首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The ability of the kidney to excrete sodium appears to depend on release of dopamine from intrarenal sources. In the present study, we have used immunohistochemistry to examine the possibility that renal dopaminergic nerves constitute one of these sources. We found that the sympathetic axons supplying cortical structures in human kidney contain tyrosine hydroxylase-like immunoreactivity but lack DOPA decarboxylase-like immunoreactivity. By contrast, the vasa recta arterioles of the renal medulla are supplied by varicose tyrosine hydroxylase-positive nerve fibres, some of which also contain DOPA decarboxylase. As DOPA decarboxylase has been demonstrated in other situations to be a selective marker for dopaminergic terminal axons, our results suggest the innervation of renal medullary blood vessels in man by both noradrenergic and dopaminergic sympathetic nerves.  相似文献   

2.
Blood supply of the human cervical sympathetic chain and ganglia   总被引:1,自引:0,他引:1  
OBJECTIVE: Cadaveric studies of the blood supply to the human cervical sympathetic chain and ganglia are lacking in the English literature. This study seeks to elucidate the gross blood supply of the cervical sympathetic chain so as to avoid surgical disruption of these vessels and thus decrease the risk of vascular insufficieny and subsequent dysfunction of thoracolumbar autonomic outflow to the head and neck. METHODS: Twelve (24 sides) human cadavers (8 male and 4 female) were dissected and their brachiocephalic veins, internal carotid arteries, and vertebral arteries cannulated. Red and blue latex was injected into the arteries and veins respectively. Dissection of the neck was carefully performed and the blood supply of the cervical sympathetic chain identified. RESULTS: The primary arterial supply to the sympathetic chain and ganglia were from superior to inferior the ascending pharyngeal, ascending cervical, thyrocervical trunk, and supreme intercostal arteries. The primary venous drainage of these structures was primarily by direct posterior branches into the internal jugular vein. In addition, we have found an area at the junction of the lower two-thirds and upper one-third of the neck, which is deficient in blood supply (both arterial and venous). CONCLUSIONS: Although sympathetic injury is a rare consequence of cervical operations, the current data should be useful to the surgeon who operates in the cervical region so as to avoid potential complications from disruption of the primary blood supply of the cervical sympathetic chain and ganglia. Also, future techniques of selective iatrogenic disruption of the blood supply to portions of these structures e.g. stellate ganglion may be helpful in treating entities such as hyperhydrosis.  相似文献   

3.
4.
5.
Chen Y  Magnani D  Theil T  Pratt T  Price DJ 《PloS one》2012,7(3):e33105
Developing thalamocortical axons traverse the subpallium to reach the cortex located in the pallium. We tested the hypothesis that descending corticofugal axons are important for guiding thalamocortical axons across the pallial-subpallial boundary, using conditional mutagenesis to assess the effects of blocking corticofugal axonal development without disrupting thalamus, subpallium or the pallial-subpallial boundary. We found that thalamic axons still traversed the subpallium in topographic order but did not cross the pallial-subpallial boundary. Co-culture experiments indicated that the inability of thalamic axons to cross the boundary was not explained by mutant cortex developing a long-range chemorepulsive action on thalamic axons. On the contrary, cortex from conditional mutants retained its thalamic axonal growth-promoting activity and continued to express Nrg-1, which is responsible for this stimulatory effect. When mutant cortex was replaced with control cortex, corticofugal efferents were restored and thalamic axons from conditional mutants associated with them and crossed the pallial-subpallial boundary. Our study provides the most compelling evidence to date that cortical efferents are required to guide thalamocortical axons across the pallial-subpallial boundary, which is otherwise hostile to thalamic axons. These results support the hypothesis that thalamic axons grow from subpallium to cortex guided by cortical efferents, with stimulation from diffusible cortical growth-promoting factors.  相似文献   

