首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Abstract: We examined protein kinase C (PKC) activity in Ca2+-dependent PKC (Ca2+-dependent PKC activities) and Ca2+-independent PKC (Ca2+-independent PKC activities) assay conditions in brains from Alzheimer's disease (AD) patients and age-matched controls. In cytosolic and membranous fractions, Ca2+-dependent and Ca2+-independent PKC activities were significantly lower in AD brain than in control brain. In particular, reduction of Ca2+-independent PKC activity in the membranous fraction of AD brain was most enhanced when cardiolipin, the optimal stimulator of PKC-ε, was used in the assay; whereas Ca2+-independent PKC activity stimulated by phosphatidylinositol, the optimal stimulator of PKC-δ, was not significantly reduced in AD. Further studies on the protein levels of Ca2+-independent PKC-δ, PKC-ε, and PKC-ζ in AD brain revealed reduction of the PKC-ε level in both cytosolic and membranous fractions, although PKC-δ and PKC-ζ levels were not changed. These findings indicated that Ca2+-dependent and Ca2+-independent PKC are changed in AD, and that among Ca2+-independent PKC isozymes, the alteration of PKC-ε is a specific event in AD brain, suggesting its crucial role in AD pathophysiology.  相似文献   

3.
The protein content of muscle is determined by the relative rates of synthesis and degradation. The balance between this process determines the number of functional contractile units within each muscle cell. Myofibril-bound protease, protease M previously reported in mouse skeletal muscle could be solubilized from the myofibrillar fraction by salt and acid treatment and partially purified by Mono Q and Superose 12 chromotagraphy. Isolated protease M activity in vitro on whole myofibrils resulted in myosin, actin, troponin T, α-actinin and tropomyosin degradation. Protease M is serine type and was able to hydrolyze trypsin-type synthetic substrates but not those of chymotrypsin type. In gel filtration chromatography, protease M showed Mr 120.0 kDa. The endogenous inhibitor (MHPI) is a glycoprotein (110.0 kDa) that efficiently blocks the protease M-dependent proteolysis of myofibrillar proteins in a dose-dependent way, as shown by electrophoretic analysis and synthetic substrates assays. Protease M-Inhibitor system would be implicated in myofibrillar proteins turnover.  相似文献   

4.
We investigated the solution structure and dynamics of the human anti-coagulation protein Z (PZ) in the complex with protein Zdependent protease inhibitor (ZPI) to order to understand key structural changes in the presence and absence of Ca(2+). Structural features of the complete complex of PZ-ZPI are poorly understood due to lack of complete atomic model of the PZ-ZPI complex. We have constructed a model of the complete PZ-ZPI complex and molecular dynamics (MD) simulation of the solvated PZ-ZPI complex with and without Ca(2+) was achieved for 100ns. It is consider that the Ω-loop of GLA domains interacts with negatively charged biological membranes in the presence of Ca(2+) ions. The PZ exerts its role as cofactor in a similar way. However, we used solvent-equilibrated dynamics to show structural features of the PZ-ZPI complex in the presence and the absence of Ca(2+)ions. We observed that the distance between the interacting sites of the ZPI with the PZ and the GLA domain decreases in the presence of Ca(2+) ions. Further, we postulated that the calculated distance between the dominant plane of the Ca(2+) ions and Ser196 of the pseudo-catalytic triad of the PZ is similar to the equivalent distance of FXa. This suggests that the central role of the PZ in the blood coagulation may be to align the inhibitory site of the ZPI with the active site of the FXa, which is depends on the interaction of the calcium bound GLA domain of the PZ with the active membrane.  相似文献   

5.
Abstract: Mitogen-activated protein kinase (MAP kinase) was activated by stimulation of glutamate receptors in cultured rat hippocampal neurons. Ten micromolar glutamate maximally stimulated MAP kinase activity, which peaked during 10 min and decreased to the basal level within 30 min. Experiments using glutamate receptor agonists and antagonists revealed that glutamate stimulated MAP kinase through NMDA and metabotropic glutamate receptors but not through non-NMDA receptors. Glutamate and its receptor agonists had no apparent effect on MAP kinase activation in cultured cortical astrocytes. Addition of calphostin C, a protein kinase C (PKC) inhibitor, or down-regulation of PKC activity partly abolished the stimulatory effect by glutamate, but the MAP kinase activation by treatment with ionomycin, a Ca2+ ionophore, remained intact. Lavendustin A, a tyrosine kinase inhibitor, was without effect. In experiments with 32P-labeled hippocampal neurons, MAP kinase activation by glutamate was associated with phosphorylation of the tyrosine residue located on MAP kinase. However, phosphorylation of Raf-1, the c- raf protooncogene product, was not stimulated by treatment with glutamate. Our observations suggest that MAP kinase activation through glutamate receptors in hippocampal neurons is mediated by both the PKC-dependent and the Ca2+-dependent pathways and that the activation of Raf-1 is not involved.  相似文献   

