首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Superoxide dismutases: I. Occurrence in higher plants   总被引:18,自引:0,他引:18       下载免费PDF全文
Shoots, roots, and seeds of corn (Zea mays L., cv. Michigan 500), oats (Avena sativa L., cv. Au Sable), and peas (Pisum sativum L., cv. Wando) were analyzed for their superoxide dismutase content using a photochemical assay system consisting of methionine, riboflavin, and p-nitro blue tetrazolium. The enzyme is present in the shoots, roots, and seeds of the three species. On a dry weight basis, shoots contain more enzyme than roots. In seeds, the enzyme is present in both the embryo and the storage tissue. Electrophoresis indicated a total of 10 distinct forms of the enzyme. Corn contained seven of these forms and oats three. Peas contained one of the corn and two of the oat enzymes. Nine of the enzyme activities were eliminated with cyanide treatment suggesting that they may be cupro-zinc enzymes, whereas one was cyanide-resistant and may be a manganese enzyme. Some of the leaf superoxide dismutases were found primarily in mitochondria or chloroplasts. Peroxidases at high concentrations interfere with the assay. In test tube assays of crude extracts from seedlings, the interference was negligible. On gels, however, peroxidases may account for two of the 10 superoxide dismutase forms.  相似文献   

2.
A manganese-containing superoxide dismutase (EC 1.15.1.1) was fully characterized from leaves of the higher plant Pisum sativum L., var. Lincoln. The amino acid composition determined for the enzyme was compared with that of a wide spectrum of superoxide dismutases and found to have a highest degree of homology with the mitochondrial manganese superoxide dismutases from rat liver and yeast. The enzyme showed an apparent pH optimum of 8.6 and at 25°C had a maximum stability at alkaline pH values. By kinetic competition experiments, the rate constant for the disproportionation of superoxide radicals by pea leaf manganese superoxide dismutase was found to be 1.61 × 109 molar−1·second−1 at pH 7.8 and 25°C. The enzyme was not sensitive to NaCN or to H2O2, but was inhibited by N3. The sulfhydryl reagent p-hydroxymercuribenzoate at 1 mm concentration produced a nearly complete inhibition of the manganese superoxide dismutase activity. The metal chelators o-phenanthroline, EDTA, and diethyldithiocarbamate all inhibited activity slightly in decreasing order of intensity. A comparative study between this higher plant manganese superoxide dismutase and other dismutases from different origins is presented.  相似文献   

3.
The controversial question of the intracellular location of manganese-containing superoxide dismutase in higher plants was examined under a new experimental approach by applying the more rigorous and specific methods of immunocytochemistry to protoplasts isolated fromPisum sativum L. leaves. Manganese superoxide dismutase (EC 1.15.1.1) was purified to homogeneity from 15 kg of leaves ofPisum sativum L. Rabbits were immunized with the mangano enzyme and the antibody specific for pea manganese superoxide dismutase was purified and found not to contain antigenic sites in common with (i) human manganese superoxide dismutase, (ii) iron superoxide dismutase from eitherEscherichia coli or higher plants, or (iii) plant or animal cuprozinc-superoxide dismutase.Pisum sativum L. manganese superoxide dismutase only appears to have antigenic determinants similar to other manganese superoxide dismutases from higher land plants. The antibody to pea Mn-superoxide dismutase was used to locate the enzyme in protoplasts isolated from young pea leaves by indirect immunofluorescence, and by electron microscopy using the unlabelled antibody peroxidase-antiperoxidase method. Results from immunofluorescence showed that chloroplasts were devoid of specific fluorescence which appeared scattered over the cytosolic spaces among chloroplasts, and demonstrate the absence of manganese superoxide dismutase inside chloroplasts. The metalloenzyme was found to be localized only in peroxisomes, whereas mitochondria, the traditionally accepted site for this enzyme in many eukaryotic organisms, did not show any specific staining. The possible subcellular roles of manganese superoxide dismutase inPisum sativum L. leaves are discussed in the light of its peroxisomal location.  相似文献   

