首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The effect of succinate, acetate, and phosphate on the production of cellobiose dehydrogenase (CDH), cellobiose: quinone oxidoreductase (CBQase), -glucosidase, and protease by Phanerochaete chrysosporium in media containing cotton linters, filterpaper, microcrystalline cellulose, or acid-treated cellulose was investigated. The succinate medium,with an initial pH of 4.5 and with cotton linters as the cellulose source, has been demonstrated to yield the highest levels of CDH (141 U/l) and -glucosidase (237 U/l), and the lowest levels of CBQase (53 U/l). The optimized culture conditions identified here permit isolation of milligram quantities of CDH and -glucosidase from P. chrysosporium.  相似文献   

2.
本研究对Aspergillus niger Glu05生产β-葡萄糖苷酶的培养基组分及培养条件进行了优化.优化后的培养基组成和培养条件分别为:麸皮4%,tryptone 4%,1μmol MnSO4,1μmol NaCl,KH2PO40.2%,oH自然,摇床转速250 r/min,培养温度30℃,培养周期5d.优化后发酵液中酶活力达到44.11 IU/mL,与初始的产酶水平32.87 IU/mL相比,提高了36%.  相似文献   

3.
An extracellular -glucosidase II of Aspergillus niger catalysed the synthesis of cello-oligosaccharides from cellobiose (15%, w/v). The enzyme was stable at and below 4°C for at least 230 days and also stable at 30°C with the presence of 2.0% (w/v) cellobiose. The maximum yield of cello-oligosaccharides was about 30% (mol/mol), based on cellobiose (130 mg/mL) consumed. © Rapid Science Ltd. 1998  相似文献   

4.
An extracellular -glucosidase II of Aspergillus niger catalyzed the synthesis of methyl -glucoside and ethyl -glucoside with 5.0% (v/v) cellobiose as glucosyl donor in a biphasic media containing 20% (v/v) methanol and 30% (v/v) ethanol, respectively. The maximum yield of methyl -glucoside and ethyl -glucoside was 83% (mol/mol; 12 mg/ ml) and 53% (mol/mol; 5.5 mg/ml), based on cellobiose consumed. © Rapid Science Ltd. 1998  相似文献   

5.
6.
Cellobiose is an intermediate in the enzymatic hydrolysis of cellulose to glucose and acts as an inhibitor for the cellulase enzymes. The conversion of cellobiose to glucose was studied with β-glucosidase adsorbed on Amberlite DP-1, a cation-exchange resin. The best overall pH for adsorption and reactor operation was near 5.0. The Km values increased with increasing enzyme loading due to competitive inhibition. The maximum practical enzyme loading was about 28 units/g resin. The immobilized enzyme was operated continously in both packed bed and fluidized bed reactors, giving half-lives between 200 and 375 h.  相似文献   

7.
High-resolution ultrasonic spectroscopy (HR–US) was applied for real-time analysis of enzymatic hydrolysis of cellobiose by a β-glucosidase from Aspergillus niger (Novozyme 188) at 50 °C and pH 4.9. This technique is noninvasive, it does not require optical transparency and is suitable to continuously monitor the time dependence of the reaction progress in a broad range of experimental conditions. The time profiles of the amount of glucose released and the reaction rate were obtained from the time profile of ultrasonic velocity. The results are in good agreement with a discontinuous glucose assay (hexokinase method). The kinetic parameters of the reaction were estimated by fitting the ultrasonic time profiles of the reaction rates to several inhibition models. In addition, the equilibrium constant for the reaction of hydrolysis of cellobiose and the molar Gibbs free energy of hydrolysis were determined from the ultrasonic time profiles of concentration of glucose in the reverse reaction (glucose condensation). The results suggest the existence of more complex mechanisms regulating the activity of cellobiase than the combination of simple inhibitions. An extended kinetic model based on two sites for the competitive inhibitor (glucose) is proposed.  相似文献   

8.
9.
10.
This study investigated the cellular location and the contribution of individual β-glucosidase (BGL) to total BGL activity in Neurospora crassa. Among the seven bgl genes, bgl3, bgl5, and bgl7 were transcribed at basal levels, whereas bgl1, bgl2, bgl4, and bgl6 were significantly up-regulated when the wild-type strain was induced with cellulose (Avicel). BGL1 and BGL4 were found to be contributors to intracellular BGL activity, whereas the activities of BGL2 and BGL6 were mainly extracellular. Sextuple bgl deletion strains expressing one of the three basally transcribed bgls did not produce any detectable BGL activity when they were grown on Avicel. BGL6 is the major contributor to overall BGL activity, and most of its activity resides cell-bound. The sextuple bgl deletion strain containing only bgl6 utilized cellobiose at a rate similar to that of the wild type, while the strain with only bgl6 deleted utilized cellobiose much slower than that of the wild type.  相似文献   

