCR glycoproteins during their assembly into multisubunit complexes and are consistent with the concept that TCR folding is finalized convergent with formation of alpha beta delta epsilon gamma epsilon complexes.  相似文献   

4.
Functionally mature human T lymphocytes express a cell-surface receptor for antigen (T cell receptor (TCR)-CD3) composed of at least six polypeptides (TCR-alpha and -beta; T3-gamma, -delta, -epsilon, and -zeta). Immature thymocytes and variants of T cell lines lacking one of the TCR.CD3 polypeptide chains fail to express surface receptor and accumulate the other chains intracellularly. Here we show that the assembly of the TCR.CD3 complex within the endoplasmic reticulum (ER) began with a core of CD3-gamma, -delta, and -epsilon to which TCR-alpha and -beta bound. A recently described intracellular protein, CD3-omega, participated in the assembly since it was found to be associated with the free TCR-alpha or -beta chains or with the CD3 chains. CD3-omega dissociated as TCR.CD3 complexes were formed in the ER. Association of non-disulfide-linked TCR-alpha and -beta chains with CD3 was detected before that of disulfide-bridged TCR-alpha/beta heterodimers. These data suggest that during assembly, the association of TCR-alpha and -beta chains with the CD3 complex precedes the formation of a TCR-alpha/beta dimer. The existence of intermediates consisting of CD3-gamma, -delta, and -epsilon chains and a single TCR-alpha or -beta chain was also confirmed by using a series of variant T cell lines lacking the TCR-beta or -alpha chain, respectively. Once the single TCR-alpha and -beta chains were associated with CD3, disulfide linkages were formed, and a 70-kDa form of the TCR was detected within the ER. This intracellular precursor of the TCR.CD3 complex was subsequently processed into the mature 90-kDa TCR as the TCR.CD3 complex passed through the Golgi apparatus. Assembly of the TCR.CD3 complex is a rather rapid process, whereas export from the ER occurs at a slow rate. After 1 h, 75% of the receptor complex remained within the ER.  相似文献   

5.
The T cell receptor for antigen (TCR) is composed of six different transmembrane proteins. T cells carefully control the intracellular transport of the receptor and allow only complete receptors to reach the plasma membrane. In an attempt to understand how T cells regulate this process, we used c-DNA transfection and subunit-specific antibodies to follow the intracellular transport of five subunits (alpha beta gamma delta epsilon) of the receptor. In particular, we assessed the intracellular stability of each chain. Our results showed that the chains were markedly different in their susceptibility to intracellular degradation. TCR alpha and beta and CD3 delta were degraded rapidly, whereas CD3 gamma and epsilon were stable. An analysis of the N-linked oligosaccharides of the glycoprotein subunits suggested that the chains were unable to reach the medial Golgi during the metabolic chase. This was supported by immunofluorescence micrographs that showed both the stable CD3 gamma and unstable CD3 delta chain localized in the endoplasmic reticulum. To study the effects of subunit associations on intracellular transport we used cotransfection to reconstitute precise combinations of subunits. Associations between stable and unstable subunits expressed in the same cell led to the formation of stable complexes. These complexes were retained in or close to the endoplasmic reticulum. The results suggested that the intracellular transport of the T cell receptor could be regulated by two mechanisms. The TCR alpha and beta and CD3 delta subunits were degraded rapidly and as a consequence failed to reach the plasma membrane. CD3 gamma or epsilon were stable but were retained inside the cell. The results also demonstrated that there was an interplay between the two pathways such that the CD3 gamma and epsilon subunits were able to protect labile chains from rapid intracellular degradation. In this way, they could seed subunit assembly in or close to the endoplasmic reticulum and allow a stable receptor to form before its transport to the plasma membrane.  相似文献   

6.
C Wittenberg  S I Reed 《Cell》1988,54(7):1061-1072
The Saccharomyces cerevisiae gene CDC28 encodes a protein kinase required for progression from G1 to S phase in the cell cycle. We present evidence that the active form of the Cdc28 protein kinase is a complex of approximately 160 kd containing an endogenous substrate, p40, and possibly other polypeptides. This complex phosphorylates p40 and exogenous histone H1 in vitro. Cell cycle arrest during G1 results in inactivation of the protein kinase accompanied by the disassembly of the complex. Furthermore, assembly of the complex is regulated during the cell cycle, reaching a maximum during G1. Partial complexes thought to be intermediates in the assembly process phosphorylate histone H1 but not p40. Addition of soluble factors to these partial complexes in vitro restores p40 phosphorylation and causes the complex to increase to the mature size. A model is presented in which p40 phosphorylation is required during G1 for cells to initiate a new cell cycle.  相似文献   