4.
The effect of ischemia-reperfusion on activity, protein and m-RNA levels of catalase, copper-zinc and manganese containing superoxide dismutases and glutathione peroxidase, the enzymes that are involved in free radical detoxification was studied in rat kidney. Ischemia alone did not alter either the activities or protein levels of superoxide dismutase and glutathione peroxidase. However, catalase activity was found to be inhibited to 82% of control. The inhibition of catalase was due to the inactivation of the enzyme as there was no significant change in enzyme protein level. Reperfusion following ischemia, however, led to a significant decrease in both the activities as well as the protein levels of all the antioxidant enzymes. The observed overall decrease in total superoxide dismutase activity was the net effect of a decrease in copper-zinc superoxide dismutase while manganese superoxide dismutase activity was found to be increased following reperfusion. This observed increased manganese superoxide dismutase activity was the result of its increased protein level. The mRNA levels for catalase, superoxide dismutases, and glutathione peroxidase were observed to be increased (100–145% of controls) following ischemia; reperfusion of ischemic kidneys, however, resulted in a significant decrease in the levels of mRNAs coding for all the enzymes except manganese superoxide dismutase which remained high. These results suggest that in tissue, the down regulation of the antioxidant enzyme system could be responsible for the pathophysiology of ischemia-reperfusion injury.  相似文献   

5.
Methanobacterium bryantii contains a single electrophoretically discernible superoxide dismutase, which constitutes 0.4% of the extractable protein. This enzyme has been purified to electrophoretic and ultracentrifugal homogeneity. It appears to be a tetramer. The subunits were tenaciously, but noncovalently bonded and were of identical size. The molecular weight of the enzyme was found to be 91,000 ± 2000. The specific activity of this enzyme was identical to that previously noted for the corresponding enzyme from Escherichia coli. The enzyme contained 2.7 atoms of Fe, 1.7 atoms of Zn, and less than 0.2 atoms Mn per tetramer. Its amino acid composition placed this enzyme with the other Mn- and Fe-containing superoxide dismutases. The M. bryantii enzyme was also similar to previously described Fe-containing superoxide dismutases in its optical and electron paramagnetic resonance spectra and in its susceptibility to inactivation by H2O2. The M. bryantii enzyme was ininhibited by N3?, but was less sensitive towards this inhibitor than other iron-containing superoxide dismutases.  相似文献   

6.
Nitroprusside appears to inhibit the known types of superoxide dismutases irrespective of their metal prosthetic group and regardless of the source from which the enzymes were isolated. Thus the copper-zinc enzyme from bovine erythrocyte or Neurospora crassa behaved identically as did the manganese enzymes from Escherichia coli or red alga and the iron enzyme from E. coli and a blue-green alga. The inhibition was dose dependent with a Ki = 2.5 X 10(-5) for nitroprusside. Nitroprusside does not bind to the copper moiety of copper-zinc enzyme and seems to compete with O2- for superoxide dismutase. These inhibitions by nitroprusside, which were elicited not only in purified enzymes but also in crude soluble extracts of biological samples, were rapidly reversible. Nitroprusside was found to react with O2- to form a paramagnetic species with three absorption lines of equal width with a separation AN = 15.0 G and a g value of 2.028. The spin adduct appears to be a nitroxide radical and was stable for several minutes.  相似文献   

7.
Homogenous preparations of a manganese superoxide dismutase from a higher plant (Pisum sativum L.) were studied by epr and optical spectroscopies. The visible spectrum of manganese superoxide dismutase shows a weak and broad band in the range 350–700 nm with two shoulders at about 480 and 600 nm. Reduction with dithionite brought about a considerable disappearance of the visible component of the spectrum. The epr spectra of the native and dithionite-treated enzyme did not show any signal attributable to Mn(II) that only was visible after acid hydrolysis of the protein. The lack of epr signal both in the native and reduced superoxide dismutase can be attributed to the presence of Mn(III) in the former and of Mn(II) strongly bound to the protein in the latter. The results obtained with the manganese superoxide dismutase from leaves of the higher plant Pisum sativum are consistent with the general catalytic mechanism of action postulated for superoxide dismutases from other sources studied so far.  相似文献   

