首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Bacterial acetyl-CoA carboxylase is a multifunctional biotin-dependent enzyme that consists of three separate proteins: biotin carboxylase (BC), biotin carboxyl carrier protein (BCCP), and carboxyltransferase (CT). Acetyl-CoA carboxylase is a potentially attractive target for novel antibiotics because it catalyzes the first committed step in fatty acid biosynthesis. In the first half-reaction, BC catalyzes the ATP-dependent carboxylation of BCCP. In the second half-reaction, the carboxyl group is transferred from carboxybiotinylated BCCP to acetyl-CoA to produce malonyl-CoA. A series of structures of BC from several bacteria crystallized in the presence of various ATP analogs is described that addresses three major questions concerning the catalytic mechanism. The structure of BC bound to AMPPNP and the two catalytically essential magnesium ions resolves inconsistencies between the kinetics of active-site BC mutants and previously reported BC structures. Another structure of AMPPNP bound to BC shows the polyphosphate chain folded back on itself, and not in the correct (i.e., extended) conformation for catalysis. This provides the first structural evidence for the hypothesis of substrate-induced synergism, which posits that ATP binds nonproductively to BC in the absence of biotin. The BC homodimer has been proposed to exhibit half-sites reactivity where the active sites alternate or "flip-flop" their catalytic cycles. A crystal structure of BC showed the ATP analog AMPPCF(2)P bound to one subunit while the other subunit was unliganded. The liganded subunit was in the closed or catalytic conformation while the unliganded subunit was in the open conformation. This provides the first structural evidence for half-sites reactivity in BC.  相似文献   

2.
Escherichia coli acetyl-CoA carboxylase (ACC) is composed of four different protein molecules. These proteins form a large but very unstable complex. Hints of a sub-complex between the biotin carboxylase (BC) and biotin carboxyl carrier protein (BCCP) subunits have been reported in the literature, but the complex was not isolated and thus the protein stoichiometry could not be determined. We report isolation of the BC.BCCP complex. By use of affinity chromatography using two different affinity tags it was shown that the complex consists of a two BCCP molecules per BC molecule. The molar ratio in the complex is the same as the ratio of the subunit proteins synthesized in vivo. We conclude that the complex consists of a dimer of BC plus four BCCP molecules instead of the 2BC.2BCCP complex previously assumed. This subunit ratio allows two conflicting models of the ACC mechanism to be rectified. We also report that the N-terminal 30 or so residues of BCCP are responsible for the interaction of BCCP with BC and that the BC.BCCP complex is a substrate for biotinylation in vitro.  相似文献   

3.
The committed step for de novo fatty acid biosynthesis is the carboxylation of acetyl-CoA catalyzed by acetyl-CoA carboxylase (ACCase). Plastidial ACCase from most plants is a multisubunit complex composed of multiple copies of four different polypeptides, biotin carboxyl carrier protein (BCCP), biotin carboxylase (BC), and carboxyltransferase (alpha-CT and beta-CT). Immunoblot analyses revealed these four proteins were mostly (69% of total) associated with a 17,000 g insoluble fraction from lysed pea chloroplasts. Under the same conditions only 8% of ribulose-1,5-bisphosphate carboxylase was associated with this insoluble fraction. BCCP and biotin carboxylase BC subunits freely dissociated from 17 kg insoluble fractions under high ionic strength conditions, whereas alpha-CT and beta-CT subunits remained tightly associated. Both CT subunits were highly enriched in envelope versus stroma and thylakoid preparations whereas BC and BCCP subunits were predominantly stromal-localized due to partial dissociation. Rapid solubilization of intact chloroplasts with Triton X-100 followed by centrifugation at 30 kg resulted in a pellet that was up to 8-fold enriched in ACCase activity and 21-fold enriched in BC activity. Triton-insoluble 30 kg pellets were reduced in lipid and chlorophyll content but enriched in chloroplast DNA due to the isolation of nucleoid particles. However, ACCase was not directly associated with nucleoids since enzymatic digestion of DNA or RNA had no effect on the association with Triton-insoluble matter. The amount of Triton-insoluble ACCase was similar in chloroplasts isolated from dark- or light-adapted leaves suggesting transitory starch granules were also not involved in this association. It is proposed that ACCase is associated with envelope membranes through interactions with an unidentified integral membrane protein.  相似文献   