6.
  • 1.1. Major lipid classes from cortical and medullary zones of normal and nephrosclerotic human kidneys have been isolated and the fatty acid composition of each determined.
  • 2.2. The nephrosclerotic tissue contained two times more total lipid than the normal kidney but, irrespective of kidney pathology, phospholipids were the major cortical lipids and neutral lipids were the predominant lipids in medullary zones.
  • 3.3. Human kidney contained large amounts of phosphatidylcholines, phosphatidylethanolamines and sphingomyelins and although these were slightly increased in the sclerotic kidney, anatomical differences in phospholipid content were not significant.
  • 4.4. Quantitative differences between the zones of normal kidney were found with triglycerides, diglycerides. free fatty acids and cholesterol; overall, the sclerotic tissue contained more triglycerides and small amounts of cholesterol esters with less significant regional differences.
  • 5.5. Palmitic, oleic and stearic acid were the major fatty acids of neutral lipids; these plus linoleic acid were prevalent in phospholipids.
  相似文献   

7.
8.
Evidence of apoptosis in human diabetic kidney   总被引:20,自引:0,他引:20  
Diabetic nephropathy is characterized by an early period of renal growth with glomerular and tubular cell hypertrophy, but this is followed by progressive glomerulosclerosis and tubulointerstitial fibrosis, associated with loss of renal tissue. We studied whether apoptotic cell death occurs in human diabetic nephropathy. Percutaneous renal biopsy samples were obtained from five patients with diabetic nephropathy who were receiving insulin and/or angiotensin-converting enzyme inhibitor therapy. Apoptosis was determined by the presence of DNA fragmentation, detected by in situ TUNEL staining, and by characteristic features on electron microscopy, such as chromatin condensation. Apoptosis was present in all five biopsy specimens, either in epithelial cells of the proximal or distal tubules, or in endothelial cells or interstitial cells. No apoptosis was detected in cells of the glomeruli. The present study provides evidence for apoptosis in human diabetic kidney, and suggests a role for apoptosis in the gradual loss of renal mass.  相似文献   

9.
10.
Summary The anterograde tracer Phaseolus vulgaris-leucoagglutinin was injected into the medial nucleus of the solitary tract and into the rostral dorsomedial medulla. A sequential two-color immunoperoxidase staining was accomplished in order to demonstrate the co-distribution of presumed terminal axons with chemically distinct neurons in the dorsal raphe nucleus of the midbrain central gray, i.e., B7 serotonergic and A10dc dopaminergic neurons. Black-stained efferent fibers from the medial nucleus of the solitary tract and the rostral dorsomedial medulla intermingled with brown-stained serotonergic (5-hydroxytryptamine-immunoreactive) or dopaminergic (tyrosine hydroxylase-immunoreactive) neurons. Light microscopy revealed that the black-stained efferent axons exhibited numerous en passant and terminal varicosities that were often found in close apposition to brown-stained serotonergic and dopaminergic somata, and to proximal and distal dendrites and dendritic processes. The close association of immunoreactive elements suggests the presence of axo-somatic and axodendritic synaptic contacts of medullary fibers with serotonergic and dopaminergic neurons in the dorsal raphe nucleus. These projections could be involved in the modulation of dorsal raphe neurons, depending on the autonomic status of an animal.  相似文献   

11.
S Evangelista  F Borsini  A Meli 《Life sciences》1987,41(24):2679-2684
Muscimol as well as catecholaminergic drugs reduce immobility time in the forced swimming test. In view of the fact that GABAergic drugs may facilitate some brain catecholaminergic functions, we investigated as to whether or not muscimol would reduce immobility time through activation of catecholaminergic mechanisms. The effect of muscimol (2 mg/Kg i.p.) on reduction of immobility time was prevented by intraperitoneal alpha-methyl-para-tyrosine (250 mg/Kg i.p.), which reduces brain catecholamine content, haloperidol (0.5 mg/Kg) and sulpiride (100 and 50 mg/Kg), antidopaminergic drugs, and meta-chlorphenyl-piperazine (0.6 and 1.25 mg/Kg), a serotonergic agonist, but not by clonidine (0.1 mg/Kg), an alpha2-adrenoceptor agonist, d, 1-propranolol (5 mg/Kg), an antagonist of beta-adrenergic receptors, or subcutaneous prazosin (3 mg/Kg), an alpha1-adrenolytic drug. Our findings indicate that a) muscimol reduces immobility time by stimulating dopaminergic neurons and b) activation of the serotonergic system antagonizes muscimol effect.  相似文献   

