首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Medeiros  R.  Serpa  L.  Brito  C.  De Wolf  H.  Jordaens  K.  Winnepenninckx  B.  Backeljau  T. 《Hydrobiologia》1998,378(1-3):43-51
The radular muscles of several littorinid species, including Littorina littorea, L. saxatilis, L. obtusata, L. striata and Melarhaphe neritoides, contain myoglobin (Mb). Here we report on the presence of radular Mb in eight other littorinids: L. compressa, L. arcana, L. fabalis, Nodilittorina punctata, N. trochoides, N. radiata, Littoraria undulata and Littoraria cingulifera. Using native polyacrylamide gel electrophoresis (PAGE) and isoelectric focusing (IEF) we compared the Mb and soluble protein (SP) profiles of these species. This suggested that: (1) L. saxatilis and L. arcana may have specific Mb/SP profiles, (2) Littoraria spp., Nodilittorina spp. and L. striata share similar Mb patterns, (3) Mb is remarkably diverse in the genus Littorina, (4) L. littorea shows intraspecific Mb/SP variation, (5) L. saxatilis does not show geographic Mb/SP differences, and (6) IEF uncovers substantial hidden Mb/SP heterogeneity not shown by PAGE (particularly for Melarhaphe neritoides). Hence, littorinid Mb/SP may be a useful taxonomic marker whose ecophysiological significance deserves further study, even if its genetic basis remains unclear.  相似文献   

2.
Divergence in phenotypic traits is facilitated by a combination of natural selection, phenotypic plasticity, gene flow, and genetic drift, whereby the role of drift is expected to be particularly important in small and isolated populations. Separating the components of phenotypic divergence is notoriously difficult, particularly for multivariate phenotypes. Here, we assessed phenotypic divergence of threespine stickleback (Gasterosteus aculeatus) across 19 semi‐interconnected ponds within a small geographic region (~7.5 km2) using comparisons of multivariate phenotypic divergence (PST), neutral genetic (FST), and environmental (EST) variation. We found phenotypic divergence across the ponds in a suite of functionally relevant phenotypic traits, including feeding, defense, and swimming traits, and body shape (geometric morphometric). Comparisons of PSTs with FSTs suggest that phenotypic divergence is predominantly driven by neutral processes or stabilizing selection, whereas phenotypic divergence in defensive traits is in accordance with divergent selection. Comparisons of population pairwise PSTs with ESTs suggest that phenotypic divergence in swimming traits is correlated with prey availability, whereas there were no clear associations between phenotypic divergence and environmental difference in the other phenotypic groups. Overall, our results suggest that phenotypic divergence of these small populations at small geographic scales is largely driven by neutral processes (gene flow, drift), although environmental determinants (natural selection or phenotypic plasticity) may play a role.  相似文献   

3.
A simultaneous survey of 14 protein loci, together with frequencies and within- and between-population allelism rates of lethal chromosomes, was carried out in five (four Japanese and one Korean) natural populations and one cage population of Drosophila melanogaster. It was found that lethal allelism rates decrease rapidly as geographic distance between two populations increases, while variation at protein loci shows a remarkable similarity over all populations examined. These findings suggest that there are very high levels of gene flow in these natural populations and that selection at protein loci which can maintain substantial geographic variation, if present, is overshadowed by gene flow. There is no indication that invasion of D. melanogaster to the Far East occurred so recently that the frequencies of lethal chromosomes are still in nonequilibrium.  相似文献   

4.
Genetic isolation by distance (IBD) has rarely been described in marine species with high potential for dispersal at both the larval and adult life-history stages. Here, we report significant relationships between inferred levels of gene flow and geographic distance in the Atlantic cod, Gadus morhua, at 10 nuclear restriction-fragment-length-polymorphism (RFLP) loci at small regional scales in the western north Atlantic region (< 1,600 km) that mirror those previously detected over its entire geographic range (up to 7,300 km). Highly significant allele frequency differences were observed among eight northwestern Atlantic populations, although the mean FST for all 10 loci was only 0.014. Despite this weak population structuring, the distance separating populations explained between 54% and 62% of the variation in gene flow depending on whether nine or 10 loci were used to estimate Nm. Across the species' entire geographic range, highly significant differences were observed among six regional populations at nine of the 10 loci (mean FST = 0.068) and seven loci exhibited significant negative relationships between gene flow and distance. At this large geographic scale, natural selection acting in the vicinity of one RFLP locus (GM798) had a significant effect on the correlation between gene flow and distance, and eliminating it from the analysis caused the coefficient of determination to increase from 17% to 62%. The role of vicariance was assessed by sequentially removing populations from the analysis and was found to play a minor role in contributing to the relationship between gene flow and distance at either geographic scale. The correlation between gene flow and distance detected in G. morhua at small and large spatial scales suggests that dispersal distances and effective population sizes are much smaller than predicted for the species and that the recent age of populations, rather than extensive gene flow, may be responsible for its weak population structure. Our results suggest that interpreting limited genetic differences among populations as reflecting high levels of ongoing gene flow should be made with caution.  相似文献   