4.
Acetyl-CoA carboxylase (ACCase; EC 6.4.1.2) is a regulatory enzyme of fatty acid synthesis, and in some higher-plant plastids is a multi-subunit complex consisting of biotin carboxylase (BC), biotin-carboxyl carrier protein (BCCP), and carboxyl transferase (CT). We recently described a Nicotiana tabacum L. (tobacco) cDNA with a deduced amino acid sequence similar to that of prokaryotic BC. We here provide further biochemical and immunological evidence that this higher-plant polypeptide is an authentic BC component of ACCase. The BC protein co-purified with ACCase activity and with BCCP during gel permeation chromatography of Pisum sativum L. (pea) chloroplast proteins. Antibodies to the Ricinus communis L. (castor) BC co-precipitated ACCase activity and BCCP. During castor seed development, ACCase activity and the levels of BC and BCCP increased and subsequently decreased in parallel, indicating their coordinate regulation. The BC protein comprised about 0.8% of the soluble protein in developing castor seed, and less than 0.05% of the protein in young leaf or root. Polypeptides cross-reacting with antibodies to castor BC were detected in several dicotyledons and in the monocotyledons Hemerocallis fulva L. (day lily), Iris L., and Allium cepa L. (onion), but not in the Gramineae species Hordeum vulgare L. (barley) and Panicum virgatum L. (switchgrass). The castor endosperm and pea chloroplast ACCases were not significantly inhibited by long-chain acyl-acyl carrier protein, free fatty acids or acyl carrier protein. The BC polypeptide was detected throughout Brassica napus L. (rapeseed) embryo development, in contrast to the multi-functional ACCase isoenzyme which was only detected early in development. These results firmly establish the identity of the BC polypeptide in plants and provide insight into the structure, regulation and roles of higherplant ACCases.Abbreviations ACCase acetyl-CoA carboxylase - ACP acyl carrier protein - BC biotin carboxylase - BCCP biotin carboxyl carrier protein - CT carboxyl transferase - MF multi-functional - MS multi-subunit We thank our colleagues Nicki Engeseth and Vicki Eccleston for advice on fatty acid analysis and Sarah Hunter for providing the developing Iris seed. This work was supported in part by grant MCB 9406466 from NSF. Acknowledgement is also made to the Michigan Agriculture Experiment Station for its support of this research.  相似文献   

5.
Pyruvate carboxylase (PC) is a conserved multifunctional enzyme linked to important metabolic diseases. PC homotetramer is arranged in two layers with two opposing monomers per layer. Cryo-EM explores the conformational variability of PC in the presence of different substrates. The results demonstrate that the biotin-carboxyl carrier protein (BCCP) domain localizes near the biotin carboxylase (BC) domain of its own monomer and travels to the carboxyltransferase (CT) domain of the opposite monomer. All density maps show noticeable conformational differences between layers, mainly for the BCCP and BC domains. This asymmetry may be indicative of a coordination mechanism where monomers from different layers catalyze the BC and CT reactions consecutively. A conformational change of the PC tetramerization (PT) domain suggests a new functional role in communication. A long-range communication pathway between subunits in different layers, via interacting PT-PT and BC-BC domains, may be responsible for the cooperativity of PC from Staphylococcus aureus.  相似文献   

6.
We report the molecular cloning and DNA sequence of the gene encoding the biotin carboxylase subunit of Escherichia coli acetyl-CoA carboxylase. The biotin carboxylase gene encodes a protein of 449 residues that is strikingly similar to amino-terminal segments of two biotin-dependent carboxylase proteins, yeast pyruvate carboxylase and the alpha-subunit of rat propionyl-CoA carboxylase. The deduced biotin carboxylase sequence contains a consensus ATP binding site and a cysteine-containing sequence preserved in all sequenced bicarbonate-dependent biotin carboxylases that may play a key catalytic role. The gene encoding the biotin carboxyl carrier protein (BCCP) subunit of acetyl-CoA carboxylase is located upstream of the biotin carboxylase gene and the two genes are cotranscribed. As previously reported by others, the BCCP sequence encoded a protein of 16,688 molecular mass. However, this value is much smaller than that (22,500 daltons) obtained by analysis of the protein. Amino-terminal amino acid sequencing of the purified BCCP protein confirmed the deduced amino acid sequence indicating that BCCP is a protein of atypical physical properties. Northern and primer extension analyses demonstrate that BCCP and biotin carboxylase are transcribed as a single mRNA species that contains an unusually long untranslated leader preceding the BCCP gene. We have also determined the mutational alteration in a previously isolated acetyl-CoA carboxylase (fabE) mutant and show the lesion maps within the BCCP gene and results in a BCCP species defective in acceptance of biotin. Translational fusions of the carboxyl-terminal 110 or 84 (but not 76) amino acids of BCCP to beta-galactosidase resulted in biotinated beta-galactosidase molecules and production of one such fusion was shown to result in derepression of the biotin biosynthetic operon.  相似文献   

