首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This paper presents a hybrid controller of soft control techniques, adaptive neuro-fuzzy inference system (ANFIS) and fuzzy logic (FL), and hard control technique, proportional-derivative (PD), for a five-finger robotic hand with 14-degrees-of-freedom (DoF). The ANFIS is used for inverse kinematics of three-link fingers and FL is used for tuning the PD parameters with 2 input layers (error and error rate) using 7 triangular membership functions and 49 fuzzy logic rules. Simulation results with the hybrid of FL-tuned PD controller exhibit superior performance compared to PD, PID and FL controllers alone.  相似文献   

2.
A rule-based fuzzy logic control is developed for control of penicillin concentration in a fed-batch bioreactor. The membership functions, fuzzy ranges for the error and for the controller output are defined. A fuzzy rule base is constructed relating error to the control output based on operators' knowledge. The performance of the fuzzy-logic controller is evaluated by simulating a mathematical model of the fed-batch bioreactor.  相似文献   

3.
Control of unstable bioreactor using fuzzy tuned PI controller   总被引:2,自引:0,他引:2  
A fuzzy tuning scheme for conventional PI controller is developed for controlling an unstable continuous bioreactor. The performance is compared with that of a fixed setting conventional PI controller. The performance of the tuning scheme is studied by simulating the non-linear model equations of the bioreactor. The robustness of the controller is also studied for uncertainties in the process parameters such as yield factor and measurement delay. Simulation results show that the fuzzy tuning improves the overall performance and particularly it is more robust to parameter uncertainties.  相似文献   

4.
A fuzzy logic controller designed to control glucose feeding in a fed-batch baker's yeast process is presented. Feeding is carried out in portions and the controller determines the time at which glucose should be added and computes the size of the portion to provide the maximum glucose uptake rate. Moreover, the controller detects and prevents the occurrence of overdosage. The experimental results indicate that yield and specific growth rate obtained with the controller approached 55% and 0.13 h–1, respectively.  相似文献   

5.
The baker's yeast process was optimised with a fuzzy logic controller, which is capable of detecting (with the respiratory quotient as indicator) and eliminating overdosage. The controller was developed to enable automatic modification of the set value for the respiratory quotient according to glucose concentration in the broth. With this controller, a cell yield of 55% (w/w) from glucose and a maximum specific growth rate of 0.16 h–1 were obtained.  相似文献   

6.
SIR型传染病的模糊控制   总被引:3,自引:0,他引:3  
针对SIR型传染病数学模型,将疾病的发展程度这一影响传染病传播的主要因素模糊化,利用条件S0〈P和S0〉p对疫情的影响,建立了一种模糊控制模型,使之在疫情发展的不同阶段对应不同控制措施。  相似文献   

7.
The paper considers gradient training of fuzzy logic controller (FLC) presented in the form of neural network structure. The proposed neuro-fuzzy structure allows keeping linguistic meaning of fuzzy rule base. Its main adjustable parameters are shape determining parameters of the linguistic variables fuzzy values as well as that of the used as intersection operator parameterized T-norm. The backpropagation through time method was applied to train neuro-FLC for a highly non-linear plant (a biotechnological process). The obtained results are discussed with respect to adjustable parameters rationality. Conclusions are made with respect to the appropriate intersection operations too.  相似文献   

8.
The control of bioprocesses can be very challenging due to the fact that these kinds of processes are highly affected by various sources of uncertainty like the intrinsic behavior of the used microorganisms. Due to the reason that these kinds of process uncertainties are not directly measureable in most cases, the overall control is either done manually because of the experience of the operator or intelligent expert systems are applied, e.g., on the basis of fuzzy logic theory. In the latter case, however, the control concept is mainly represented by using merely positive rules, e.g., “If A then do B”. As this is not straightforward with respect to the semantics of the human decision-making process that also includes negative experience in form of constraints or prohibitions, the incorporation of negative rules for process control based on fuzzy logic is emphasized. In this work, an approach of fuzzy logic control of the yeast propagation process based on a combination of positive and negative rules is presented. The process is guided along a reference trajectory for yeast cell concentration by alternating the process temperature. The incorporation of negative rules leads to a much more stable and accurate control of the process as the root mean squared error of reference trajectory and system response could be reduced by an average of 62.8 % compared to the controller using only positive rules.  相似文献   

