首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The effects of elevated pCO2 on net ecosystem CO2 exchange were investigated in managed Lolium perenne (perennial ryegrass) and Trifolium repens (white clover) monocultures that had been exposed continuously to elevated pCO2 (60 Pa) for nine growing seasons using Free Air CO2 Enrichment (FACE) technology. Two levels of nitrogen (N) fertilization were applied. Midday net ecosystem CO2 exchange (mNEE) and night-time ecosystem respiration (NER) were measured in three growing seasons using an open-flow chamber system. The annual net ecosystem carbon (C) input resulting from the net CO2 fluxes was estimated for one growing season. In both monocultures and at both levels of N supply, elevated pCO2 stimulated mNEE by up to 32%, the exact amount depending on intercepted PAR. The response of mNEE to elevated pCO2 was larger than that of harvestable biomass. Elevated pCO2 increased NER by up to 39% in both species at both levels of N supply. NER, which was affected by mNEE of the preceding day, was higher in T. repens than in L. perenne. High N increased NER compared to low N supply. According to treatment, the annual net ecosystem C input ranged between 210 and 631 g C m−2 year−1 and was not significantly affected by the level of pCO2. Low N supply led to a higher net C input than high N supply. We demonstrated that at the ecosystem level, there was a long-term stimulation in the net C assimilation during daytime by elevated pCO2. However, because NER was also stimulated, net ecosystem C input was not significantly increased at elevated pCO2. The annual net ecosystem C input was primarily affected by the amount of N supplied.  相似文献   

2.
3.
4.
It has been suggested that enrichment of atmospheric CO2 should alter mycorrhizal function by simultaneously increasing nutrient‐uptake benefits and decreasing net C costs for host plants. However, this hypothesis has not been sufficiently tested. We conducted three experiments to examine the impacts of CO2 enrichment on the function of different combinations of plants and arbuscular mycorrhizal (AM) fungi grown under high and low soil nutrient availability. Across the three experiments, AM function was measured in 14 plant species, including forbs, C3 and C4 grasses, and plant species that are typically nonmycorrhizal. Five different AM fungal communities were used for inoculum, including mixtures of Glomus spp. and mixtures of Gigasporaceae (i.e. Gigaspora and Scutellospora spp.). Our results do not support the hypothesis that CO2 enrichment should consistently increase plant growth benefits from AM fungi, but rather, we found CO2 enrichment frequently reduced AM benefits. Furthermore, we did not find consistent evidence that enrichment of soil nutrients increases plant growth responses to CO2 enrichment and decreases plant growth responses to AM fungi. Our results show that the strength of AM mutualisms vary significantly among fungal and plant taxa, and that CO2 levels further mediate AM function. In general, when CO2 enrichment interacted with AM fungal taxa to affect host plant dry weight, it increased the beneficial effects of Gigasporaceae and reduced the benefits of Glomus spp. Future studies are necessary to assess the importance of temperature, irradiance, and ambient soil fertility in this response. We conclude that the affects of CO2 enrichment on AM function varies with plant and fungal taxa, and when making predictions about mycorrhizal function, it is unwise to generalize findings based on a narrow range of plant hosts, AM fungi, and environmental conditions.  相似文献   

5.
We evaluated the influences of CO2[Control, ~ 370 µ mol mol ? 1; 200 µ mol mol ? 1 above ambient applied by free‐air CO2 enrichment (FACE)] and soil water (Wet, Dry) on above‐ and below‐ground responses of C3 (cotton, Gossypium hirsutum) and C4 (sorghum, Sorghum bicolor) plants in monocultures and two density mixtures. In monocultures, CO2 enrichment increased height, leaf area, above‐ground biomass and reproductive output of cotton, but not sorghum, and was independent of soil water treatment. In mixtures, cotton, but not sorghum, above‐ground biomass and height were generally reduced compared to monocultures, across both CO2 and soil water treatments. Density did not affect individual plant responses of either cotton or sorghum across the other treatments. Total (cotton + sorghum) leaf area and above‐ground biomass in low‐density mixtures were similar between CO2 treatments, but increased by 17–21% with FACE in high‐density mixtures, due to a 121% enhancement of cotton leaf area and a 276% increase in biomass under the FACE treatment. Total root biomass in the upper 1.2 m of the soil was not influenced by CO2 or by soil water in monoculture or mixtures; however, under dry conditions we observed significantly more roots at lower soil depths ( > 45 cm). Sorghum roots comprised 81–85% of the total roots in the low‐density mixture and 58–73% in the high‐density mixture. CO2‐enrichment partly offset negative effects of interspecific competition on cotton in both low‐ and high‐density mixtures by increasing above‐ground biomass, with a greater relative increase in the high‐density mixture. As a consequence, CO2‐enrichment increased total above‐ground yield of the mixture at high density. Individual plant responses to CO2 enrichment in global change models that evaluate mixed plant communities should be adjusted to incorporate feedbacks for interspecific competition. Future field studies in natural ecosystems should address the role that a CO2‐mediated increase in C3 growth may have on subsequent vegetation change.  相似文献   