5.
The geographic distribution of phenotypic variation among closely related populations is a valuable source of information about the evolutionary processes that generate and maintain biodiversity. Leapfrog distributions, in which phenotypically similar populations are disjunctly distributed and separated by one or more phenotypically distinct populations, represent geographic replicates for the existence of a phenotype, and are therefore especially informative. These geographic patterns have mostly been studied from phylogenetic perspectives to understand how common ancestry and divergent evolution drive their formation. Other processes, such as gene flow between populations, have not received as much attention. Here, we investigate the roles of divergence and gene flow between populations in the origin and maintenance of a leapfrog distribution in Phyllobates poison frogs. We found evidence for high levels of gene flow between neighbouring populations but not over long distances, indicating that gene flow between populations exhibiting the central phenotype may have a homogenizing effect that maintains their similarity, and that introgression between ‘leapfroging’ taxa has not played a prominent role as a driver of phenotypic diversity in Phyllobates. Although phylogenetic analyses suggest that the leapfrog distribution was formed through independent evolution of the peripheral (i.e. leapfrogging) populations, the elevated levels of gene flow between geographically close populations poise alternative scenarios, such as the history of phenotypic change becoming decoupled from genome‐averaged patterns of divergence, which we cannot rule out. These results highlight the importance of incorporating gene flow between populations into the study of geographic variation in phenotypes, both as a driver of phenotypic diversity and as a confounding factor of phylogeographic inferences.  相似文献   

6.
Allozymes were used to investigate the genetic structure of 42 populations of the planktonic developing, Macaronesian periwinkle Littorina striata, throughout its entire geographic range (Azores, Madeira, Canary Islands and Cape Verde Islands). This periwinkle is presumed to have a high dispersal and gene flow potential, because it has a planktonic development. It is therefore expected to show little population genetic differentiation. Indeed, based on Wright's hierarchical F-statistics, no significant genetic differentiation could be detected among populations, at any of the specified hierarchical levels (i.e. population, island, and archipelago). Nevertheless, the Cape Verde Islands seemed genetically more diverse (highest mean number of alleles per locus). The number of loci revealing a significant genetic heterogeneity increased with increasing distance between populations, while private alleles based gene flow (Nm) estimates also revealed a tendency towards a geographical pattern. The distribution of rare and private alleles, might account for these observations which suggested some geographical effect. Because of the low frequency at which these alleles occur, their influence on the genetic population structure is negligible, and not picked up by F-statistics.  相似文献   

7.
Geographic variation in primate vocalizations has been described at two levels. First, at the level of acoustic variation within the same call type between populations and, second, at the level of presence or absence of certain call types in different populations. Acoustic variation is of interest because there are several factors that can explain this variation, such as gene flow, ecological factors and population density. Here we focus on the first level in a Southeast Asian primate, the Thomas langur. We recorded male loud calls in four populations that differed in their geographic distances from each other and had varying geographic barriers in between them, such as rivers and mountain ranges. The presence of these barriers leads to expectations of loud call variation under the gene flow model, which are examined here. We conducted a principal components analysis to condense the number of acoustic variables. With a subsequent discriminant function analysis on the six principal component scores, we found that the percentage of loud calls that were correctly assigned to a population was relatively high (50.0-76.2%) when three randomly selected loud calls from each male were used. Using the discriminant functions from this analysis to predict population membership of the remainder of the loud calls yielded lower, but still relatively high correct assignment percentages (26.2-66.7%). Analyses to examine the influence of barriers on similarities between populations confirm our expectations. We discuss that differences in loud calls are probably most parsimoniously explained by gene flow (or the lack thereof) between the populations and that future studies of genetic differences are crucial to test this hypothesis.  相似文献   

