首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Paratuberculosis caused by Mycobacterium avium ssp. paratuberculosis (MAP) causes economic losses and is present in dairy herds worldwide. Different studies used different diagnostic tests to detect infection status and are the basis of genome-wide association (GWA) studies with inconsistent results. Therefore, the aim of this study was to identify and compare genomic regions associated with MAP susceptibility in the same cohort of cattle using different diagnostic tests. The GWA study was performed in German Holsteins within a case-control assay using 305 cows tested for MAP by fecal culture and additional with four different commercial ELISA-tests. Genotyping was performed with the Illumina Bovine SNP50 BeadChip. The results using fecal culture or ELISA test led to the identification of different genetic loci. Two single-nucleotide polymorphisms showed significant association with the ELISA-status. However, no significant association for MAP infection could be confirmed. Our results show that the definition of the MAP-phenotype has an important impact on the outcome of GWA studies for paratuberculosis.  相似文献   

2.
Fatty acid composition, especially oleic acid (C18:1), plays an important role in the eating quality of meat in Japanese Black cattle. Therefore, the objective of this study was to identify loci associated with C18:1 in the intramuscular fat of the trapezius muscles in Japanese Black cattle using the Illumina BovineSNP50 BeadChip whole genome single nucleotide polymorphism (SNP) assay. We also evaluated the relationship between C18:1 and three fatty acid synthesis genes, fatty acid synthase (FASN), stearoyl‐CoA desaturase and sterol regulatory element‐binding protein‐1. In this experiment, we applied a mixed model and Genomic Control approach using selective genotyping to perform a genome‐wide association study. A total of 160 animals (80 animals with higher values and 80 animals with lower values), selected from 3356 animals based on corrected phenotype, were genotyped using the Illumina BovineSNP50 BeadChip and three fatty acid synthesis genes, and the quality of these SNPs was assessed. In this study, a total of 38 955 SNPs, which included SNPs in the three fatty acid synthesis genes, were used, and the estimated inflation factor was 1.06. In the studied population, a total of 32 SNPs, including the FASN gene, had significant effects, and in particular 30 SNPs of all significant SNPs were located between 49 and 55 Mbp on chromosome 19. This study is one of the first genome‐wide association studies for fatty acid composition in a cattle population using the recently released Illumina BovineSNP50 BeadChip.  相似文献   

3.
A genome‐wide association study was conducted using a mixed model analysis for QTL for fertility traits in Danish and Swedish Holstein cattle. The analysis incorporated 2,531 progeny tested bulls, and a total of 36 387 SNP markers on 29 bovine autosomes were used. Eleven fertility traits were analyzed for SNP association. Furthermore, mixed model analysis was used for association analyses where a polygenic effect was fitted as a random effect, and genotypes at single SNPs were successively included as a fixed effect in the model. The Bonferroni correction for multiple testing was applied to adjust the significance threshold. Seventy‐four SNP‐trait combinations showed chromosome‐wide significance, and five of these were significant genome‐wide. Twenty‐four QTL regions on 14 chromosomes were detected. Strong evidence for the presence of QTL that affect fertility traits were observed on chromosomes 3, 5, 10, 13, 19, 20, and 24. The QTL intervals were generally smaller than those described in earlier linkage studies. The identification of fertility trait‐associated SNPs and mapping of the corresponding QTL in small chromosomal regions reported here will facilitate searches for candidate genes and candidate polymorphisms.  相似文献   

4.
The decline in the reproductive efficiency of dairy cows, especially those with high producing potential, has become a challenging problem. In this study, a selective DNA pooling approach was applied to a cow population whose oocytes were fertilized and cultured to obtain phenotypic records of fertilization rate and blastocyst rate. Using a stringent 5% genome‐wide significance level, 22 and five single nucleotide polymorphisms (SNPs) were found to be associated with fertilization rate and blastocyst rate, respectively. SNPs that showed significant association in selective DNA pooling were further evaluated by individual genotyping. Interestingly, the majority of the SNP associations were confirmed by individual genotyping, testifying to the effectiveness of selective DNA pooling using a high‐density SNP genotyping array. This study is the first application of the selective DNA pooling approach using the BovineSNP50 array in cattle.  相似文献   