7.
8.
The biotin carboxyl carrier protein (BCCP) is a subunit of acetyl-CoA carboxylase, a biotin-dependent enzyme that catalyzes the first committed step of fatty acid biosynthesis. In its functional cycle, this protein engages in heterologous protein-protein interactions with three distinct partners, depending on its state of post-translational modification. Apo-BCCP interacts specifically with the biotin holoenzyme synthetase, BirA, which results in the post-translational attachment of biotin to a single lysine residue on BCCP. Holo-BCCP then interacts with the biotin carboxylase subunit of acetyl-CoA carboxylase, which leads to the addition of the carboxylate group of bicarbonate to biotin. Finally, the carboxy-biotinylated form of BCCP interacts with transcarboxylase in the transfer of the carboxylate to acetyl-CoA to form malonyl-CoA. The determinants of protein-protein interaction specificity in this system are unknown. The NMR solution structure of the unbiotinylated form of an 87 residue C-terminal domain fragment (residue 70-156) of BCCP (holoBCCP87) and the crystal structure of the biotinylated form of a C-terminal fragment (residue 77-156) of BCCP from Escherichia coli acetyl-CoA carboxylase have previously been determined. Comparative analysis of these structures provided evidence for small, localized conformational changes in the biotin-binding region upon biotinylation of the protein. These structural changes may be important for regulating specific protein-protein interactions. Since the dynamic properties of proteins are correlated with local structural environments, we have determined the relaxation parameters of the backbone 15N nuclear spins of holoBCCP87, and compared these with the data obtained for the apo protein. The results indicate that upon biotinylation, the inherent mobility of the biotin-binding region and the protruding thumb, with which the biotin group interacts in the holo protein, are significantly reduced.  相似文献   

9.
We gathered primary and tertiary structures of acyl-CoA carboxylases from public databases, and established that members of their biotin carboxylase (BC) and biotin carboxyl carrier protein (BCCP) domains occur in one family each and that members of their carboxyl transferase (CT) domains occur in two families. Protein families have members similar in primary and tertiary structure that probably have descended from the same protein ancestor. The BCCP domains complexed with biotin in acyl and acyl-CoA carboxylases transfer bicarbonate ions from BC domains to CT domains, enabling the latter to carboxylate acyl and acyl-CoA moieties. We separated the BCCP domains into four subfamilies based on more subtle primary structure differences. Members of different BCCP subfamilies often are produced by different types of organisms and are associated with different carboxylases.  相似文献   

10.
Two forms of acetyl-CoA carboxylase (ACCase) have been characterized in pea ( Pisum sativum L.) leaves; a heteromeric chloroplast enzyme and a homomeric, presumably cytosolic enzyme. The biotin carboxylase (BC), biotin carboxyl carrier protein (BCCP), and β-carboxyltransferase (CT) subunits of the plastidial-ACCase have recently been characterized and cloned. To further characterize the carboxyl-transferase, an improved assay for CT was developed and used to follow its partial purification. CT activity co-purifies with ACCase activity during gel permeation chromatography. However, upon anion-exchange chromatography or native PAGE, CT separates from the BC and BCCP subunits of plastidiaI-ACCase and ACCase activity is lost. In addition, it is demonstrated that a previously sequenced pea chloroplast cDNA of unknown function (IEP96) with a predicted molecular weight of 91 kDa encodes the α-CT subunit of the MS-ACCase. Antibodies raised against the first 404 amino acids of IEP96 protein detected a polypeptide with molecular weight of 91 kDa that co-eluted during gel permeation chromatography with plastidial CT and ACCase activities. These antibodies also immunoprecipitated the activities of both ACCase and CT with the concomitant precipitation of the β-CT subunit. Furthermore, antibodies against β-CT immunoprecipitated the IEP96 protein. Two-dimensional PAGE and DEAE purification of ACCase protein demonstrated that the β-CT forms a tight association with the IEP96 protein. Pea leaf was fractionated into soluble and membrane fractions and the α-CT subunit was primarily associated with the membrane fraction. Together, these data demonstrate that IEP96 is the α-CT subunit of pea chloroplast ACCase.  相似文献   