8.
Australian magpies (Gymnorhina tibicen) are group-living birds found across much of mainland Australia. Adults commonly remain in a breeding territory until death. Young of the year either remain on the natal (birth) site or are forced by their parents to disperse. Observational studies in south-eastern Australia suggest that most dispersing juveniles settle within 7 km of their natal territory. Therefore, despite potential for considerable gene flow (via flight), social organization predisposes magpies towards local population structuring. In this study, we measured genetic variation at both nuclear (allozyme) and mitochondrial loci and found evidence of substantial gene flow over very large distances (up to 1599 km). Thus, some juvenile magpies may disperse much greater distances than was previously thought. For mtDNA, geographic and genetic distance were strongly correlated, consistent with a pattern of isolation by distance. Therefore, although female gene flow is substantial it is apparently geographically restricted over large distances, in approximately a stepping-stone fashion. We conclude that a strong relationship between gene flow and geographic distance can develop even over large distances if populations have experienced no major historical disturbances to gene flow.  相似文献   

9.
The hypothesis that levels of gene flow among populations are correlated with dispersal ability has typically been tested by comparing gene flow among species that differ in dispersal abilities, an approach that potentially confounds dispersal ability with other species-specific differences. In this study, we take advantage of geographic variation in the dispersal strategies of two wing-dimorphic planthopper species, Prokelisia marginata and P. dolus, to examine for the first time whether levels of gene flow among populations are correlated with intraspecific variation in dispersal ability. We found that in both of these coastal salt marsh–inhabiting species, population-genetic subdivision, as assessed using allozyme electrophoresis, parallels geographic variation in the proportion of flight-capable adults (macropters) in a population; in regions where levels of macroptery are high, population genetic subdivision is less than in regions where levels of macroptery are low. We found no evidence that geographic variation in dispersal capability influences the degree to which gene flow declines with distance in either species. Thus, both species provided evidence that intraspecific variation in dispersal strategies influences the genetic structure of populations, and that this effect is manifested in population-genetic structure at the scale of large, coastal regions, rather than in genetic isolation by distance within a region. This conclusion was supported by interspecific comparisons revealing that: (1) population-genetic structure (GST) of the two Prokelisia species correlated negatively with the mean proportion of flight-capable adults within a region; and (2) there was no evidence that the degree of isolation by distance increased with decreasing dispersal capability. Populations of the relatively sedentary P. dolus clustered by geographic region (using Nei's distances), but this was not the case for the more mobile P. marginata. Furthermore, gene flow among the two major regions we surveyed (Atlantic and Gulf Coasts) has been substantial in P. marginata, but relatively less in P. dolus. The results for P. marginata suggest that differences in the dispersal strategies of Atlantic and Gulf Coast populations occur despite extensive gene flow. We argue that gene flow is biased from Atlantic to Gulf Coast populations, indicating that selection favoring a reduction in flight capability must be intense along the Gulf. Together, the results of this study provide the first rigorous evidence of a negative relationship within a species between dispersal ability and the genetic structure of populations. Furthermore, regional variation in dispersal ability is apparently maintained by selective differences that outweigh high levels of gene flow among regions.  相似文献   

10.
Olabarria  C.  Timmermans  J.-M.  Backeljau  T. 《Hydrobiologia》1998,378(1-3):11-19
Using isoelectric focusing of esterases (EST), general proteins (GP) and myoglobin (Mb), we surveyed intra- and interspecific differentiation in flat periwinkles along a vertical intertidal transect in the Ensenada do Baño at Ria Ferrol, N.W. Spain. In this region, L. obtusata occurs in four algal belts, although it is rare in the lowest zone defined by Fucus serratus. L. fabalis is common in the F. serratus and F. vesiculosus belt, but is absent higher up on Ascophyllum nodosum and F. spiralis. Our data show that (1) EST and GP consistently differentiate between L. obtusata and L. fabalis, without however providing useful diagnostic markers, (2) L. fabalis is the less variable (heterozygous), but more heterogeneous species, (3) Mb patterns show significant heterogeneity in L. obtusata between the F. serratus zone and the other algal belts, but not in L. fabalis, and (4) the data on littorinid Mb appear inconsistent with a dimeric protein controlled by a single locus. Yet, assuming two loci coding for a monomeric (or dissociated dimeric) protein produces for the flat periwinkles a data set in which no significant deviations from Hardy-Weinberg expectations were detected. Nevertheless, this speculative interpretation fails to explain all littorinid Mb data. Hence the genetics and structure of littorinid Mb need further study.  相似文献   