7.
The T cell antigen receptor consists of two disulfide-linked 40,000 to 45,000 dalton glycoproteins (alpha and beta) that contain variable and constant regions analogous to those found in immunoglobulin molecules. The antigen receptor on murine T cells is noncovalently associated with four additional nonpolymorphic structures. We describe an antibody that binds one of these molecules, a 26,000 dalton glycoprotein homologous to the human T3 delta-chain. This antibody immunoprecipitates the entire antigen receptor complex from a T cell hybridoma and from normal murine thymocytes. It represents the first reagent that can immunoprecipitate the antigen receptor complex on all murine T cells.  相似文献   

8.
9.
T cell activation through the antigen receptor (TCR) involves the cytoplasmic tails of the CD3 subunits CD3gamma, CD3delta, CD3epsilon, and CD3zeta. Whereas the biological significance of the cytoplasmic tails of these molecules is suggested, in part, by their evolutionarily conserved sequences, their interactions with signal transduction molecules are not completely understood. We used affinity chromatography columns of glutathione S-transferase fused to the CD3epsilon cytoplasmic tail to isolate proteins that specifically interact with this subunit. In this way, we identified the shuttling protein nucleolin as a specific CD3epsilon-interacting molecule. Using competition studies and affinity chromatography on peptide columns, we were able to identify a central proline-rich sequence as the nucleolin-interacting sequence in CD3epsilon. Transfection in COS cells of wild type CD3epsilon, but not of nonbinding mutants of CD3epsilon, resulted in redistribution of nucleolin from the nucleus and nucleoli to the cytoplasm. This property was transferred to a CD8 protein chimera by appending the cytoplasmic tail of CD3epsilon. We also found that nucleolin associated with the TCR complex. This association was increased upon TCR engagement, suggesting that the CD3epsilon/nucleolin interaction may have a role in T cell activation.  相似文献   

10.
It has been proposed that during T cell receptor antigen recognition, CD4- or CD8-p56lck molecules interact with the T cell antigen receptor-CD3 complex (TCR-CD3) to phosphorylate various undefined substrates, which then initiate signal transduction through the TCR-CD3 complex. The ability of CD4 to modulate the TCR-CD3-induced increase in intracellular Ca2+, [Ca2+]i, and substrate tyrosine phosphorylation was studied in mutants of the human leukemic T cell line HPB-ALL characterized by their low expression of the TCR-CD3 complex on the cell surface. In TCR-CD3low cells, in which CD3-zeta was found to be associated with the TCR-CD3 complex, cross-linking CD3 with CD4 resulted in a profile of calcium mobilization, CD3-zeta, and phospholipase C-gamma 1 tyrosine phosphorylation similar to that observed in HPB-ALL cells, although the magnitude of generalized substrate tyrosine phosphorylation appeared to be smaller, as compared with wild-type cells. Responses were weak or absent when CD3 was cross-linked alone. In contrast, in a mutant in which association of CD3-zeta 2 with the TCR-CD3 was defective, cross-linking of CD3 with CD4 had a weaker effect on any of the activation parameters tested. These experiments showed that the presence of CD3-zeta 2 in the TCR-CD3 complex is of critical importance for the ability of CD4 to enhance early transducing signals inside the cell. The data also suggest that CD4-associated protein tyrosine kinase p56lck could up-regulate defective CD3-mediated induction of phospholipase C activity by increasing tyrosine phosphorylation of phospholipase C-gamma 1.  相似文献   

11.
The biosynthesis, processing, and assembly of the TCR alpha- and beta-chains with each other and with the CD3 complex were investigated on both cell surface positive (TCR+CD3-) and negative (TCR-CD3-) cell lines. The results indicate that 1) in cell surface TCR-CD3- cell lines (MOLT 3, CCRF-CEM), TCR-beta, but not alpha-chains are present intracellularly. TCR-beta-CD3 complexes are readily found in these cell lines, but no evidence for final processing or cell surface expression of such incomplete TCR-CD3 complexes is observed. 2) In the cell surface TCR+CD3+ cell line HPB-ALL, both alpha- and beta-chains are present intracellularly. Whereas non-glycosylated forms of TCR-beta chain can be detected, only more mature forms of TCR alpha-chains are detected indicating that the alpha-chains are more rapidly glycosylated than the beta-chains. 3) The large majority of the intracellular alpha- and beta-chains is not disulfide linked and a small fraction of these is associated with CD3. 4) Only small amounts of the total intracellular TCR chains are found as CD3-associated disulfide-linked alpha beta-heterodimers. 5) Final processing of TCR chains for cell surface expression takes place after formation of these TCR-alpha beta-CD3 complexes. Thus, both the TCR alpha- and beta-chains are over-produced and only relatively small amounts of these chains form CD3-associated heterodimers that are processed for cell surface expression. Analogous results were obtained with a non-leukemic CTL clone. Based on these observations, a model for the biosynthesis and assembly of the TCR-CD3 complex is presented.  相似文献   