6.
7.
Abstract: Amyotrophic lateral sclerosis (ALS) is a human neurodegenerative disorder of unknown origin that is characterized by progressive degeneration of corticospinal tracts and anterior horn cells in the brainstem and spinal cord. Previous studies have indicated that motoneuron degeneration associated with ALS may be triggered by mechanisms leading to increased intracellular Ca2+. In the present report, Ca2+-activated phospholipid-dependent protein kinase C (PKC) was evaluated in cervical spinal cords from ALS patients and control subjects. In patients who died with ALS, PKC histone H1 phosphotransferase activity was significantly increased by 330% in cytosolic- and 118% in particulate-derived extracts compared with controls. This increase in PKC phosphotransferase activity appeared to be partially due to an increase in the amount of PKC protein present in ALS spinal cord tissue. PKC histone H1 phosphotransferase activities of cytosolic- and particulate-derived extracts from motor and visual cortex of ALS patients and controls were not statistically different, nor were there differences in PKC histone H1 phosphotransferase activity in platelets and leukocytes. The specific nature of PKC alterations in affected regions of the CNS supports a role for PKC in the events leading to motoneuron death in sporadic ALS.  相似文献   

8.
We examined the effect of phorbol esters on phospholipase C activation in rat brain cortical slices and membranes. There was little effect of concurrent addition of phorbol 12-myristate 13-acetate (PMA) with carbachol on phosphoinositide breakdown due to carbachol over a 1-h incubation of brain slices. However, if slices were preincubated for 3 h with 1 microM PMA or 200 microM sphingosine before addition of carbachol, there was a 35-50% inhibition of phosphoinositide breakdown. There was also a marked loss of protein kinase C (PKC) activity from both cytosol and membranes after a 3-h exposure to PMA. The loss in responsiveness to the muscarinic agonists in slices was not reflected in carbachol-stimulated phospholipase C activation using isolated membranes. However, the decrease in carbachol-induced phosphoinositide breakdown seen in slices after a 3-h exposure to PMA was abolished if the extracellular K+ concentration was elevated from 5.9 to 55mM. Because elevation of the K+ level induces depolarization and increases Ca2+ entry, we examined the effect of ionomycin, a Ca2+ ionophore. Ionomycin potentiated the effects of carbachol on phosphoinositide breakdown but was unable to reverse the effects of a 3-h incubation with PMA. Because apamin, an inhibitor of Ca2(+)-dependent K+ channels, mimicked the effects of exposure to PMA for 3 h, it is possible that these channels are involved in muscarinic cholinergic regulation of phosphoinositide breakdown in rat brain slices. These results support the hypothesis that prolonged PMA treatment in rat brain cortex has no direct effect on phospholipase C activation by muscarinic cholinergic stimulation.  相似文献   

9.
Expression of proteases in heterologous hosts remains an ambitious challenge due to severe problems associated with digestion of host proteins. On the other hand, proteases are broadly used in industrial applications and resemble promising drug candidates. Bromelain is an herbal drug that is medicinally used for treatment of oedematous swellings and inflammatory conditions and consists in large part of proteolytic enzymes. Even though various experiments underline the requirement of active cysteine proteases for biological activity, so far no investigation succeeded to clearly clarify the pharmacological mode of action of bromelain. The potential role of proteases themselves and other molecules of this multi‐component extract currently remain largely unknown or ill defined. Here, we set out to express several bromelain cysteine proteases as well as a bromelain inhibitor molecule in order to gain defined molecular entities for subsequent studies. After cloning the genes from its natural source Ananas comosus (pineapple plant) into Pichia pastoris and subsequent fermentation and purification, we obtained active protease and inhibitor molecules which were subsequently biochemically characterized. Employing purified bromelain fractions paves the way for further elucidation of pharmacological activities of this natural product. © 2016 American Institute of Chemical Engineers Biotechnol. Prog., 33:54–65, 2017  相似文献   