11.
This study examines the population structure of Classic period (A.D. 250-900) Maya populations through analysis of odontometric variation of 827 skeletons from 12 archaeological sites in Mexico, Guatemala, Belize, and Honduras. The hypothesis that isolation by distance characterized Classic period Maya population structure is tested using Relethford and Blangero's (Hum Biol 62 (1990) 5-25) approach to R matrix analysis for quantitative traits. These results provide important biological data for understanding ancient Maya population history, particularly the effects of the competing Tikal and Calakmul hegemonies on patterns of lowland Maya site interaction. An overall F(ST) of 0.018 is found for the Maya area, indicating little among-group variation for the Classic Maya sites tested. Principal coordinates plots derived from the R matrix analysis show little regional patterning in the data, though the geographic outliers of Kaminaljuyu and a pooled Pacific Coast sample did not cluster with the lowland Maya sites. Mantel tests comparing the biological distance matrix to a geographic distance matrix found no association between genetic and geographic distance. In the Relethford-Blangero analysis, most sites possess negative or near-zero residuals, indicating minimal extraregional gene flow. The exceptions were Barton Ramie, Kaminaljuyu, and Seibal. A scaled R matrix analysis clarifies that genetic drift is a consideration for understanding Classic Maya population structure. All results indicate that isolation by distance does not describe Classic period Maya population structure.  相似文献   

12.
Hoekstra HE  Krenz JG  Nachman MW 《Heredity》2005,94(2):217-228
Elucidating the causes of population divergence is a central goal of evolutionary biology. Rock pocket mice, Chaeotdipus intermedius, are an ideal system in which to study intraspecific phenotypic divergence because of the extensive color variation observed within this species. Here, we investigate whether phenotypic variation in color is correlated with local environmental conditions or with phylogenetic history. First, we quantified variation in pelage color (n=107 mice) and habitat color (n=51 rocks) using a spectrophotometer, and showed that there was a correlation between pelage color and habitat color across 14 sampled populations (R2=0.43). Analyses of mtDNA sequences from these same individuals revealed strong population structure in this species across its range, where most variation (63%) was partitioned between five geographic regions. Using Mantel tests, we show that there is no correlation between color variation and mtDNA phylogeny, suggesting that pelage coloration has evolved rapidly. At a finer geographical scale, high levels of gene flow between neighboring melanic and light populations suggest the selection acting on color must be quite strong to maintain habitat-specific phenotypic distributions. Finally, we raise the possibility that, in some cases, migration between populations of pocket mice inhabiting different lava flows may be responsible for similar melanic phenotypes in different populations. Together, the results suggest that color variation can evolve very rapidly over small geographic scales and that gene flow can both hinder and promote local adaptation.  相似文献   

13.
Resolving the genetic population structure of species inhabiting pristine, high latitude ecosystems can provide novel insights into the post‐glacial, evolutionary processes shaping the distribution of contemporary genetic variation. In this study, we assayed genetic variation in lake trout (Salvelinus namaycush) from Great Bear Lake (GBL), NT and one population outside of this lake (Sandy Lake, NT) at 11 microsatellite loci and the mtDNA control region (d‐loop). Overall, population subdivision was low, but significant (global FST θ = 0.025), and pairwise comparisons indicated that significance was heavily influenced by comparisons between GBL localities and Sandy Lake. Our data indicate that there is no obvious genetic structure among the various basins within GBL (global FST = 0.002) despite the large geographic distances between sampling areas. We found evidence of low levels of contemporary gene flow among arms within GBL, but not between Sandy Lake and GBL. Coalescent analyses suggested that some historical gene flow occurred among arms within GBL and between GBL and Sandy Lake. It appears, therefore, that contemporary (ongoing dispersal and gene flow) and historical (historical gene flow and large founding and present‐day effective population sizes) factors contribute to the lack of neutral genetic structure in GBL. Overall, our results illustrate the importance of history (e.g., post‐glacial colonization) and contemporary dispersal ecology in shaping genetic population structure of Arctic faunas and provide a better understanding of the evolutionary ecology of long‐lived salmonids in pristine, interconnected habitats.  相似文献   