12.
Increasing evidence shows that labile intracellular zinc is metabolically important. Depletion of labile intracellular zinc using chelators suppresses DNA synthesis. In this study, we tested the hypothesis that labile intracellular zinc could be modulated via varying zinc nutrition. This could result in an altered availability of labile intracellular zinc, which, in turn, could influence zinc-dependent cellular events involved in cell proliferation and ultimately suppress growth. Labile intracellular zinc was detected by using N-(6-methoxy-8-quinolyl)-para-toluenesulfonamide (TSQ), a membrane-permeable fluorescence probe. After 48 h culture in a zinc-depleted medium, labile intracellular zinc in 3T3 cells was diminished along with a suppressed DNA synthesis and cell proliferation. In contrast, supplementation of zinc to the zinc-depleted medium increased the labile intracellular zinc and promoted DNA synthesis and cell proliferation. Furthermore, growth factor-dependent stimulation of DNA synthesis and cell proliferation was also accompanied by increased labile intracellular zinc. Together, our data showed an association between the labile intracellular zinc, detected using TSQ, and 3T3 cell growth, suggesting that labile intracellular zinc could be an important cellular link between zinc nutrition and growth.  相似文献   

13.
Activators of protein kinase C induced a rapid decrease (within 15 min) in the surface expression of the T3 antigen and T-lymphocyte antigen receptor (Ti) on HPB-ALL cells, and a concomitant phosphorylation of the T3 gamma and delta polypeptides; the gamma chain was more extensively phosphorylated than the delta chain. No phosphorylation of the T3 epsilon chain and the Ti alpha and beta polypeptides was detected. Evidence was obtained that the T3 gamma chain is phosphorylated only on serine residues.  相似文献   

14.
Clear cell renal cell carcinoma (ccRCC) is a common urological malignancy. Our previous study has indicated that the protein tyrosine phosphatase receptor type delta (PTPRD) gene may play a role. To determine the effect of PTPRD genetic polymorphisms on ccRCC occurrence and progression, a total of 377 ccRCC cases and 754 matched controls were enrolled in the study. DNA sequencing and genotyping, and immunohistochemistry were conducted to test the associations of genotypes with ccRCC risk and PTPRD expression level in somatic tissues. The C allele of PTPRD rs2279776 was associated with a higher risk of ccRCC (per allele OR = 1.23, P = 0.03). Patients without distant metastasis at the time of surgery were followed for a median of 33.1 months. Overall survival was not different between different rs2279776 genotype groups (P = 0.30). The C allele was associated with a higher percentage of negative immunostaining in adjacent normal renal tissues (P = 0.02). PTPRD rs2279776 SNP may be a novel genetic risk factor of ccRCC.  相似文献   

15.
Human gamma delta T cells with the TCR variable region V(delta)1 occur mainly in epithelia and respond to stress-induced expression of the MHC class I-related chains A and B, which have no function in Ag presentation. MIC function as ligands for NKG2D-DAP10, an activating receptor complex that triggers NK cells, costimulates CD8 alpha beta and V(gamma)9V(delta)2 gamma delta T cells, and is required for stimulation of V(delta)1 gamma delta T cells. It is unresolved, however, whether triggering of V(delta)1 gamma delta TCRs is also mediated by MIC or by unidentified cell surface components. Soluble MICA tetramers were used as a binding reagent to demonstrate specific interactions with various V(delta)1 gamma delta TCRs expressed on transfectants of a T cell line selected for lack of NKG2D. Tetramer binding was restricted to TCRs derived from responder T cell clones classified as reactive against a broad range of MIC-expressing target cells and was abrogated when TCRs were composed of mismatched gamma- and delta-chains. These results and the inability of V(delta)1 gamma delta T cells to respond to target cells expressing the ULBP/N2DL ligands of NKG2D, which are highly divergent from MIC, indicate that MIC delivers both the TCR-dependent signal 1 and the NKG2D-dependent costimulatory signal 2. This dual function may serve to prevent erroneous gamma delta T cell activation by cross-reactive cell surface determinants.  相似文献   