5.
Percutaneous coronary intervention (PCI) has become an effective therapy to treat coronary artery diseases. However, one of the major drawbacks of PCI is the occurrence of restenosis in 8 to 40% of all treated patients. The GENetic Determinants of Restenosis (GENDER) project was designed to study the association between genetic polymorphisims and clinical restenosis. The discovery of genetic variants associated to the occurrence of restenosis after PCI may provide a more tailored therapy and may serve as rationale for new antirestenotic therapies. So far, several candidate gene approaches had already been performed in the GENDER samples but a Genome Wide Association Scan (GWAS) was still lacking. Here, we present preliminary results from the GWAS we are currently carrying out in the GENDER population. (Neth Heart J 2009;17:262–4.)  相似文献   

6.
Insulin‐like growth factor I (somatomedin C) (IGF1) influences gonadotrophin‐releasing hormone (GnRH) neurons during puberty, and GnRH release guides pubertal development. Therefore, genes of the IGF1 pathway are biological candidates for the identification of single‐nucleotide polymorphisms (SNPs) affecting age of puberty. In a genome‐wide association study, genotyped heifers were Tropical Composite (TCOMP, n = 866) or Brahman (BRAH, n = 843), with observation of age at first corpus luteum defining puberty. We examined SNPs in or near genes of the IGF1 pathway and report seven genes associated with age at puberty in cattle: IGF1R, IGFBP2, IGFBP4, PERK (HUGO symbol EIF2AK3), PIK3R1, GSK3B and IRS1. SNPs in the IGF1 receptor (IGF1R) showed the most promising associations: two SNPs were associated with puberty in TCOMP (P < 0.05) and one in BRAH (P = 0.00009). This last SNP explained 2% of the genetic variation (R2 = 2.04%) for age of puberty in BRAH. Hence, IGF1R was examined further. Additional SNPs were genotyped, and haplotypes were analysed. To test more SNPs in this gene, four new SNPs from dbSNP were selected and genotyped. Single SNP and haploytpe analysis revealed associations with age of puberty in both breeds. There were two haplotypes of 12 IGF1R SNPs associated with puberty in BRAH (P < 0.05) and one in TCOMP (P < 0.05). One haplotype of two SNPs was associated (P < 0.01) with puberty in BRAH, but not in TCOMP. In conclusion, the IGF1 pathway appeared more relevant for age of puberty in Brahman cattle, and IGF1R showed higher significance when compared with other genes from the pathway.  相似文献   

7.
The objective of this study was to identify QTL affecting susceptibility to Mycobacterium paratuberculosis infection in US Holsteins. Twelve paternal half-sib families were selected for the study based on large numbers of daughters in production and limited relationships among sires. Serum and faecal samples from 4350 daughters of these 12 sires were obtained for disease testing. Case definition for an infected cow was an ELISA sample-to-positive ratio >/=0.25, a positive faecal culture or both. Three families were selected for genotyping based on a high apparent prevalence (6.8-10.4% infected cows), high faecal culture prevalence (46.2-52.9% positive faecal cultures) and large numbers of daughters tested for disease (264-585). DNA pooling was used to genotype cows, with an average of 159 microsatellites within each sire family. Infected cows (the positive pool) were matched with two of their non-infected herdmates in the same lactation (the negative pool) to control for herd and age effects. Eight chromosomal regions putatively linked with susceptibility to M. paratuberculosis infection were identified using a Z-test (P < 0.01). Significant results were more rigorously tested by individually genotyping cows with three to five informative microsatellites within 15 cM of the significant markers identified with the DNA pools. Probability of infection based on both diagnostic tests was estimated for each individual and used as the dependent variable for interval mapping. Based on this analysis, evidence for the presence of a QTL segregating within families on BTA20 was found (chromosome-wide P-value = 0.0319).  相似文献   