11.
利用简并PCR结合染色体步移法首次克隆获得粘红酵母乙酰辅酶A羧化酶(ACC)基因的全长序列信息。序列分析表明,该基因包含2个内含子,分别位于42~147 bp和315~677 bp处,编码区域总长为6 801bp,推导的氨基酸序列进行二级结构分析具备乙酰辅酶A羧化酶典型的3个功能域:生物素羧化酶(BC)、生物素羧基载体蛋白(BCCP)和羧基转移酶(CT)。克隆该基因的CT功能域基因,连接到原核表达载体pET-28a上,在Escherichia coli BL21(DE3)中成功表达,利用Ni-NTA树脂柱纯化获得CT的可溶性重组蛋白,浓度为1.8mg/mL,为研究ACC的功能和针对CT作用的除草剂机理研究提供了有价值的材料。  相似文献   

12.
While crystallographic structures of the R. etli pyruvate carboxylase (PC) holoenzyme revealed the location and probable positioning of the essential activator, Mg(2+), and nonessential activator, acetyl-CoA, an understanding of how they affect catalysis remains unclear. The current steady-state kinetic investigation indicates that both acetyl-CoA and Mg(2+) assist in coupling the MgATP-dependent carboxylation of biotin in the biotin carboxylase (BC) domain with pyruvate carboxylation in the carboxyl transferase (CT) domain. Initial velocity plots of free Mg(2+) vs pyruvate were nonlinear at low concentrations of Mg(2+) and a nearly complete loss of coupling between the BC and CT domain reactions was observed in the absence of acetyl-CoA. Increasing concentrations of free Mg(2+) also resulted in a decrease in the K(a) for acetyl-CoA. Acetyl phosphate was determined to be a suitable phosphoryl donor for the catalytic phosphorylation of MgADP, while phosphonoacetate inhibited both the phosphorylation of MgADP by carbamoyl phosphate (K(i) = 0.026 mM) and pyruvate carboxylation (K(i) = 2.5 mM). In conjunction with crystal structures of T882A R. etli PC mutant cocrystallized with phosphonoacetate and MgADP, computational docking studies suggest that phosphonoacetate could coordinate to one of two Mg(2+) metal centers in the BC domain active site. Based on the pH profiles, inhibition studies, and initial velocity patterns, possible mechanisms for the activation, regulation, and coordination of catalysis between the two spatially distinct active sites in pyruvate carboxylase from R. etli by acetyl-CoA and Mg(2+) are described.  相似文献   

13.
Biotin carboxyl carrier protein (BCCP) is the small biotinylated subunit of Escherichia coli acetyl-CoA carboxylase, the enzyme that catalyzes the first committed step of fatty acid synthesis. E. coli BCCP is a member of a large family of protein domains modified by covalent attachment of biotin. In most biotinylated proteins, the biotin moiety is attached to a lysine residue located about 35 residues from the carboxyl terminus of the protein, which lies in the center of a strongly conserved sequence that forms a tightly folded anti-parallel beta-barrel structure. Located upstream of the conserved biotinoyl domain sequence are proline/alanine-rich sequences of varying lengths, which have been proposed to act as flexible linkers. In E. coli BCCP, this putative linker extends for about 42 residues with over half of the residues being proline or alanine. I report that deletion of the 30 linker residues located adjacent to the biotinoyl domain resulted in a BCCP species that was defective in function in vivo, although it was efficiently biotinylated. Expression of this BCCP species failed to restore normal growth and fatty acid synthesis to a temperature-sensitive E. coli strain that lacks BCCP when grown at nonpermissive temperatures. In contrast, replacement of the deleted BCCP linker with a linker derived from E. coli pyruvate dehydrogenase gave a chimeric BCCP species that had normal in vivo function. Expression of BCCPs having deletions of various segments of the linker region of the chimeric protein showed that some deletions of up to 24 residues had significant or full biological activity, whereas others had very weak or no activity. The inactive deletion proteins all lacked an APAAAAA sequence located adjacent to the tightly folded biotinyl domain, whereas deletions that removed only upstream linker sequences remained active. Deletions within the linker of the wild type BCCP protein also showed that the residues adjacent to the tightly folded domain play an essential role in protein function, although in this case some proteins with deletions within this region retained activity. Retention of activity was due to fusion of the domain to upstream sequences. These data provide new evidence for the functional and structural similarities of biotinylated and lipoylated proteins and strongly support a common evolutionary origin of these enzyme subunits.  相似文献   