9.
A fuzzy logic controller (FLC) for the control of ethanol concentration was developed and utilized to realize the maximum production of glutathione (GSH) in yeast fedbatch culture. A conventional fuzzy controller, which uses the control error and its rate of change in the premise part of the linguistic rules, worked well when the initial error of ethanol concentration was small. However, when the initial error was large, controller overreaction resulted in an overshoot.An improved fuzzy controller was obtained to avoid controller overreaction by diagnostic determination of "glucose emergency states" (i.e., glucose accumulation or deficiency), and then appropriate emergency control action was obtained by the use of weight coefficients and modification of linguistic rules to decrease the overreaction of the controller when the fermentation was in the emergency state. The improved fuzzy controller was able to control a constant ethanol concentration under conditions of large initial error.The improved fuzzy control system was used in the GSH production phase of the optimal operation to indirectly control the specific growth rate mu to its critical value mu(c). In the GSH production phase of the fed-batch culture, the optimal solution was to control mu to mu(c) in order to maintain a maximum specific GSH production rate. The value of mu(c) also coincided with the critical specific growth rate at which no ethanol formation occurs. Therefore, the control of mu to mu(c) could be done indirectly by maintaining a constant ethanol concentration, that is, zero net ethanol formation, through proper manipulation of the glucose feed rate. Maximum production of GSH was realized using the developed FLC; maximum production was a consequence of the substrate feeding strategy and cysteine addition, and the FLC was a simple way to realize the strategy. (c) 1993 John Wiley & Sons, Inc.  相似文献   

10.
This paper describes a fuzzy sets method which is very useful for handling uncertainties and essential for knowledge acquisition of a human expert. Kinetics of a reactor is often complex and not trivial to describe by mathematical equations. Reactor control by traditional control technology is therefore difficult. A novel technology is presented. In the following a fuzzy inference (approximate reasoning) is used for decision making in analogy to human thinking, facilitating a more sophisticated control. Readers of this paper do not need any advanced mathematics beyond the four basic operations in arithmetic (+, -, x, divided by) and using the maximum and minimum values. This fuzzy inference is introduced to construct a fuzzy logic controller which is suitable for a nonlinear, multivariable and time variant system applied to a bioreactor.  相似文献   

11.
In baker's yeast fermentation, the process is non-linear and the response of the system to changes in glucose feeding has a very long delay time. Therefore, a conventional system can not give satisfactory results. In this paper, a fuzzy controller designed to control a fed-batch fermenter is presented. The fuzzy controller uses Respiratory Quotient (RQ) as a controller input and produces glucose feeding rate as control variable. The controller has been tested on a simulated fed-batch fermenter. The results show that the maximum yeast production is possible by keeping the specific growth rate (μ) and the glucose concentration (C s) at preset values (μ Cand C s,c) and minimizing the ethanol production.  相似文献   

12.
In previous biomechanical studies of the human spine, we implemented a hybrid controller to investigate load-displacement characteristics. We found that measurement errors in both position and force caused the controller to be less accurate than predicted. As an alternative to hybrid control, a fuzzy logic controller (FLC) has been developed and implemented in a robotic testing system for the human spine. An FLC is a real-time expert system that can emulate part of a human operator's knowledge by using a set of action rules. The FLC provides simple but robust solutions that cover a wide range of system parameters and can cope with significant disturbances. It can be viewed as a heuristic and modular way of defining a nonlinear, table-based control system. In this study, an FLC is developed which uses the force difference and the change in force difference as the input parameters, and the displacement as the output parameter. A rule-table based on these parameters is designed for the controller Experiments on a physical model composed of springs demonstrate the improved performance of the proposed method.  相似文献   

13.
In this paper, a bionic optimization algorithm based dimension reduction method named Ant Colony Optimization -Selection (ACO-S) is proposed for high-dimensional datasets. Because microarray datasets comprise tens of thousands of features (genes), they are usually used to test the dimension reduction techniques. ACO-S consists of two stages in which two well-known ACO algorithms, namely ant system and ant colony system, are utilized to seek for genes, respectively. In the first stage, a modified ant system is used to filter the nonsignificant genes from high-dimensional space, and a number of promising genes are reserved in the next step. In the second stage, an improved ant colony system is applied to gene selection. In order to enhance the search ability of ACOs, we propose a method for calculating priori available heuristic information and design a fuzzy logic controller to dynamically adjust the number of ants in ant colony system. Furthermore, we devise another fuzzy logic controller to tune the parameter (q0) in ant colony system. We evaluate the performance of ACO-S on five microarray datasets, which have dimensions varying from 7129 to 12000. We also compare the performance of ACO-S with the results obtained from four existing well-known bionic optimization algorithms. The comparison results show that ACO-S has a notable ability to generate a gene subset with the smallest size and salient features while yielding high classification accuracy. The comparative results generated by ACO-S adopting different classifiers are also given. The proposed method is shown to be a promising and effective tool for mining high-dimension data and mobile robot navigation.  相似文献   

14.
A neural network model for solving constrained nonlinear optimization problems with bounded variables is presented in this paper. More specifically, a modified Hopfield network is developed and its internal parameters are computed using the valid-subspace technique. These parameters guarantee the convergence of the network to the equilibrium points. The network is shown to be completely stable and globally convergent to the solutions of constrained nonlinear optimization problems. A fuzzy logic controller is incorporated in the network to minimize convergence time. Simulation results are presented to validate the proposed approach.  相似文献   