8.
Mycobacterium avium ssp. paratuberculosis (MAP) causes a chronic, granulomatous inflammatory condition of the intestines in ruminants and wild-type species. It causes significant economic losses to the dairy and beef industries owing to reduced productivity, premature culling and mortality. Bovine peptidoglycan recognition protein 1 is an important pattern recognition molecule that is capable of directly killing microorganisms. The goal of this study was to identify single nucleotide polymorphisms (SNPs) in the gene encoding bovine peptidoglycan recognition protein 1 and to assess their association with susceptibility to MAP infection in dairy cattle. Blood and milk samples were collected from Holsteins in Southwestern and Eastern Ontario and tested for MAP infection using blood and milk ELISAs. A resource population consisting of 197 infected (S/P > 0.25) and 242 healthy (S/P < 0.10) cattle was constructed. Sequencing of pooled DNA was used to identify three SNPs (c.102G>C, c.480G>A and c.625C>A) that were genotyped in the resource population. Statistical analysis was performed using a logistic regression model fitting the additive and dominance effects of each SNP in the model. SNP c.480G>A (P = 0.054) was found to be associated with susceptibility to MAP infection. Cows with a copy of the major allele 'G' at this locus had an odds ratio of 1.51 (95% CI: 0.99-2.31) for being infected with MAP.  相似文献   

9.
AIMS: To develop a fast and sensitive protocol for detection of Mycobacterium avium subsp. paratuberculosis (MAP) in bovine semen and to make a critical evaluation of the analytical sensitivity. METHODS AND RESULTS: Processed semen was spiked with known amounts of MAP. Semen from different bulls as well as semen of different dilutions was tested. The samples were treated with lysing agents and beadbeating and the DNA was extracted with phenol and chloroform. Real-time PCR with a fluorescent probe targeting the insertion element IS900 detected as few as 10 organisms per sample of 100 mul semen. PCR-inhibition was monitored by inclusion of an internal control. Pre-treatment with immunomagnetic separation was also evaluated, but was not shown to improve the overall sensitivity. CONCLUSIONS: Real-time PCR is a sensitive method for detection of MAP in bovine semen. Lysis by mechanical disruption followed by phenol and chloroform extraction efficiently isolated DNA and removed PCR-inhibitors. SIGNIFICANCE AND IMPACT OF THE STUDY: The high sensitivity of the applied method allows reliable testing of bovine semen used for artificial insemination to prevent the spread of Johne's disease, caused by MAP.  相似文献   

10.
Mycobacterium avium ssp. paratuberculosis (MAP) causes chronic enteritis in cattle that results in substantial financial losses to the cattle industry worldwide. Given that susceptibility to MAP infection is determined in part by genetics, marker‐assisted selection may help in the breeding of animals that are more resistant to MAP infection. The toll‐like receptor 4 gene (TLR4) was selected as a potential candidate gene because of its role in innate immunity and its involvement in MAP recognition and infection. The objective of this study, therefore, was to identify associations between TLR4 polymorphisms and susceptibility to MAP infection in Canadian Holstein cows. Two biologically relevant SNPs, including c.‐226G>C in the 5′‐untranslated region and the non‐synonymous SNP c.2021C>T in the potential TIR domain, were selected for an association analysis with MAP infection status in 409 Canadian Holsteins. The haplotype C‐T from these combined SNPs yielded significant association with susceptibility to MAP infection, supporting the involvement of TLR4 in susceptibility to MAP infection.  相似文献   

11.
B. An  J. Xia  T. Chang  X. Wang  L. Xu  L. Zhang  X. Gao  Y. Chen  J. Li  H. Gao 《Animal genetics》2019,50(4):386-390
We performed a genome‐wide association study to identify candidate genes for body measurement traits in 463 Wagyu beef cattle typed with the Illumina Bovine HD 770K SNP array. At the genome‐wide level, we detected 18, five and one SNPs associated with hip height, body height and body length respectively. In total, these SNPs are within or near 11 genes, six of which (PENK, XKR4, IMPAD1, PLAG1, CCND2 and SNTG1) have been reported previously and five of which (CSMD3, LAP3, SYN3, FAM19A5 and TIMP3) are novel candidate genes that we found to be associated with body measurement traits. Further exploration of these candidate genes will facilitate genetic improvement in Chinese Wagyu beef cattle.  相似文献   