14.
Biotin carboxyl carrier protein (BCCP) is the small biotinylated subunit of Escherichia coli acetyl-CoA carboxylase (ACC), the enzyme that catalyzes the first committed step of fatty acid synthesis. Similar proteins are found in other bacteria and in chloroplasts. E. coli BCCP is a member of a large family of protein domains modified by covalent attachment of biotin to a specific lysine residue. However, the BCCP biotinyl domain differs from many of these proteins in that an eight-amino acid residue insertion is present upstream of the biotinylated lysine. X-ray crystallographic and multidimensional NMR studies show that these residues constitute a structure that has the appearance of an extended thumb that protrudes from the otherwise highly symmetrical domain structure. I report that expression of two mutant BCCPs lacking the thumb residues fails to restore growth and fatty acid synthesis to a temperature-sensitive E. coli strain that lacks BCCP when grown at nonpermissive temperature. Alignment of BCCPs from various organisms shows that only two of the eight thumb residues are strictly conserved, and amino acid substitution of either residue results in proteins giving only weak growth of the temperature-sensitive E. coli strain. Therefore, the thumb structure is essential for the function of BCCP in the ACC reaction and provides a useful motif for distinguishing the biotinylated proteins of multisubunit ACCs from those of enzymes catalyzing other biotin-dependent reactions. An unexpected result was that expression of a mutant BCCP in which the biotinylated lysine residue was substituted with cysteine was able to partially restore growth and fatty acid synthesis to the temperature-sensitive E. coli strain. This complementation was shown to be specific to BCCPs having native structure (excepting the biotinylated lysine) and is interpreted in terms of dimerization of the BCCP biotinyl domain during the ACC reaction.  相似文献   

15.
Urea carboxylase (UC) is conserved in many bacteria, algae, and fungi and catalyzes the conversion of urea to allophanate, an essential step in the utilization of urea as a nitrogen source in these organisms. UC belongs to the biotin-dependent carboxylase superfamily and shares the biotin carboxylase (BC) and biotin carboxyl carrier protein (BCCP) domains with these other enzymes, but its carboxyltransferase (CT) domain is distinct. Currently, there is no information on the molecular basis of catalysis by UC. We report here the crystal structure of the Kluyveromyces lactis UC and biochemical studies to assess the structural information. Structural and sequence analyses indicate the CT domain of UC belongs to a large family of proteins with diverse functions, including the Bacillus subtilis KipA-KipI complex, which has important functions in sporulation regulation. A structure of the KipA-KipI complex is not currently available, and our structure provides a framework to understand the function of this complex. Most interestingly, in the structure the CT domain interacts with the BCCP domain, with biotin and a urea molecule bound at its active site. This structural information and our follow-up biochemical experiments provided molecular insights into the UC carboxyltransfer reaction. Several structural elements important for the UC carboxyltransfer reaction are found in other biotin-dependent carboxylases and might be conserved within this family, and our data could shed light on the mechanism of catalysis of these enzymes.  相似文献   

16.
Biosynthesis of fatty acids is one of the most fundamental biochemical pathways in nature. In bacteria and plant chloroplasts, the committed and rate‐limiting step in fatty acid biosynthesis is catalyzed by a multi‐subunit form of the acetyl‐CoA carboxylase enzyme (ACC). This enzyme carboxylates acetyl‐CoA to produce malonyl‐CoA, which in turn acts as the building block for fatty acid elongation. In Escherichia coli, ACC is comprised of three functional modules: the biotin carboxylase (BC), the biotin carboxyl carrier protein (BCCP) and the carboxyl transferase (CT). Previous data showed that both bacterial and plant BCCP interact with signal transduction proteins belonging to the PII family. Here we show that the GlnB paralogues of the PII proteins from E. coli and Azospirillum brasiliense, but not the GlnK paralogues, can specifically form a ternary complex with the BC‐BCCP components of ACC. This interaction results in ACC inhibition by decreasing the enzyme turnover number. Both the BC‐BCCP‐GlnB interaction and ACC inhibition were relieved by 2‐oxoglutarate and by GlnB uridylylation. We propose that the GlnB protein acts as a 2‐oxoglutarate‐sensitive dissociable regulatory subunit of ACC in Bacteria.  相似文献   