10.
We have purified Ca2+-ATPase from synaptosomal membranes (SM)1 from ratcerebellum by calmodulin affinity chromatography. The enzyme was identifiedas plasma membrane Ca2+-ATPase by its interaction with calmodulin andmonoclonal antibodies produced against red blood cell (RBC) Ca2+-ATPase, andby thapsigargin insensitivity. The purpose of the study was to establishwhether two regulators of the RBC Ca2+-ATPase, calmodulin and protein kinaseC (PKC), affect the Ca2+-ATPase isolated from excitable cells and whethertheir effects are comparable to those on the RBC Ca2+-ATPase. We found thatcalmodulin and PKC activated both enzymes. There were significantquantitative differences in the phosphorylation and activation of the SMversus RBC Ca2+-ATPase. The steady-state Ca2+-ATPase activity of SMCa2+-ATPase was approximately 3 fold lower and significantly less stimulatedby calmodulin. The initial rate of PKC catalyzed phosphorylation (in thepresence of 12-myristate 13-acetate phorbol) was approximately two timesslower for SM enzyme. While phosphorylation of RBC Ca2+-ATPase approachedmaximum level at around 5 min, comparable level of phosphorylation of SMCa2+-ATPase was observed only after 30 min. The PKC-catalyzedphosphorylation resulted in a statistically significant increase inCa2+-ATPase activity of up to 20-40%, higher in the SM Ca2+-ATPase.The differences may be associated with diversities in Ca2+-ATPase functionin erythrocytes and neuronal cells and different isoforms composition.  相似文献   

11.
Abstract: The aim of this study was to determine the effect of angiotensin II (AII) on tyrosine hydroxylase (TOH) activity and phosphorylation in bovine adrenal chromaffin cells (BACCs). We report here that stimulation of BACCs with AII (100 n M ) produced a significant increase in both TOH activity and phosphorylation over a period of 10 min. The increase in TOH activity was receptor-mediated. Tryptic phosphopeptide analysis by HPLC revealed that AII stimulated an increase in phosphorylation of three sites on TOH, Ser19, Ser31, and Ser40, with the largest increase being observed for Ser31 phosphorylation. Pretreatment of the cells with the protein kinase C inhibitor Ro 31-8220 (10 µ M , 15 min) did not affect TOH activity or phosphorylation produced by AII. The inhibitor also did not affect the TOH activity or Ser40 phosphorylation produced by forskolin (10 µ M , 10 min). In contrast, Ro 31-8220 fully inhibited the TOH activation as well as Ser31 and Ser40 phosphorylation of TOH produced by phorbol 12, 13-dibutyrate (500 n M , 10 min). Removal of extracellular Ca2+ from the incubation medium inhibited the AII-induced TOH activity by 50% and significantly blocked Ser19 and Ser31 phosphorylation but did not affect Ser40 phosphorylation in response to AII. These results indicate that AII activates a complex and perhaps novel signaling pathway leading to the phosphorylation and activation of TOH. The TOH activation by AII appears to be partially independent of Ser40 phosphorylation, suggesting a potentially important role for Ser31 phosphorylation.  相似文献   

12.
Abstract : In the present study, the role of phosphoprotein phosphatase in the regulation of L-type Ca2+ channel currents in rat pinealocytes was investigated using the whole-cell version of the patch-clamp technique. The effects of three phosphatase inhibitors, calyculin A, tautomycin, and okadaic acid, were compared. Although all three inhibitors were effective in inhibiting the L-type Ca2+ channel current, calyculin A was more potent than either tautomycin or okadaic acid, suggesting the involvement of phosphoprotein phosphatase-1. To determine the kinase involved in the regulation of these channels, cells were pretreated with H7 (a nonspecific kinase inhibitor), H89 (a specific inhibitor of cyclic AMP-dependent kinase), KT5823 (a specific inhibitor of cyclic GMP-dependent kinase), or calphostin C (a specific inhibitor of protein kinase C). Pretreatment with either H7 or calphostin C decreased the inhibitory effect of calyculin A on the L-type Ca2+ channel current. In contrast, pretreatment with H89 or KT5823 had no effect on the inhibition caused by calyculin A. Based on these observations, we conclude that basal phosphatase activity, probably phosphoprotein phosphatase-1, plays an important role in the regulation of L-type Ca2+ channel currents in rat pinealocytes by counteracting protein kinase C-mediated phosphorylation.  相似文献   