11.
《Phytochemistry》1986,25(10):2271-2274
β-Glucosidase (I) was isolated from Carica papaya fruit pulp and purified ca 1000-fold to electrophoretic homogeneity. The procedure used ammonium sulphate fractionation followed by chromatography on Phenyl-Sepharose CL-4B and Sephacryl S-200 to separate α-mannosidase (II) and, in part, β-galactosidase (III) from (I). Final separation of (III) from (I) was achieved by preparative isoelectric focusing (PIEF). The glycosidases had pI of 5.2 (I), 4.9 (II) and 6.9 (III). M,s of 54 000 (I), 260 000 (II) and 67 000 (III) were determined by gel filtration. The M, of (I) estimated by SDS-PAGE was 27 000 suggesting that (I) consisted of two subunits. The optimum pH and optimum temperature of (I) were 5.0 and 50°, respectively, and the enzyme followed typical Michaelis kinetics with Km and Vmax of 1.1 × 10−4 M and 1.8 × 10−6 mol/hr, respectively, for p-nitrophenyl-β-d-glucoside (40°).  相似文献   

12.
The extracellular -glucosidase has been purified from culture broth of Myceliophthora thermophila ATCC 48104 grown on crystalline cellulose. The enzyme was purified approximately 30-fold by (NH4)2SO4 precipitation and column chromatography on DEAE-Sephadex A-50, Sephadex G-200 and DEAE-Sephadex A-50. The molecular mass of the enzyme was estimated to be about 120 kD by both sodium dodecyl sulphate gel electrophoresis and gel filtration chromatography. It displayed optimal activity at pH 4.8 and 60°C. The purified enzyme in the absence of substrate was stable up to 60°C and pH between 4.5 and 5.5. The enzyme hydrolysed p-nitrophenyl--d-glucoside, cellobiose and salicin but not carboxymethyl cellulose or crystalline cellulose. The K m of the enzyme was 1.6mm for p-nitrophenyl--d-glucoside and 8.0mm for cellobiose. d-Glucose was a competitive inhibitor of the enzyme with a K of 22.5mm. Enzyme K activity was inhibited by HgCl2, FeSO4, CuSO4, EDTA, sodium dodecyl sulphate, p-chloromercurobenzoate and iodoacetamide and was stimulated by 2-mercaptoethanol, dithiothreitol and glutathione. Ethanol up to 1.7 m had no effect on the enzyme activity.The authors are with the Department of Microbiology, Bose Institute, 93/1, A.P.C. Road, Calcutta 700 009, India. S.K. Raha is presently with the Department of Medicine, University of Saskatchewan, Saskatoon, Canada S7N OXO.  相似文献   

13.
Summary Carboxymethyl-cellulase and -glucosidase activities were determined in the cytosole, cell walls and extracellular culture fluid of Trichoderma reesei QM 9414 cultivated on cellulose and cellobiose. By means of carboxymethylcellulose as a specific desorbens for cellulose bound CM-cellulase and -glucosidase it was found that these enzymes are cell wall bound during consumption of the carbon source, but are excreted during the subsequent cultivation stage. Treatment of intact cell walls with various chemical agents could not cause a release of the enzyme. Treatment of intact cell walls with -mannanase or trypsin released CM-cellulase, whereas, treatment with laminarinase or chitinase released -glucosidase. Both enzymes were also released during autolysis in phosphate buffer. This autolysis was accompanined by the appearance of extracellular mannanase, laminarinase and proteinase. The results suggest that cleavage of chemical bonds of certain cell wall polymers of T. reesei could be responsible for the appearance of CM-cellulase and -glucosidase in the culture fluid during later stages of growth.  相似文献   

14.
Acidobacterium capsulatum, an acidophilic, mesophilic and chemoorganotrophic bacterium, produced an inducible, acidic β-glucosidase in the cellobiose medium. The enzyme was successively purified 109 times by CM-Sepharose, Sephacryl S-200 chromatography and preparative discontinuous polyacrylamide gel electrophoresis. Polyacrylamide gel electrophoresis of the purified enzyme gave a single band at pH 4.3. The enzyme had an optimum pH of 3.0 and optimum reaction temperature of 55°C, being stable from pH 1.5 to 6.0 and at temperatures from 20 to 45°C. No activity was detected above pH 6.5 or above 65°C. The molecular weight of 90,000 was estimated by gel filtration and the enzyme had an isoelectric point of 7.0. The enzyme hydrolyzed aryl-β-glycosides and β-linked disaccharides.  相似文献   