8.
The superoxide dismutase produced by Streptococcus mutans OMZ176 during aerobic growth in a chemically defined medium (modified FMC) that was treated with Chelex 100 (to lower trace metal contamination) and supplemented with high purity manganese was purified (162-fold) by heat treatment, ammonium sulfate precipitation, and chromatofocusing chromatography. The superoxide dismutase produced during aerobic growth in the same medium, but without manganese and supplemented with high purity iron, was similarly purified (220-fold). The molecular masses of each holoenzyme were approximately 43,000 with a subunit mass of 20,700, indicating that the enzymes were dimers of two equally sized subunits. The superoxide dismutase from manganese-grown cells was a manganese enzyme (MnSOD) containing 1.2 atoms of manganese and 0.25 atoms of iron/subunit. The superoxide dismutase from iron-grown cells was an iron enzyme (FeSOD) containing 0.07 atoms of manganese and 0.78 atoms of iron/subunit. The amino acid compositions of the MnSOD and the FeSOD were virtually identical, and their amino-terminal sequences were identical through the first 22 amino acids. Dialysis of the FeSOD with o-phenanthroline and sodium ascorbate generated aposuperoxide dismutase with 94% loss of activity; subsequent dialysis of apoenzyme with either manganese sulfate or ferrous sulfate reconstituted activity (recoveries of 37 and 30%, respectively). Electrophoretic determination of cytoplasmic radioiron distribution indicated that (during aerobic growth) manganese prevented insertion of iron into superoxide dismutase, although the iron levels of at least two other cytoplasmic fractions were not altered by manganese. Therefore, S. mutans used the same aposuperoxide dismutase to form either FeSOD or MnSOD, depending upon which metal was available in the culture medium. Such "cambialistic" enzymes (those capable of making a cofactor substitution) may represent a previously unrecognized family of superoxide dismutases.  相似文献   

9.
Summary Bacillus halodenitrificans produced a dimeric, manganese-containing superoxide dismutase constitutively when grown either aerobically or as a denitrifier. The molecular mass of the enzyme was determined by sedimentation equilibrium to be 41.4±3 kDa with each subunit estimated at 26 kDa. Plasma emission spectroscopy indicated the presence of 1.22 mol manganese atoms/mol holoenzyme. The electronic absorption spectrum displayed a broad band centered at approximately 474 nm (=560 mM–1 · cm–1) and a shoulder at 595 nm. In the ultraviolet range, the spectrum exhibited split maxima at 278 nm and 283 nm and a shoulder at 291 nm, thus resembling the spectra of superoxide dismutase fromBacillus subtilis andEscherichia coli. The amino acid composition of theB. halodenitrificans enzyme differed slightly quantitatively but little qualitatively from counterpart enzymes from other sources. Like the superoxide dismutases ofMycobacterium lepraemurium and human mitochondria, theB. halodenitrificans enzyme exhibited several cysteine residues. As expected from the capacity superoxide dismutase exhibits for protecting NO as neutrophil cytotoxicity factor, theB. halodenitrificans superoxide dismutase did not interfere with accumulation of NO produced by the organism's nitrite reductase.  相似文献   

10.
The effect of superoxide dismutases from five species upon phospholipid bilayers has been investigated. The uptake by egg phosphatidylcholine bilayers of the holo and apo forms of bovine superoxide dismutase increases with enzyme concentration and only a fraction of each is removed by treatment with trypsin. These uptake data indicate that both forms of the enzyme associate with and are embedded within lipid bilayers. From the spectrum of the spin label 2-(3-carboxypropyl)-4,4-dimethyl-2-tridecyl-3-oxazolidinyloxyl, the binding of superoxide dismutase to egg phosphatidylcholine bilayers can be shown to disorder the lipid packing. The disordering by the bovine holoenzyme is small but increases with increasing enzyme concentration and period of incubation. The disordering effects of the apoenzyme are much larger and are reversible by Cu2+, Zn2+ reconstitution of the apoenzyme. The disordering effect of the apoenzyme is further confirmed by differential scanning calorimetry. The gel to liquid crystalline phase transition of egg phosphatidylcholine is lowered 7°C by 25% by weight apo-superoxide dismutase to lipid. Human, dog, swordfish and yeast superoxide dismutases also disorder, and to a greater extent than the bovine enzyme. The greatest perturbation is produced by yeast superoxide dismutase; a 20% decrease in the order parameter by 50% by weight enzyme to lipid.  相似文献   