12.
Neural dopaminergic vasodilator control in the kidney   总被引:4,自引:0,他引:4  
C Bell  W J Lang 《Nature: New biology》1973,246(149):27-29
  相似文献   

13.
We describe culture systems for neurons of an adrenergic autonomic ganglion which: (a) permit cultivation of neurons without supporting cells, (b) permit separate harvest of somal and axonal material, and (c) permit direct access to the neuronal surface. The antimetabolites used to suppress supporting cell growth did not have demonstrable effects on neuronal polypeptide synthesis. Rapid neurite outgrowth, which characterized these cultures, was prevented by colchicine or cycloheximide and resumed promptly after their withdrawal. Axons separated from cell bodies showed no incorporation of label from leucine or fucose, but did exhibit incorporation of glucosamine. The major polypeptides present in this neuron, as demonstrated by sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) analysis, are described. No major differences in polypeptide content were observed when soma and axons were compared. Likewise, there were no differences detected in polypeptides synthesized by neurons in suspension or neurons actively extending processes. Analysis of the polypeptides within the neurites after labeling with amino acids indicated transport at a number of different rates; certain of these polypeptides corresponded in size and transport characteristics to polypeptides observed in the rabbit optic nerve after labeling of retinal ganglion cells. Tubulin and actin have been definitively identified in this cell type (18); we found proteins similar in size and proportionate amounts to be among the rapidly transported soluble polypeptides. The prominent polypeptides observed after several methods of surface labeling are described.  相似文献   

14.
15.
This study reports that 4S RNA present in regenerating optic axons of goldfish is likely to be transfer RNA. Evidence is also presented which indicates that this transfer RNA is similar to transfer RNA found in tectal cells and that its aminocylation is likely to occur both in retinal ganglion cells prior to axonal transport as well as in the axon itself. Fish with regenerating optic nerves received intraocular injections of [3H]uridine followed 4 days later by intracranial injections of [14C]uridine. Radioactive tectal 4S RNA was isolated 6 days after [3H]uridine injections and chromatographed by BD cellulose chromatography. Optical density as well as radioactivity profiles for both [14C]4S RNA (from tectal cells) and [3H]4S RNA (90% of which originated from regenerating optic axons) were found to be similar toE. coli transfer RNA optical density profiles, indicating that the intra-axonal 4S RNA is likely to be transfer RNA. Moreover, comparisons of3H/14C suggest that intra-axonal and cellular 4S RNAs are composed of similar species of transfer RNA. Results of other experiments indicated that aminoacylation of axonally transported tRNA occurs both in the retina and in optic axons subsequent to axonal transport.  相似文献   

16.
The tracts between cortical areas are conceived as playing a central role in cortical information processing, but their actual numbers have never been determined in humans. Here, we estimate the absolute number of axons linking cortical areas from a whole-cortex diffusion MRI (dMRI) connectome, calibrated using the histologically measured callosal fiber density. Median connectivity is estimated as approximately 6,200 axons between cortical areas within hemisphere and approximately 1,300 axons interhemispherically, with axons connecting functionally related areas surprisingly sparse. For example, we estimate that <5% of the axons in the trunk of the arcuate and superior longitudinal fasciculi connect Wernicke’s and Broca’s areas. These results suggest that detailed information is transmitted between cortical areas either via linkage of the dense local connections or via rare, extraordinarily privileged long-range connections.