12.
To gain insight into the number of loci of large effect that underlie variation in cattle, a quantitative trait locus (QTL) scan for 14 economically important traits was performed in two commercial Angus populations using 390 microsatellites, 11 single nucleotide polymorphisms (SNPs) and one duplication loci. The first population comprised 1769 registered Angus bulls born between 1955 and 2003, with Expected Progeny Differences computed by the American Angus Association. The second comprised 38 half‐sib families containing 1622 steers with six post‐natal growth and carcass phenotypes. Linkage analysis was performed by half‐sib least squares regression with gridqtl or Bayesian Markov chain Monte Carlo analysis of complex pedigrees with loki . Of the 673 detected QTL, only 118 have previously been reported, reflecting both the conservative approach to QTL reporting in the literature, and the more liberal approach taken in this study. From 33 to 71% of the genetic variance and 35 to 56% of the phenotypic variance in each trait was explained by the detected QTL. To analyse the effects of 11 SNPs and one duplication locus within candidate genes on each trait, a single marker analysis was performed by fitting an additive allele substitution model in both mapping populations. There were 53 associations detected between the SNP/duplication loci and traits with ?log10Pnominal≥ 4.0, where each association explained 0.92% to 4.4% of the genetic variance and 0.01% to 1.86% of the phenotypic variance. Of these associations, only six SNP/duplication loci were located within 8 cM of a QTL peak for the trait, with two being located at the QTL peak: SST_DG156121:c.362A>G for ribeye muscle area and TG_X05380:c.422C>T for calving ease. Strong associations between several SNP/duplication loci and trait variation were obtained in the absence of any detected linked QTL. However, we reject the causality of several commercialized DNA tests, including an association between TG_X05380:c.422C>T and marbling in Angus cattle.  相似文献   

13.
The aim of the study was the analysis of the nucleotide‐binding oligomerization domain containing 2 (NOD2, formerly CARD15) as a candidate gene for Mycobacterium avium ssp. paratuberculosis infection in cattle. Eleven SNPs in the NOD2 gene were identified, and finally, four SNPs were included in a case–control study using 324 German Holstein cows tested for paratuberculosis using fecal culture and ELISA. The SNP (GenBank) AY518738S04:g.521G>A in exon 4 showed a significant association between the fecal culture status of the animals and NOD2 allele variants. The other three SNPs showed no associations in German Holstein cows.  相似文献   

14.
Nucleotide‐Binding Oligomerization Domain 2 (NOD2) has been reported to be a candidate gene for Mycobacterium avium subsp. paratuberculosis (MAP) infection in a Bos taurus × Bos indicus mixed breed based on a genetic association with the c.2197T>C single nucleotide polymorphism (SNP). Nevertheless, this SNP has also been reported to be monomorphic in the B. taurus species. In the present work, 18 SNPs spanning the bovine NOD2 gene have been analysed in a genetic association study of two independent populations of Holstein‐Friesian cattle. We found that the C allele of SNP c.*1908C>T, located in the 3′‐UTR region of the gene, is significantly more frequent in infected animals than in healthy ones, which supports the idea that the bovine NOD2 gene plays a role in susceptibility to MAP infection. However, in silico analyses of the NOD2 nucleotide sequence did not yield definitive data about a possible direct effect of SNP c.*1908C>T on susceptibility to infection and led us to consider its linkage disequilibrium with the causative variant. A more exhaustive genetic association study including all putative, functional SNPs from this gene and subsequent functional analyses needs to be conducted to achieve a more complete understanding of how different variants of NOD2 may affect susceptibility to MAP infection in cattle.  相似文献   

15.
Numeracy is as important as literacy and exhibits a similar frequency of disability. Although its etiology is relatively poorly understood, quantitative genetic research has demonstrated mathematical ability to be moderately heritable. In this first genome‐wide association study (GWAS) of mathematical ability and disability, 10 out of 43 single nucleotide polymorphism (SNP) associations nominated from two high‐ vs. low‐ability (n = 600 10‐year‐olds each) scans of pooled DNA were validated (P < 0.05) in an individually genotyped sample of 1 2356 individuals spanning the entire distribution of mathematical ability, as assessed by teacher reports and online tests. Although the effects are of the modest sizes now expected for complex traits and require further replication, interesting candidate genes are implicated such as NRCAM which encodes a neuronal cell adhesion molecule. When combined into a set, the 10 SNPs account for 2.9% (F = 56.85; df = 1 and 1881; P = 7.277e–14) of the phenotypic variance. The association is linear across the distribution consistent with a quantitative trait locus (QTL) hypothesis; the third of children in our sample who harbour 10 or more of the 20 risk alleles identified are nearly twice as likely (OR = 1.96; df = 1; P = 3.696e–07) to be in the lowest performing 15% of the distribution. Our results correspond with those of quantitative genetic research in indicating that mathematical ability and disability are influenced by many genes generating small effects across the entire spectrum of ability, implying that more highly powered studies will be needed to detect and replicate these QTL associations.  相似文献   