11.
Summary Immunolocalization studies of hamster kidney development were performed using polyclonal antibodies to antioxidant enzymes, including antibodies to copper, zinc and manganese superoxide dismutases, catalase, glutathione peroxidase and glutathioneS-transferases and their subunits. Antibodies to extracellular matrix proteins were also studied to determine the temporal sequence between expression of immunoreactive protein for basement membrane proteins, which serve as markers of embryonic induction of nephron development, and antioxidant enzyme expression in kidney development. Immunoreactive proteins for antioxidant enzymes were not detectable in the developing kidney until after extracellular matrix proteins had been deposited. However, immunoreactive proteins for the antioxidant enzymes copper, zinc and manganese superoxide dismutases, catalase, and α class glutathioneS-transferase Ya subunit were detected in renal tubules before birth. μ class glutathioneS-transferase subunits Yb1 and Yb2 stained transitional epithelium at high levels before birth. Our results indicate: (1) each type of kidney cell has a unique antioxidant enzyme profile, (2) antioxidant enzymes are expressed in different types of cell at different times during development, but antioxidant enzyme immunoreactive protein was not present until after immunoreactive proteins for extracellular matrix molecules were detected, and (3) certain antioxidant enzymes are present before birth, indicating that high oxygen tension present at birth is not crucial for induction of immunoreactive protein.  相似文献   

12.
The superoxide dismutase from Mycobacterium tuberculosis is the only Cu-containing superoxide dismutase that lacks zinc in the active site. To explore the structural properties of this unusual enzyme, we have investigated its stability by differential scanning calorimetry. We have found that the holo-enzyme is significantly more stable than the apo-protein or the partially metallated enzyme, but that its melting temperature is markedly lower than that of all the other characterized eukaryotic and prokaryotic Cu,Zn superoxide dismutases. We have also observed that, unlike the zinc-free eukaryotic or bacterial enzymes, the active site copper of the mycobacterial enzyme is not reduced by ascorbate, confirming that its redox properties are comparable to those typical of the enzymes containing zinc in the active site. Our findings highlight the role of zinc in conferring stability to Cu,Zn superoxide dismutases and indicate that the structural rearrangements observed in M. tuberculosis Cu,SOD compensate for the absence of zinc in achieving a fully active enzyme.  相似文献   

13.
A manganese-containing superoxide dismutase (EC 1.15.1.1) was purified to homogeneity from a higher plant for the first time. The enzyme was isolated fromPisum sativum leaf extracts by thermal fractionation, ammonium sulfate salting out, ion-exchange and gel-filtration column chromatography, and preparative polyacrylamide gel electrophoresis. Pure manganese superoxide dismutase had a specific activity of about 3,000 U mg-1 and was purified 215-fold, with a yield of 1.2 mg enzyme per kg whole leaf. The manganese superoxide dismutase had a molecular weight of 94,000 and contained one g-atom of Mn per mol of enzyme. No iron and copper were detected. Activity reconstitution experiments with the pure enzyme ruled out the possibility of a manganese loss during the purification procedure. The stability of manganese superoxide dismutase at-20°C, 4°C, 25°C, 50°C, and 60°C was studied, and the enzyme was found more labile at high temperatures than bacterial manganese superoxide dismutases and iron superoxide dismutases from an algal and bacterial origin.Abbreviations NBT nitro blue tetrazolium - SOD superoxide dismutase (EC 1.15.1.1)  相似文献   