15.
A fuzzy self-tuned PI controller for regulation of a nonlinear bioreactor is presented. The basic idea is to parameterize Ziegler-Nichols like tuning formula by two parameters and and then to use an on-line fuzzy inference mechanism to tune the PI controller parameters k c and I . The fuzzy self-tuning method takes the process output error as input and the tuning parameters and as outputs. Simulation studies on the nonlinear bioreactor model equations show that the present method is superior to that of fixed parameters conventional PI controller (based on transfer function) for both servo and regulatory problems. The present fuzzy logic controller is robust to process parameters uncertainties and to changes in magnitude and direction of the disturbances.  相似文献   

16.
Dynamic fuzzy model based predictive controller for a biochemical reactor   总被引:3,自引:1,他引:2  
The kinetics of bioreactions often involve some uncertainties and the dynamics of the process vary during the course of fermentation. For such processes, conventional control schemes may not provide satisfactory control performance and demands extra effort to design advanced control schemes. In this study, a dynamic fuzzy model based predictive controller (DFMBPC) is presented for the control of a biochemical reactor. The DFMBPC incorporates an adaptive fuzzy modeling framework into a model based predictive control scheme to derive analytical controller output. The DFMBPC has the flexibility to opt with various types of fuzzy models whose choice also lead to improve the control performance. The performance of DFMBPC is evaluated by comparing with a fuzzy model based predictive controller (FMBPC) with no model adaptation and a conventional PI controller. The results show that DFMBPC provides better performance for tracking setpoint changes and rejecting unmeasured disturbances in the biochemical reactor.  相似文献   

17.
Summary In analysis of oil accumulation by the yeast Rhodotorula gracilis, fuzzy logic and neural networks were shown to be able to significantly reduce the number of experiments required in designing fermentation media. Fuzzy logic performed similarly, although slightly less accurately, than neural networks in predicting the outcome of shake flask experiments. In some instances having too many fuzzy rules decreased the accuracy of the technique, and further work is required to determine the criteria for achieving optimum performance from the fuzzy logic model. Overall fuzzy logic is a viable and useful tool for designing fermentation media.  相似文献   

18.
The monitoring and control of bioprocesses is a challenging task. This applies particularly if the actions to the process have to be carried out in real‐time. This work presents a system for on‐line monitoring and control of batch yeast propagation under limiting conditions based on a virtual plant operator, which uses the concept of intelligent control algorithms by means of fuzzy logic theory. Process information is provided on‐line using a sensor array comprising the measurement of OD, operating temperature, pressure, density, dissolved oxygen, and pH value. In this context practical problems arising through on‐line sensing and signal processing are addressed. The preprocessed sensor data are fed to a neural network for on‐line biomass estimation. The root mean squared error of prediction is 4 × 106 cells/mL. The proposed system then triggers temperature and aeration by usage of a temperature dependent metabolic growth model and sensor data. The deviation of the predicted biomass from that of the reference trajectory as modeled by the metabolic growth model and its temporal derivative are used as inputs for the fuzzy temperature controller. The inputs used by the fuzzy aeration controller are the deviation of measured extract from that of the reference trajectory, the predicted cell count, and the dissolved oxygen concentration. The fuzzy‐based expert system allows to provide the desired yeast cell concentration of 100–120 × 106 cells/mL at a minimum residual extract limit of 6.0 g/100 g at the required point of time. Thus, a dynamic adjustment of the propagation process to the overall production schedule is possible in order to produce the required amount of biomass at the right time.  相似文献   

19.
A quantitative biomechanical model describes the tissue transformation during healing of a transverse osteotomy of a sheep metatarsal. The model predicts bridging of the bone ends through cartilage, followed by the growth of a callus cuff, and finally, the resorption of callus after ossification of the interfragmentary gap. We suggest bone density or the modulus of elasticity do not sufficiently characterize healing tissue for predictive purposes. In addition to the stimulus reflected by strain energy density we introduce a new osteogenic factor based upon stress gradients and which predicts areas of a high osteogenic capacity. Our model distinguishes three basic types of tissue, namely bone, cartilage and fibrous tissue. A fuzzy controller is proposed to model the tissue reaction. A set of fuzzy rules derived from medical knowledge has been implemented to describe tissue transformation such as intramembraneous or chondral ossification, atrophy or destruction. Fuzzy logic is able to model tissue transformation processes within the numerical simulation of remodeling processes. This approach improves the simulation tools and affords the potential to optimize planning of animal experiments and conduct parametric studies.  相似文献   

20.
A fuzzy controller for biomass gasifiers is proposed. Although fuzzy inference systems do not need models to be tuned, a plant model is proposed which has turned out very useful to prove different combinations of membership functions and rules in the proposed fuzzy control. The global control scheme is shown, including the elements to generate the set points for the process variables automatically. There, the type of biomass and its moisture content are the only data which need to be introduced to the controller by a human operator at the beginning of operation to make it work autonomously. The advantages and good performance of the fuzzy controller with the automatic generation of set points, compared to controllers utilising fixed parameters, are demonstrated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号