6.
Lolium perenne and Trifolium repens were grown in a Free Air CO2 Enrichment (FACE) system at elevated (600 μimol mol-1) and ambient (340 μmol mol-1) carbon dioxide concentrations during a whole growing season. Using a root ingrowth bag technique the extent to which CO2 enrichment influenced the growth of L, perenne and T. repens roots under two contrasting nutrient regimes was examined. Root ingrowth bags were inserted for a fixed time into the soil in order to trap roots. It was also possible to follow the mortality of roots in bags inserted for different time intervals. Root ingrowth of both L. perenne and T. repens increased under elevated CO2 conditions. In L. perenne, root ingrowth decreased with increasing nutrient fertilizer level, but for T. repens the root ingrowth was not affected by the nutrient application rate. Besides biomass measurements, root length estimates were made for T, repens. These showed an increase under elevated CO2 concentrations. Root decomposition appeared to decrease under elevated CO2 concentrations. A possible explanation for this effect is the observed changes in tissue composition, such as the increase in the carbon: nitrogen ratio in roots of L. perenne at elevated CO2 concentrations.  相似文献   

7.
8.
9.
Anthropogenic increases in atmospheric CO2 concentration and the connected deposition of organic matter into the soil influence the occurrence of decomposers who regulate carbon release back into the atmosphere. The effects of increased concentration of atmospheric carbon dioxide, plant species cover quality and nitrogen (N) fertilization on the coenosis composition of soil saprobic microfungi were studied under field conditions (Swiss Free Air Carbon Dioxide Enrichment experiment). In total, 42 species of microfungi were detected in examined soil. The most significant response of soil mycoflora was induced by the species identity of plant cover. Higher N fertilization significantly suppressed the abundance of soil microfungi at ambient CO2. The effect of increased CO2 on colony‐forming units was not significant when taken as an independent treatment; however, this factor interacted significantly with N availability. Some species, e.g. the Clonostachys rosea, were proven associated with the plant cover components, in this particular case with Trifolium repens. Therefore, we suggest the identity of plant species constituting plant cover as the most important factors affecting soil microfungi in agroecosystems.  相似文献   

10.
Mycorrhizas are ubiquitous symbioses that may have an important role in the movement of C from air to soil. Studies on the effects of climate change factors on mycorrhizas have been concentrated on the effects of atmospheric [CO2] whereas temperature effects have been neglected. Based on previous results showing no effect of varying atmospheric [CO2] on the development and P uptake of the arbuscular mycorrhizal fungi (AMF) colonizing plants growing in controlled conditions, we hypothesized that soil temperature would have a higher impact on AMF development and nutrient uptake than the effects of [CO2] on the host plant. Pea plants were grown in association with either a single isolate of Glomus caledonium or AMF from field soil in factorial combination with the corresponding current (10 °C) or elevated (15 °C) soil temperatures at current (350 p.p.m) or elevated (700 p.p.m) atmospheric [CO2]. 33P uptake by extraradical AMF hyphae was measured independently from root P uptake in a root exclusion compartment. Intraradical colonization developed well at both soil temperatures and almost duplicated from 10 to 15 °C. Extraradical mycelium developed only at 15 °C in the root exclusion compartment and hyphal P uptake could therefore be studied at 15 °C only. Hyphal P uptake differed markedly between inoculum types, but was not altered by growing the host plants at two atmospheric [CO2] levels. No significant [CO2] × soil temperature interactions were observed. The results suggested that, in the system tested, AMF development and function is likely more influenced by the temperature component of climate change than by its [CO2] component. We suggest that much more attention should be paid to temperature effects in future studies.  相似文献   

11.
Effects of free‐air carbon dioxide enrichment (FACE, 60 Pa pCO2) on plant growth as compared with ambient pCO2 (36 Pa) were studied in swards of Lolium perenne L. (perennial ryegrass) at two levels of N fertilization (14 and 56 g m?2 a?1) from 1993 to 2002. The objectives were to determine how plant growth responded to the availability of C and N in the long term and how the supply of N to the plant from the two sources of N in the soil, soil organic matter (SOM) and mineral fertilizer, varied over time. In three field experiments, 15N‐labelled fertilizer was used to distinguish the sources of available N. In 1993, harvestable biomass under elevated pCO2 was 7% higher than under ambient pCO2. This relative pCO2 response increased to 32% in 2002 at high N, but remained low at low N. Between 1993 and 2002, the proportions and amounts of N in harvestable biomass derived from SOM (excluding remobilized fertilizer) were, at high N, increasingly higher at elevated pCO2 than at ambient pCO2. Two factorial experiments confirmed that at high N, but not at low N, a higher proportion of N in harvestable biomass was derived from soil (including remobilized fertilizer) following 7 and 9 years of elevated pCO2, when compared with ambient pCO2. It is suggested that N availability in the soil initially limited the pCO2 response of harvestable biomass. At high N, the limitation of plant growth decreased over time as a result of the stimulated mobilization of N from soil, especially from SOM. Consequently, harvestable biomass increasingly responded to elevated pCO2. The underlying mechanisms which contributed to the increased mobilization of N from SOM under elevated pCO2 are discussed. This study demonstrated that there are feedback mechanisms in the soil which are only revealed during long‐term field experiments. Such investigations are thus, a prerequisite for understanding the responses of ecosystems to elevated pCO2 and N supply.  相似文献   