16.
The rearrangement of TCR genes during thymic ontogeny creates a repertoire of T cell specificities that is refined to ensure the deletion of autoreactive clones and the MHC restriction of T cell responses. Signals delivered via the accessory molecules CD2, CD4, and CD8 have a crucial role in this phase of T cell differentiation. Recently, CD28 has been identified as a signal transducing molecule on the surface of most mature T cells. Perturbation of the CD28 molecule stimulates a novel pathway of T cell activation regulating the production of a variety of lymphokines including IL-2. We have studied the expression and function of CD28 during thymic ontogeny, and in resting and activated PBL. A variable percentage of resting thymocytes were CD28+ (3 to 25%, n = 8), but it was found in high density only on mature CD3+(bright) CD4/CD8 cells. Both unseparated thymocytes and isolated CD3-CD28-/dull cells proliferated when stimulated with PMA plus IL-2 or PMA plus ionomycin. PMA treatment also rapidly up-regulated CD28 expression in the CD3- subset as these cells became CD3-CD28+(bright). Despite the ability of PMA to induce high density CD28 expression in CD3- cells, CD3- thymocytes did not proliferate in response to PMA plus anti-CD28 mAb, in contrast to unseparated cells. CD3+ thymocytes stimulated with immobilized anti-CD3 mAb also failed to proliferate in culture. However, the addition of either IL-2 or anti-CD28 mAb supported proliferation, suggesting that only CD3+ cells could respond to CD28 signaling. The comitogenic effect of anti-CD3 and anti-CD28 mAb was IL-2 dependent as it was abrogated by an anti-IL-2R mAb. Interestingly, the expression of CD28 on the cell surface of CD3+ cells was also inducible, as flow cytometric analysis demonstrated a 10-fold increase in cell surface CD28 by 24 to 48 h after anti-CD3 stimulation of both CD3+ thymocytes and peripheral blood T cells. This increase was accounted for by a commensurate increase in CD28 mRNA levels. Together, these results suggest that CD28 is an inducible T cell antigen in both CD3- and CD3+ cells. In addition, stimulation of the CD28 pathway can provide a second signal to support the growth of CD3+ thymocytes stimulated through the TCR/CD3 complex, and may therefore represent a mechanism for positive selection during thymic ontogeny.  相似文献   

17.
Lymphocytes from mice immunized with Leishmania donovani (LPG) were specifically stimulated to proliferate in vitro by purified LPG or its delipidated congener, phosphoglycan. The response was dose dependent and required prior immunization with either LPG or phosphoglycan. Proliferation was eliminated by specific depletion of Thy-1+ cells with antisera and C and the proliferating T cell subset was shown to be CD4+CD8-. Tests of various LPG fragments indicated that the T cell stimulation was associated with the core structure of LPG rather than the lipid or phosphoglycan repeat structure. However, amino acid analysis of LPG and active LPG fragments, after acid hydrolysis, showed the presence of amino acids in peptide linkage. Specific hydrolysis of the glycosidic linkages in LPG with trifluoromethanesulfonic acid provided polypeptide material reactive with two mAb previously believed to be LPG carbohydrate core specific. The protein was separated from LPG by reverse phase chromatography and shown to be a complex of proteins with common epitopes recognized by the two mAb. The dominant species isolated from LPG was a set of small, approximately 11,000 Mr, molecules. Subsequent T cell proliferation studies showed that the lymphocyte stimulation was associated with the protein component of LPG and not the glycan.  相似文献   

18.
19.
The T cell antigen receptor (TCR) plays a key role in the process of antigen recognition. It is a complex of at least seven peptide chains (alpha beta gamma delta epsilon zeta-zeta). It is found on the surface of mature T cells and functions in antigen binding in the presence of the major histocompatibility complex. It has been known for some time that physical associations between the CD3 proteins and the TCR chains are essential for efficient transport of either component to the surface of T cells. For example, T cells that lack either the alpha, beta, or delta chains synthesize partial complexes that are eventually degraded. cDNAs encoding the six chains of receptor have become available recently. We have used transfection techniques to generate a panel of Chinese hamster ovary cells that contain partial receptor complexes of known composition and also cells that express all six subunits of the TCR.CD3 complex. Cells in this panel were analyzed for the ability to form alpha-beta heterodimers and also an ability to transport the synthesized chains to the plasma membrane. These studies have allowed us to define the minimum requirements for TCR.CD3 expression on the cell surface.  相似文献   

20.
Previous studies have demonstrated that naive splenic mouse T cells express no or only very low levels of the delta-type opioid receptor (delta OR), but stimulation of mouse splenocytes with Con A results in induction of delta OR mRNA and protein. In this report we have shown that stimulation of highly purified populations of naive mouse T cells with anti-CD3 mAb alone results in T cell activation, as evidenced by sustained IL-2 secretion and cell proliferation, but fails to elicit delta OR expression. However, delta OR expression is induced by costimulation of these very pure T cells with anti-CD3 and anti-CD28 mAbs. The delta OR induction by anti-CD3 and anti-CD28 costimulation was completely blocked by inhibition of phosphatidylinositol 3-kinase with wortmannin. Because phosphatidylinositol 3-kinase activation in T cells is linked to costimulation, these results suggest that induction of delta OR expression during T cell activation is strictly dependent on costimulation. It also appears that costimulatory receptors other than CD28 can provide the signaling required for delta OR expression because delta OR mRNA was induced by Con A stimulation of splenocytes from CD28-deficient mice.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号