15.
Summary When culturing the cellulolytic-active Basidiomycete and brown-rot fungus Lenzites trabea A-419 in submerged culture with glucose and cellulose as a carbon source, the fungus only excreted -glucosidase (EC 3.2.1.21) and an endo-1,4--glucanase (EC 3.2.1.4).No evidence for C1 activity (EC 3.2.1.91) was found in the culture filtrate or in the ultra concentrate. -Glucosidase could be separated from endoglucanase by chromatography on Sepharose 6-B. Further fractionation of the -glucosidase on DEAE-Sephadex A-25 resulted in a 525-fold purification. The molecular weight of the isolated -glucosidase was determined by co-chromatography on Sephadex G-200 to be 320,000 daltons. The enzyme developed maximum activities at pH 4.5 and 75°C. The enzyme does not act on crystalline cellulose or CMC, but it hydrolyzes cellotriose,-tetraose, and-pentaose to cellobiose and glucose. -glucosidase activity was strongly inhibited by the reaction product, glucose. A Ki value of 2.7×10–3 (M) for noncompetitive inhibition was found.  相似文献   

16.
Summary Kinetic properties of extracellular -glucosidase from Aspergillus ornatus were determined. The pH and temperature optima for the enzyme were found to be 4.6 and 60°C, respectively. Under these conditions, the enzyme exhibited a K m (p-nitrophenyl--glucoside) value of 0.76±0.11 mM. The activation energy for the enzyme was 11.8 kcal/mol. Several divalent metal ions inhibited -glucosidase activity, some of which showed inhibition of enzyme activity only at higher concentrations. Ag2+ was the most potent inhibitor. A metal chelating agent, EDTA, also inhibited -glucosidase activity. Except for trehalose, glucose, glucono--lactone, cellobiose, gentiobiose, laminaribiose, maltose and isomaltose inhibited -glucosidase activity. Glucose was found to be a competitive inhibitor, whereas glucono--lactone and other -linked disaccharides were noncompetitive (mixed) inhibitors of the enzyme.  相似文献   

17.
A procedure is described for the preparation of extensively purified β-d-glucosidase (EC 3.2.1.21) from the cytosol fraction of rat kidney. The specific activity of the β-glucosidase in the high speed supernatant (100 000 × g, 90 min) fraction of rat kidney homogenate is 700-fold greater than that in the same fraction from heart, skeletal muscle, lung, spleen, brain or liver. β-Glucosidase activity co-chromatographs with β-d-galactosidase, β-d-fucosidase, α-l-arabinosidase and β-d-xylosidase activities through the last four column steps of the purification and their specific activities are 0.26, 0.39, 0.028 and 0.017 relative to that of β-glucosidase, respectively. The specific activity of the apparently homogeneous β-glucosidase is 115 000 nmol of glucose released from 4-methylumbelliferyl-β-d-glucopyranoside per mg protein per h. All five glycosidase activities possess similar pH dependency (pH optimum, 6–7) and heat lability, and co-migrate on polyacrylamide disc gels at ph 8.9 (RF, 0.67). β-Glucosidase activity is inhibited competitively by glucono-(1 → 5)-lactone (KI, 0.61 mM) and non-competitively by a variety of sulfhydryl reagents including N-ethylmaleimide, p-chloromercuribenzoate, 5,5′-dithio-bis(2-nitrobenzoic acid), and iodoacetic acid. Although the enzyme will release glucose from p-nitrophenyl and 4-methylumbelliferyl derivatives of β-d-glucose, it will not hydrolyze xylosyl-O-serine, β-d-glucocerebroside, lactose, galactosylovalbumin or trehalose. The enzyme consists of a single polypeptide chain with a molecular weight of 50 000–58 000, has a sedimentation coefficient of 4.41 S and contains a relatively large number of acidic amino acids. A study of the distribution of β-glucosidase activity in various regions of the dissected rat kidney indicates that the enzyme is probably contained in cells of the proximal convulated tubule. The enzyme is also present in relatively large ammounts in the villus cells, but not crypt cells, of the intestine. the physiological subtrates and function of the enzyme are unknown.  相似文献   

18.
Summary The enzyme production and localization ofThielavia terrestris strains C464 and NRRL 8126 were compared to determine their optimum temperature and pH for cellulase activity. High levels of intracellular -glucosidase activity were detected in the former strain. The intracellular -glucosidase of both strains were more thermostable than the extracellular enzyme; the half life ofT.terrestris (C464) endoglucanase activity at 60°C was greater than 96 hrs.  相似文献   

19.
Massimo Aureli 《FEBS letters》2009,583(15):2469-6422
Human fibroblasts produce ceramide from sialyllactosylceramide on the plasma membranes. Sialidase Neu3 is known to be plasma membrane associated, while only indirect data suggest the plasma membrane association of β-galactosidase and β-glucosidase. To determine the presence of β-galactosidase and β-glucosidase on plasma membrane, cells were submitted to cell surface biotinylation. Biotinylated proteins were purified by affinity column and analyzed for enzymatic activities on artificial substrates. Both enzyme activities were found associated with the cell surface and were up-regulated in Neu3 overexpressing cells. These enzymes were capable to act on both artificial and natural substrates without any addition of activator proteins or detergents and displayed a trans activity in living cells.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号