14.
Exposure of the manganese-containing Superoxide dismutase of Escherichia coli to pH 3.2, in the presence of 0.7 m guanidinium chloride, causes a rapid loss of manganese and of activity. The apoenzyme so produced can be reconstituted by addition of MnCl2 followed by neutralization. In contrast, manganese cannot be restored to the apoenzyme by adding MnCl2after neutralization. The reconstituted enzyme is indistinguishable from the native enzyme in terms of its catalytic activity or electrophoretic behavior on polyacrylamide gels. Co(II), Ni(II), Zn(II), Fe(II), or Cu(II) could compete with Mn(II) during reconstitution of the apoenzyme. In the cases of Co(II), Ni(II), and Zn(II), it was shown that, in preventing reconstitution by Mn(II), they were themselves bound to the enzyme in stoichiometric amounts, in place of Mn(II). The binding of Fe(II) was also explored and was distinct in that the enzyme could bind more than stoichiometric amounts of this metal. None of the derivatives, in which Mn(II) had been replaced by another metal, were catalytically active. Nevertheless, these derivatives could be again resolved by exposure to acid guanidinium chloride and could then be converted back into the active holoenzyme by neutralization after addition of MnCl2. It appears that the active site of this enzyme can accommodate and can tightly bind several metals other than manganese, but exhibits activity only with manganese. It also appears that movement of metal out of or into this site is only feasible at low pH and in the presence of a chaotropic agent. A substantial amount of the cobalt-substituted enzyme was prepared and its optical properties were recorded.  相似文献   

15.
Escherichia coli B, grown under aerobic conditions, contains at least three distinct superoxide dismutases, which can be visualized on polyacrylamide gel electropherograms of crude soluble extracts of the sonically disrupted cells. Of these, the slowest migrating and the fastest migrating, respectively, have previously been isolated and characterized as manganese-containing and iron-containing enzymes. The enzyme form with medium electrophoretic mobility has now been purified to homogeneity. Its molecular weight is approximately 37,000 and it contains 0.8 atoms of iron/molecule and only negligible amounts of manganese. Like other iron-containing superoxide dismutases and unlike the corresponding manganienzymes, it is inactivated by EDTA plus H2O2. Its specific activity is comparable to that of the other superoxide dismutases of E. coli. Two types of subunits could be distinguished upon electrophoresis in the presence of sodium dodecyl sulfate. One of these migrated identically with the subunit obtained from the manganisuperoxide dismutase, while the other similarly appeared identical with the subunit from the ferrisuperoxide dismutase. This newly isolated enzyme thus appears to be a hybrid of the other two forms. In support of this conclusion, we observed that ultrafiltration or storage of the new superoxide dismutase gave rise to the mangani- and ferrienzymes on disc gel electrophoresis or isoelectric focussing.  相似文献   

16.
The effect of superoxide dismutases from five species upon phospholipid bilayers has been investigated. The uptake by egg phosphatidylcholine bilayers of the holo and apo forms of bovine superoxide dismutase increases with enzyme concentration and only a fraction of each is removed by treatment with trypsin. These uptake data indicate that both forms of the enzyme associate with and are embedded within lipid bilayers. From the spectrum of the spin label 2-(3-carboxypropyl)-4,4-dimethyl-2-tridecyl-3-oxazolidinyloxyl, the binding of superoxide dismutase to egg phosphatidylcholine bilayers can be shown to disorder the lipid packing. The disordering by the bovine holoenzyme is small but increases with increasing enzyme concentration and period of incubation. The disordering effects of the apoenzyme are much larger and are reversible by Cu2+, Zn2+ reconstitution of the apoenzyme. The disordering effect of the apoenzyme is further confirmed by differential scanning calorimetry. The gel to liquid crystalline phase transition of egg phosphatidylcholine is lowered 7 degrees C by 25% by weight apo-superoxide dismutase to lipid. Human, dog, swordfish and yeast superoxide dismutases also disorder, and to a greater extent than the bovine enzyme. The greatest perturbation is produced by yeast superoxide dismutase; a 20% decrease in the order parameter by 50% by weight enzyme to lipid.  相似文献   