13.
Abstract: Stimulation of cultured cerebellar granule cells with N -methyl- d -aspartate (NMDA) or kainic acid (KA) leads to activation of activator protein-1 (AP-1) DNA-binding activity, which can be monitored by an increase in 12- O -tetradecanoylphorbol 13-acetate (TPA)-responsive element (TRE)-binding activity, in concert with c- fos induction. For this increase in TRE-binding activity, Ca2+ influx across the plasma membrane is essential. Treatment of cells with an intracellular Ca2+ chelator, BAPTA-AM, abolished this increase. Close correspondence between the dose-response curves of 45Ca2+ uptake and TRE-binding activity by NMDA or KA suggested that Ca2+ influx not only triggered sequential activation of Ca2+-signaling processes leading to the increase in TRE-binding activity, but also controlled its increased level. Stimulation of non-NMDA receptors by KA mainly caused Ca2+ influx through voltage-gated Ca2+ channels, whereas stimulation of NMDA receptors caused Ca2+ influx through NMDA-gated ion channels. The protein kinase C (PKC) inhibitors staurosporine and calphostin C inhibited the increase in TRE-binding activity caused by NMDA and KA at the same concentration at which they inhibited that caused by TPA. Furthermore, down-regulation of PKC inhibited the increase in TRE-binding activity by NMDA and KA. Thus, a common pathway that includes PKC could, at least in part, be involved in the Ca2+-signaling pathways for the increase in TRE-binding activity coupled with the activation of NMDA- and non-NMDA receptors.  相似文献   

14.
Acute treatment of rat spinal cord-dorsal root ganglion cocultured neurons with 12-O-tetradecanoylphorbol 13-acetate (TPA), a known activator of protein kinase C, inhibited the dihydropyridine-sensitive voltage-dependent 45Ca2+ influx measured in these cells (IC50 of approximately 100 nM, 66% inhibition at 1 microM TPA). However, prolonged preincubation (24 h) of the cells with 100 nM TPA followed by extensive washing completely abolished, i.e., desensitized, the capacity of a second application of TPA to inhibit the activity of the voltage-dependent Ca2+ channels. Moreover, this treatment also abolished the inhibition of Ca2+ influx produced by kappa-opiate as well as by alpha 2-adrenergic and muscarinic receptor agonists. Substantial desensitization was already observed following a 1-h pretreatment with 100 nM TPA. In contrast to TPA, an inactive phorbol ester (4 beta-phorbol 13-acetate) did not affect the inhibition of the voltage-dependent Ca2+ influx by these receptor agonists. These results suggest that protein kinase C may have a role in the modulation of Ca2+ channels by kappa-opiate, alpha 2-adrenergic, and muscarinic receptor agonists.  相似文献   

15.
Mutations in protein kinase Cγ (PKCγ) cause the neurodegenerative disease spinocerebellar ataxia type 14 (SCA14). In this study, expression of an extensive panel of known SCA14-associated PKCγ mutations as fusion proteins in cell culture led to the consistent formation of cytoplasmic aggregates in response to purinoceptor stimulation. Aggregates co-stained with antibodies to phosphorylated PKCγ and the early endosome marker EEA1 but failed to redistribute to the cell membrane under conditions of oxidative stress. These studies suggest that Purkinje cell damage in SCA14 may result from a reduction of PKCγ activity due its aberrant sequestration in the early endosome compartment.  相似文献   

16.
aFGF对人脐静脉内皮细胞TPK、PKC活性及Ca2+浓度的影响   总被引:2,自引:0,他引:2  
为了观察酸性成纤维细胞生长因子 ( acidic fibroblast growth factor,a FGF)与人脐静脉内皮细胞 ( human umbilical vein endothelial cell,HUVEC)膜上特异受体结合后引起的细胞内信号转导途径 ,探讨 a FGF导致细胞增殖的机理 ,经 Scatchard曲线分析人脐静脉内皮细胞膜受体性质 .以不同浓度的 a FGF处理人脐静脉内皮细胞 ,利用 [γ- 3 2 P]ATP参入外源性底物的方法测定受体的酪氨酸蛋白激酶 ( tyrosine protein kinase,TPK)及蛋白激酶 C( protein kinase C,PKC)的活性 ;用 Fura-2 /AM为荧光指示剂测定 [Ca2 ]i.结果显示 :Scatchard曲线证明 a FGF与 HUVEC膜受体特异结合呈一条曲线 ,即受体为一种结合位点 ,Kd 为 3.6× 1 0 -10~ 9.6× 1 0 -10 mol/L,每个细胞受体数为2 70 90 .随着 a FGF浓度增加 ,TPK及 PKC活性随之升高 .当 a FGF浓度为 1 .1 2 mg/L时 ,a FGF处理组的 TPK活性是对照组的 3倍 ;膜 PKC活性是对照组 3.4倍 ,胞浆 PKC活性是对照组的 1 .87倍 .胞浆 [Ca2 ]是对照组的 3倍 .结果指出 :该细胞中 a FGF受体具有 TPK活性 .TPK激活后进一步促进蛋白质和酶磷酸化级联反应 ,而使 PKC活性及 [Ca2 ]i 升高 ,即 PKC和 Ca2 为 TPK的下游信号分子 ,进一步促进基因表达增加 ,导致细胞增殖 .  相似文献   