Using data from Human Connectome Project to estimate the absolute number of axons linking cortical areas yields surprisingly sparse connectivity; reconciling large-scale functional synchronization with sparse anatomical connectivity presents a challenge for our present understanding of human brain organization.  相似文献   

17.
The effects of histamine on prolactin secretion and the activity of tuberoinfundibular dopaminergic (DA) neurons were examined in male rats. Tuberoinfundibular DA neuronal activity was estimated in situ by measuring the metabolism [concentration of 3,4-dihydroxyphenylacetic acid (DOPAC)] and synthesis [accumulation of 3,4-dihydroxyphenylalanine (DOPA) after administration of a decarboxylase inhibitor] of dopamine in the median eminence. Intracerebroventricular (icv) injection of histamine produced a dose- and time-dependent increase in plasma prolactin levels but had no effect on DOPA accumulation or DOPAC concentrations in the median eminence. These results indicate that the stimulation of prolactin secretion following icv histamine is not mediated by an inhibition of tuberoinfundibular DA neurons.  相似文献   

18.
Binding of [4-3H]cytochalasin B and [12-3H]forskolin to human erythrocyte membranes was measured by a centrifugation method. Glucose-displaceable binding of cytochalasin B was saturable, with KD = 0.11 microM, and maximum binding approximately 550 pmol/mg of protein. Forskolin inhibited the glucose-displaceable binding of cytochalasin B in an apparently competitive manner, with K1 = 3 microM. Glucose-displaceable binding of [12-3H]forskolin was also saturable, with KD = 2.6 microM and maximum binding approximately equal to 400 pmol/mg of protein. The following compounds inhibited binding of [12-3H]forskolin and [4-3H]cytochalasin B equivalently, with relative potencies parallel to their reported affinities for the glucose transport system: cytochalasins A and D, dihydrocytochalasin B, L-rhamnose, L-glucose, D-galactose, D-mannose, D-glucose, 2-deoxy-D-glucose, 3-O-methyl-D-glucose, phloretin, and phlorizin. A water-soluble derivative of forskolin, 7-hemisuccinyl-7-desacetylforskolin, displaced equivalent amounts of [4-3H]cytochalasin B or [12-3H]forskolin. Rabbit erythrocyte membranes, which are deficient in glucose transporter, did not bind either [4-3H]cytochalasin B or [12-3H]forskolin in a glucose-displaceable manner. These results indicate that forskolin, in concentrations routinely employed for stimulation of adenylate cyclase, binds to the glucose transporter. Endogenous ligands with similar specificities could be important modulators of cellular metabolism.  相似文献   

19.
Responses arising in ventral root filaments and antidromic discharges of single sympathetic preganglionic neurons in the lateral horn of gray matter in segment L2 of the cat spinal cord were recorded during stimulation of the white rami communicantes in the same segment. Conduction velocities, thresholds, and refractory periods were determined for individual groups of sympathetic preganglionic fibers. Excitation was conducted more slowly along the intramedullary part of the axons of some sympathetic neurons than along the extramedullary part. In a third group of neurons studied the second antidromic discharge appeared in response to paired stimulation if the interstimulus interval was appreciably longer than their refractory period. It is postulated that axons of sympathetic preganglionic neurons in the lumber spinal cord have a thin intramedullary part and are supplied with recurrent collaterals.I. P. Pavlov Institute of Physiology, Academy of Sciences of the USSR, Leningrad. Translated from Neirofiziologiya, Vol. 6, No. 2, pp. 143–151, March–April, 1974.  相似文献   

20.
The competitive neuromuscular blocking agents, gallamine and pancuronium, enhanced the nictitating membrane contraction, in the cat, resulting from muscarine ganglionic transmission. Inhibition of ganglionic muscarinic hyperpolarization, in response to short tetanic bouts of preganglionic cervical sympathetic stimulation, was an associated event and is considered by us to be causally related. The neuroleptic drug, haloperidol, enhanced ganglionic hyperpolarization under similar stimulatory conditions, and reduced the nictitating membrane contraction elicited via ganglionic muscarine pathways, effects opposite to those produced by the skeletal muscle relaxants. Apomorphine reduced both ganglionic hyperpolarization and the ganglionic muscarinic-induced nictitating membrane contractions. The action of gallamine and pancuronium conforms to a speculative cholinergic antagonism at the specific muscarinic receptors, termed Mi, on the ganglionic dopaminergic interneuron. Haloperiodol and apomorphine are anticipated to be exerting distinct antagonistic and agonistic actions, respectively, on prejunctional dopamine receptors of the ganglionic interneuron. Ganglionic slow depolarization mediated through the muscarinic receptors, termed Me, was unaltered by any of the agents studied.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号