17.
Rat liver tyrosine aminotransferase and alanine aminotransferase are similar enzymes in most properties, but they differ markedly in their ease of coenzyme dissociation and rate of metabolic turnover. Dissociation of coenzyme does not determine rate of turnover (K.L. Lee, P. L. Darke, and F. T. Kenney, 1977, J. Biol. Chem.252, 4958–4961), but these parameters may reflect structural properties of the enzymes which determine both. To explore this possibility we studied these enzymes in livers of rats fed a pyridoxine-deficient diet in which both enzymes were largely in apoenzyme form. This form of alanine aminotransferase, not previously characterized, was identified as an immunologically cross-reactive material which was converted to active enzyme when extracts were incubated with pyridoxal phosphate in vitro. This apoenzyme behaved like the active holoenzyme in chromatographic and electrophoretic analyses but was more sensitive than the holoenzyme to heat, low pH, or proteolysis by trypsin or chymotrypsin. Relative rates of reconstitution of the two holoenzymes in vivo after injection of pyridoxine were determined as a measure of conformational stability of the two enzymes as they exist in the intracellular environment. Restoration of the tyrosine aminotransferase holoenzyme was completed within 30 to 45 min, but that of the alanine enzyme required 8 h. These results suggest that tyrosine aminotransferase in vivo is a relaxed structure which facilitates both coenzyme dissociation and rapid metabolic turnover, whereas alanine aminotransferase assumes a taut structure resistant to both dissociation and degradative processes.  相似文献   

18.
A hybrid superoxide dismutase containing both functional iron and manganese   总被引:15,自引:0,他引:15  
A hybrid superoxide dismutase containing functional Mn and Fe has been isolated from Escherichia coli. Streptomycin, which binds tightly to both the Mn- and the Fe-containing superoxide dismutases, had the expected effect on the electrophoretic and chromatographic behavior of the hybrid. Treatment of the hybrid with H2O2, which selectively inactivates the Fe-containing enzyme, resulted in partial inactivation accompanied by a resegregation of subunits, with the formation of active Mn-enzyme and inactive Fe-enzyme. A similar resegregation of subunits was observed when the hybrid was exposed to 2.5 M guanidinium chloride. Hybrids containing Mn or Fe could be generated in vitro by mixing the Mn-enzyme with the Fe-enzyme, removing metals with 8-hydroxyquinoline in the presence of 2.5 M guanidinium chloride, and then dialyzing against Mn(II) or Fe(II) salts. Ten per cent of the activity of the Fe-superoxide dismutases is resistant to H2O2, which correlates with its content of Mn. Since the activity remaining after exhaustive treatment with H2O2 exhibited the electrophoretic mobility of the Fe-enzyme, we concluded that some of the active sites of the Fe-enzyme were actually occupied by Mn. It should be noted, however, that for purposes of metal reconstitution experiments, a definite specificity was demonstrated. The Mn-enzyme was reconstituted with Mn(II), whereas the Fe-enzyme activity was recovered using only Fe(II). We propose that the Fe-superoxide dismutase may be heterogeneous and that 10% of its activity is actually due to a Mn-containing variant with the same electrophoretic mobility. Only the apohybrid enzyme regained enzymatic activity using both Mn(II) and Fe(II).  相似文献   

19.
We have recently reported the first complete amino acid sequence of an iron-containing superoxide dismutase. The iron enzyme is thought to be closely homologous to the manganese-containing superoxide dismutases. The availability of complete amino acid sequence information for four manganese superoxide dismutases and the crystal structures for two iron and two manganese superoxide dismutases prompted us to investigate the degree of homology between the two proteins at various levels. We report that it is not possible to clearly distinguish the two proteins on the basis of their secondary or tertiary structures. It would appear that a small number of single site substitutions are responsible for conferring distinguishing properties between the two proteins. Substitution of glycine 77 and glutamine 154 by a glutamine and an alanine respectively in Photobacterium leiognathi iron superoxide dismutase may distinguish the kinetic and other particular properties of this protein from the manganese protein (and other iron superoxide dismutases). Furthermore the primary structure of both the iron and manganese proteins does not appear to have any homology with any other known amino acid sequence.  相似文献   

20.
Iron-containing superoxide dismutase was found in the soluble fraction from Euglena gracilis and Mn-superoxide dismutase was found in the thylakoid-bound form. Two major Fe-superoxide dismutases were isolated from the soluble fraction in the homogeneous state. Their absorption spectra, molecular weights, subunit structures, and metal contents resemble those of the Fe-enzymes from procaryotes. However,the Euglena enzymes are more sensitive to heating, to denaturants, and to H2O2 and less sensitive to azide than are the procaryote enzymes. The amino acid composition of the Euglena enzyme differs substantially from the compositions of the enzymes from procaryotes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号