16.
Bovine leukosis virus is an oncogenic virus that infects B cells, causing bovine leukosis disease. This disease is known to have a negative impact on dairy cattle production and, because no treatment or vaccine is available, finding a possible genetic solution is important. Our objective was to perform a comprehensive genetic analysis of leukosis incidence in dairy cattle. Data on leukosis occurrence, pedigree and molecular information were combined into multitrait GBLUP models with milk yield (MY) and somatic cell score (SCS) to estimate genetic parameters and to perform whole‐genome scans and pathway analysis. Leukosis data were available for 11 554 Holsteins daughters of 3002 sires from 112 herds in 16 US states. Genotypes from a 60K SNP panel were available for 961 of those bulls as well as for 2039 additional bulls. Heritability for leukosis incidence was estimated at about 8%, and the genetic correlations of leukosis disease incidence with MY and SCS were moderate at 0.18 and 0.20 respectively. The genome‐wide scan indicated that leukosis is a complex trait, possibly modulated by many genes. The gene set analysis identified many functional terms that showed significant enrichment of genes associated with leukosis. Many of these terms, such as G‐Protein Coupled Receptor Signaling Pathway, Regulation of Nucleotide Metabolic Process and different calcium‐related processes, are known to be related to retrovirus infection. Overall, our findings contribute to a better understanding of the genetic architecture of this complex disease. The functional categories associated with leukosis may be useful in future studies on fine mapping of genes and development of dairy cattle breeding strategies.  相似文献   

17.

Background

Mycobacterium avium subsp. paratuberculosis (MAP), the causative bacterium of Johne’s disease in dairy cattle, is widespread in the Canadian dairy industry and has significant economic and animal welfare implications. An understanding of the population dynamics of MAP can be used to identify introduction events, improve control efforts and target transmission pathways, although this requires an adequate understanding of MAP diversity and distribution between herds and across the country. Whole genome sequencing (WGS) offers a detailed assessment of the SNP-level diversity and genetic relationship of isolates, whereas several molecular typing techniques used to investigate the molecular epidemiology of MAP, such as variable number of tandem repeat (VNTR) typing, target relatively unstable repetitive elements in the genome that may be too unpredictable to draw accurate conclusions. The objective of this study was to evaluate the diversity of bovine MAP isolates in Canadian dairy herds using WGS and then determine if VNTR typing can distinguish truly related and unrelated isolates.

Results

Phylogenetic analysis based on 3,039 SNPs identified through WGS of 124 MAP isolates identified eight genetically distinct subtypes in dairy herds from seven Canadian provinces, with the dominant type including over 80% of MAP isolates. VNTR typing of 527 MAP isolates identified 12 types, including “bison type” isolates, from seven different herds. At a national level, MAP isolates differed from each other by 1–2 to 239–240 SNPs, regardless of whether they belonged to the same or different VNTR types. A herd-level analysis of MAP isolates demonstrated that VNTR typing may both over-estimate and under-estimate the relatedness of MAP isolates found within a single herd.

Conclusions

The presence of multiple MAP subtypes in Canada suggests multiple introductions into the country including what has now become one dominant type, an important finding for Johne’s disease control. VNTR typing often failed to identify closely and distantly related isolates, limiting the applicability of using this typing scheme to study the molecular epidemiology of MAP at a national and herd-level.  相似文献   