17.
18.
A multisubunit acetyl coenzyme A carboxylase from soybean   总被引:8,自引:0,他引:8  
A multisubunit form of acetyl coenzyme A (CoA) carboxylase (ACCase) from soybean (Glycine max) was characterized. The enzyme catalyzes the formation of malonyl CoA from acetyl CoA, a rate-limiting step in fatty acid biosynthesis. The four known components that constitute plastid ACCase are biotin carboxylase (BC), biotin carboxyl carrier protein (BCCP), and the alpha- and beta-subunits of carboxyltransferase (alpha- and beta-CT). At least three different cDNAs were isolated from germinating soybean seeds that encode BC, two that encode BCCP, and four that encode alpha-CT. Whereas BC, BCCP, and alpha-CT are products of nuclear genes, the DNA that encodes soybean beta-CT is located in chloroplasts. Translation products from cDNAs for BC, BCCP, and alpha-CT were imported into isolated pea (Pisum sativum) chloroplasts and became integrated into ACCase. Edman microsequence analysis of the subunits after import permitted the identification of the amino-terminal sequence of the mature protein after removal of the transit sequences. Antibodies specific for each of the chloroplast ACCase subunits were generated against products from the cDNAs expressed in bacteria. The antibodies permitted components of ACCase to be followed during fractionation of the chloroplast stroma. Even in the presence of 0.5 M KCl, a complex that contained BC plus BCCP emerged from Sephacryl 400 with an apparent molecular mass greater than about 800 kD. A second complex, which contained alpha- and beta-CT, was also recovered from the column, and it had an apparent molecular mass of greater than about 600 kD. By mixing the two complexes together at appropriate ratios, ACCase enzymatic activity was restored. Even higher ACCase activities were recovered by mixing complexes from pea and soybean. The results demonstrate that the active form of ACCase can be reassembled and that it could form a high-molecular-mass complex.  相似文献   

19.
Protein kinase activity in high-speed supernatant fractions prepared from rat epididymal adipose tissue previously incubated in the absence or presence of insulin was investigated by following the incorporation of 32P from [gamma-32P]ATP into phosphoproteins separated by sodium dodecyl sulphate/polyacrylamide-gel electro-phoresis. Incorporation of 32P into several endogenous proteins in the supernatant fractions from insulin-treated tissue was significantly increased. These included acetyl-CoA carboxylase and ATP citrate lyase (which exhibit increased phosphorylation within fat-cells exposed to insulin), together with two unknown proteins of subunit Mr 78000 and 43000. The protein kinase activity increased by insulin was distinct from cyclic AMP-dependent protein kinase, was not dependent on Ca2+ and was not appreciably affected by dialysis or gel filtration. The rate of phosphorylation of added purified fat-cell acetyl-CoA carboxylase and ATP citrate lyase was also increased by 60-90% in high-speed-supernatant fractions prepared from insulin-treated tissue. No evidence for any persistent changes in phosphoprotein phosphatase activity was found. It is concluded that insulin action on acetyl-CoA carboxylase, ATP citrate lyase and other intracellular proteins exhibiting increased phosphorylation involves an increase in cyclic AMP-independent protein kinase activity in the cytoplasm. The possibility that the increase reflects translocation from the plasma membrane, perhaps after phosphorylation by the protein tyrosine kinase associated with insulin receptors, is discussed.  相似文献   

20.
Biotin protein ligase of Escherichia coli, the BirA protein, catalyses the covalent attachment of the biotin prosthetic group to a specific lysine of the biotin carboxyl carrier protein (BCCP) subunit of acetyl-CoA carboxylase. BirA also functions to repress the biotin biosynthetic operon and synthesizes its own corepressor, biotinyl-5'-AMP, the catalytic intermediate in the biotinylation reaction. We have previously identified two charge substitution mutants in BCCP, E119K, and E147K that are poorly biotinylated by BirA. Here we used site-directed mutagenesis to investigate residues in BirA that may interact with E119 or E147 in BCCP. None of the complementary charge substitution mutations at selected residues in BirA restored activity to wild-type levels when assayed with our BCCP mutant substrates. However, a BirA variant, in which K277 of the C-terminal domain was substituted with Glu, had significantly higher activity with E119K BCCP than did wild-type BirA. No function has been identified previously for the BirA C-terminal domain, which is distinct from the central domain thought to contain the ATP binding site and is known to contain the biotin binding site. Kinetic analysis of several purified mutant enzymes indicated that a single amino acid substitution within the C-terminal domain (R317E) and located some distance from the presumptive ATP binding site resulted in a 25-fold decrease in the affinity for ATP. Our data indicate that the C-terminal domain of BirA is essential for the catalytic activity of the enzyme and contributes to the interaction with ATP and the protein substrate, the BCCP biotin domain.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号