12.
13.
14.
15.
Effects of the arbuscular mycorrhizal fungus (AMF) Glomus hoi on the carbon economy of perennial ryegrass (Lolium perenne) were investigated by comparing nonmycorrhizal and mycorrhizal plants of the same size, morphology and phosphorus status. Plants were grown in the presence of CO2 sources with different C isotope composition (delta13C -1 or -44). Relative respiration and gross photosynthesis rates, and belowground allocation of C assimilated during one light period ('new C'), as well as its contribution to respiration, were quantified by the concerted use of 13CO2/12CO2 steady-state labelling and 13CO2/12CO2 gas-exchange techniques. AMF (G. hoi) enhanced the relative respiration rate of the root + soil system by 16%, inducing an extra C flow amounting to 3% of daily gross photosynthesis. Total C flow into AMF growth and respiration was estimated at < 8% of daily gross photosynthesis. This was associated with a greater amount of new C allocated belowground and respired in mycorrhizal plants. AMF colonization affected the sources supplying belowground respiration, indicating a greater importance of plant C stores in supplying respiration and/or the participation of storage pools within fungal tissues. When ontogenetic and nutritional effects were accounted for, AMF increased belowground C costs, which were not compensated by increased photosynthesis rates. Therefore the instantaneous relative growth rate was lower in mycorrhizal plants.  相似文献   

16.
Using the free‐air CO2 enrichment (FACE) techniques, we carried out a 3‐year mono‐factorial experiment in temperate paddy rice fields of Japan (1998–2000) and a 3‐year multifactorial experiment in subtropical paddy rice fields in the Yangtze River delta in China (2001–2003), to investigate the methane (CH4) emissions in response to an elevated atmospheric CO2 concentration (200±40 mmol mol?1 higher than that in the ambient atmosphere). No significant effect of the elevated CO2 upon seasonal accumulative CH4 emissions was observed in the first rice season, but significant stimulatory effects (CH4 increase ranging from 38% to 188%, with a mean of 88%) were observed in the second and third rice seasons in the fields with or without organic matter addition. The stimulatory effects of the elevated CO2 upon seasonal accumulative CH4 emissions were negatively correlated with the addition rates of decomposable organic carbon (P<0.05), but positively with the rates of nitrogen fertilizers applied in either the current rice season (P<0.05) or the whole year (P<0.01). Six mechanisms were proposed to explain collectively the observations. Soil nitrogen availability was identified as an important regulator. The effect of soil nitrogen availability on the observed relation between elevated CO2 and CH4 emission can be explained by (a) modifying the C/N ratio of the plant residues formed in the previous growing season(s); (b) changing the inhibitory effect of high C/N ratio on plant residue decomposition in the current growing season; and (c) altering the stimulatory effects of CO2 enrichment upon plant growth, as well as nitrogen uptake in the current growing season. This study implies that the concurrent enrichment of reactive nitrogen in the global ecosystems may accelerate the increase of atmospheric methane by initiating a stimulatory effect of the ongoing dramatic atmospheric CO2 enrichment upon methane emissions from nitrogen‐poor paddy rice ecosystems and further amplifying the existing stimulatory effect in nitrogen‐rich paddy rice ecosystems.  相似文献   

17.
18.
19.
20.
We measured the short‐term direct and long‐term indirect effects of elevated CO2 on leaf dark respiration of loblolly pine (Pinus taeda) and sweetgum (Liquidambar styraciflua) in an intact forest ecosystem. Trees were exposed to ambient or ambient + 200 µmol mol?1 atmospheric CO2 using free‐air carbon dioxide enrichment (FACE) technology. After correcting for measurement artefacts, a short‐term 200 µmol mol?1 increase in CO2 reduced leaf respiration by 7–14% for sweetgum and had essentially no effect on loblolly pine. This direct suppression of respiration was independent of the CO2 concentration under which the trees were grown. Growth under elevated CO2 did not appear to have any long‐term indirect effects on leaf maintenance respiration rates or the response of respiration to changes in temperature (Q10, R0). Also, we found no relationship between mass‐based respiration rates and leaf total nitrogen concentrations. Leaf construction costs were unaffected by growth CO2 concentration, although leaf construction respiration decreased at elevated CO2 in both species for leaves at the top of the canopy. We conclude that elevated CO2 has little effect on leaf tissue respiration, and that the influence of elevated CO2 on plant respiratory carbon flux is primarily through increased biomass.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号