18.
Mycobacterium avium subsp. paratuberculosis (MAP) is the etiologic agent of paratuberculosis, a chronic granulomatous enteric disease of ruminants. MAP detection by faecal culture provides the definitive diagnosis of the infection. Automated liquid systems for MAP culture are more sensitive and rapid than culture on solid media, but they are expensive and require specialised equipment. In this study, a non-automated culture method using a modified Middlebrook 7H9 liquid medium (7H9+) was compared with Herrold's solid medium (HEYM) and direct real-time PCR on dairy cattle faeces. MAP growth in 7H9+ was monitored weekly by real-time PCR until the 12th week post-inoculation. The analytical sensitivity of the three methods was evaluated using faecal samples from a healthy cow spiked with ten-fold dilutions of MAP organisms (104-10− 1) and naturally MAP-infected faeces serially diluted 1 to 10 in negative faecal samples. The limits of detection of the solid culture and direct real-time PCR were 102 and 103 MAP/g, respectively. In comparison, the 7H9+ culture revealed as few as 1 MAP/g. A marked reduction in time to detection of the pathogen, compared with HEYM culture, was obtained. In addition, the three methods were applied to environmental faecal samples collected from a high- and a low-prevalence herd. The culture in 7H9+ showed to be the most sensitive test in the low-prevalence herd and provided faster results than HEYM. In the high-prevalence herd the three methods showed the same sensitivity and the real-time PCR had the shortest turnaround time. In conclusion, the use of 7H9+ for MAP-detection from cattle faeces maximizes diagnostic sensitivity and reduces turnaround time and, therefore, could replace culture in solid medium. Hence, we propose a two-step protocol for the assessment of MAP faecal excretion based on: 1) direct real-time PCR on all samples; and 2) inoculation of negative samples into 7H9+ and analysis after 3 and, if necessary, 6 weeks by real-time PCR.  相似文献   

19.
Marek's disease (MD) is a neoplastic disease in chickens, caused by the Marek's disease virus (MDV). To investigate host genetic resistance to MD, we conducted a genome‐wide association study (GWAS) on 67 MDV‐infected chickens based on a case and control design, including 57 susceptible chickens in the case group and 10 resistant chickens as controls. After searching 38 655 valid genomic markers, two SNPs were found to be associated with host resistance to MD. One SNP, rs14527240, reaching chromosome‐wide significance level (< 0.01) was located in the SPARC‐related modular calcium‐binding 1 (SMOC1) gene on GGA5. The other one, GGaluGA156129, reaching genome‐wide significance (< 0.05), was located in the protein tyrosine phosphatase, non‐receptor type 3 (PTPN3) gene on GGA2. In addition, expression patterns of these two genes in spleens were detected by qPCR. The expression of SMOC1 was significantly up‐regulated (< 0.05), whereas the expression of PTNP3 did not show significance when the case group was compared with the control group. Up‐regulation of SMOC1 in susceptible spleens suggests its important roles in MD tumorigenesis. This is the first study to investigate MD‐resistant loci, and it demonstrates the power of GWASs for mapping genes associated with MD resistance.  相似文献   

20.
We performed a genome‐wide association study for Warner–Bratzler shear force (WBSF), a measure of meat tenderness, by genotyping 3360 animals from five breeds with 54 790 BovineSNP50 and 96 putative single‐nucleotide polymorphisms (SNPs) within μ‐calpain [HUGO nomenclature calpain 1, (mu/I) large subunit; CAPN1] and calpastatin (CAST). Within‐ and across‐breed analyses estimated SNP allele substitution effects (ASEs) by genomic best linear unbiased prediction (GBLUP) and variance components by restricted maximum likelihood under an animal model incorporating a genomic relationship matrix. GBLUP estimates of ASEs from the across‐breed analysis were moderately correlated (0.31–0.66) with those from the individual within‐breed analyses, indicating that prediction equations for molecular estimates of breeding value developed from across‐breed analyses should be effective for genomic selection within breeds. We identified 79 genomic regions associated with WBSF in at least three breeds, but only eight were detected in all five breeds, suggesting that the within‐breed analyses were underpowered, that different quantitative trait loci (QTL) underlie variation between breeds or that the BovineSNP50 SNP density is insufficient to detect common QTL among breeds. In the across‐breed analysis, CAPN1 was followed by CAST as the most strongly associated WBSF QTL genome‐wide, and associations with both were detected in all five breeds. We show that none of the four commercialized CAST and CAPN1 SNP diagnostics are causal for associations with WBSF, and we putatively fine‐map the CAPN1 causal mutation to a 4581‐bp region. We estimate that variation in CAST and CAPN1 explains 1.02 and 1.85% of the phenotypic variation in WBSF respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号