17.
In rat pinealocytes, alpha 1-adrenergic activation, which leads to cytoplasmic alkalinization, also potentiates the beta-adrenergic stimulated cyclic AMP (cAMP) and cyclic GMP (cGMP) responses. Both elevation of intracellular calcium ([Ca2+]i) and activation of protein kinase C are involved in the potentiation mechanism. Recently, intracellular pH has also been found to modulate the adrenergic-stimulated cyclic nucleotide responses, suggesting intracellular pH may also affect the potentiation mechanism. This possibility was examined in the present study. Cytoplasmic alkalinization by ammonium chloride had an enhancing effect on the isoproterenol and ionomycin-stimulated cAMP and cGMP accumulation. In comparison, cytoplasmic acidification by sodium propionate reduced the isoproterenol and ionomycin-stimulated cAMP and cGMP responses. Direct measurement of [Ca2+]i indicated that neither ammonium chloride nor sodium propionate had an effect on the ionomycin-stimulated elevation of [Ca2+]i, suggesting their effects on cyclic nucleotide responses may be independent of [Ca2+]i. In cells stimulated by isoproterenol and an activator of protein kinase C, ammonium chloride had an enhancing effect on both cAMP and cGMP responses, whereas sodium propionate had no effect. Taken together, these results suggest that a site distal to elevation of [Ca2+]i and activation of protein kinase C, of importance to the potentiation mechanism, is modulated by intracellular pH.  相似文献   

18.
Preliminary evidence for the fifth autosomal linkage group in the horse, comprised of the loci for a red cell alloantigen (U) and serum protease inhibitor (Pi), was demonstrated by means of paternal half-sib groups in thoroughbred, standardbred and Arabian breeds. Recombination frequency in males was estimated to be 0.125 +/- 0.019.  相似文献   

19.
Ca2+/Calmodulin-dependent protein kinase (CaM kinase) phosphatase, occurring in the cytoplasm of all tissues, dephosphorylates and thereby deactivates multifunctional CaM kinases, such as CaM kinases I, II and IV. In contrast, CaM kinase phosphatase N has been reported to occur almost exclusively in the brain and to be localized in the nucleus in the transfected COS-7 cells, as examined immunocytochemically with antibodies against the carboxyl-terminal segment of the enzyme, indicating its involvement in the deactivation of CaM kinase IV. Here, we show that the majority of the naturally occurring CaM kinase phosphatase N in the brain exists not in the intact form of the enzyme (83.4 kDa) but in a form (61.1 kDa) in which the carboxyl-terminal segment containing nuclear localization signals is deleted, and that it is present mostly in the cytoplasm but a little in the nucleus throughout the central nervous system, although occurring mostly in the nucleus in some large neurons. Strong immunostaining of the enzyme was also observed at postsynaptic density. These findings suggest that CaM kinase phosphatase N is involved in the regulation of not only CaM kinase IV but also CaM kinases II and I.  相似文献   

20.
Normal cellular prion protein (PrP(C)) and decay-accelerating factor (DAF) are glycoproteins linked to the cell surface by glycosylphosphatidylinositol (GPI) anchors. Both PrP(C) and DAF reside in detergent insoluble complex that can be isolated from human peripheral blood mononuclear cells. However, these two GPI-anchored proteins possess different cell biological properties. The GPI anchor of DAF is markedly more sensitive to cleavage by phosphatidylinositol-specific phospholipase C (PI-PLC) than that of PrP(C). Conversely, PrP(C) has a shorter cell surface half-life than DAF, possibly due to the fact that PrP(C) but not DAF is shed from the cell surface. This is the first demonstration that on the surface of the same cell type two GPI-anchored proteins differ in their cell biological properties.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号