14.
Geographic variation in microsatellite allele frequencies was assessed at nine sites in two regional vocal dialects of the parrot Amazona auropalliata (yellow-naped amazon) to test for correspondence between dialects and population structure. There was no relationship between the genetic distances between individuals and their dialect membership. High rates of gene flow were estimated between vocal dialects based on genetic differentiation. In addition, 5.5% of pairs of individuals compared across the dialect boundary were estimated to be related at the level of half siblings, indicating that dispersal is ongoing. The number of effective migrants per generation between dialects estimated with the microsatellite data was roughly one-seventh the number estimated with mitochondrial control region sequence data from the same individuals, suggesting that gene flow may be female-biased. Together, these results suggest that the observed mosaic pattern of geographic variation in vocalizations is maintained by learning of local call types by immigrant birds after dispersal. We found no evidence that ongoing habitat fragmentation has contributed to cryptic population structure.  相似文献   

15.
Classical speciation concepts focus almost exclusively on the evolution of strict reproductive isolation as a prerequisite for speciation. However, there is a growing body of evidence indicating that speciation is possible despite or even triggered by gene flow among populations or species. Previous findings indicate that introgressive hybridization is a dominant phenomenon in the adaptive radiation of sailfin silversides (Telmatherinidae) endemic to Lake Matano (Sulawesi). In this study, we investigate patterns of genotypic and phenotypic variation of “sharpfin” sailfin silversides in the outlet area of L. Matano and six locations along River Petea, which is the only connection between L. Matano and other lakes and streams of the Malili Lakes system. Fieldwork revealed no hints for a previously cited major waterfall in River Petea, which was thought to separate L. Matano’s sailfin silverside radiation from the diversity of the downstream lake drainages. Likewise, genomic (AFLP) and morphometric data suggest high levels of gene flow between upper and lower stretches of this river, as well as between riverine Petea and lacustrine Matano populations. Increasing levels of genotypic and phenotypic dissimilarity are correlated with distance over a remarkably short geographic range.  相似文献   

16.
Biogeographic studies in Amazonia typically describe biodiversity across interfluvia, rarely within them, where geographic variability in morphological traits might be observed. We tested for intraspecific phenotypic variation in three bird species within the Purus–Madeira interfluvium (Central Amazon) and whether phenotypes were correlated with environmental heterogeneity or geographic distance among sites. We compared coloration indexes derived from reflectance spectra and morphometrics of up to five adult individuals of each sex among 11 sites within the interfluvium and contrasted them with proxies for geographic distance and environmental variation (tree basal area and bird community). Environmental heterogeneity was minimally spatially autocorrelated, and there were no obvious geographical barriers to dispersal in the study region. The null hypothesis was that we would see either no phenotypic variation or random variation that was not explained by the tested variables. Half of the cases analyzed showed intraspecific morphological variation. Coloration varied more frequently than morphometrics, and color was better explained by environmental heterogeneity, particularly in males, whereas brightness also varied with geographic distance. Geographic distance explained the only case of variation in morphometrics. Our results indicate that coloration, particularly plumage brightness, is more labile than morphometric traits and that plumage color might be under stronger effects of local adaptation than brightness, which also seems to be under effects of neutral drift and gene flow among populations. Higher frequencies of association between male coloration and the environment suggest a role of non-arbitrary mechanisms of sexual selection on the expression of male phenotypes, whereas arbitrary intersexual selection might explain the randomly distributed variation that is not explained by environmental heterogeneity or geographic distance. We revealed intraspecific phenotypic variation in a spatial extent usually not considered in biogeographic studies in the Amazon and demonstrate that both local adaptation and neutral drift are important to explain intraspecific trait diversification at this geographical scale.  相似文献   

17.
We examined the genetic structure of natural populations of the European wood mouse Apodemus sylvaticus at the microgeographic (<3 km) and macrogeographic (>30 km) scales. Ecological and behavioural studies indicate that this species exhibits considerable dispersal relative to its home-range size. Thus, there is potential for high gene flow over larger geographic areas. As levels of population genetic structure are related to gene flow, we hypothesized that population genetic structuring at the microgeographic level should be negligible, increasing only with geographic distance. To test this, four sites were sampled within a microgeographic scale with two additional samples at the macrogeographic level. Individuals ( n =415) were screened and analysed for seven polymorphic microsatellite loci. Contrary to our hypothesis, significant levels of population structuring were detected at both scales. Comparing genetic differentiation with geographic distance suggests increasing genetic isolation with distance. However, this distance effect was non-significant being confounded by surprisingly high levels of differentiation among microgeographic samples. We attribute this pattern of genetic differentiation to the effect of habitat fragmentation, splitting large populations into components with small effective population sizes resulting in enhanced genetic drift. Our results indicate that it is incorrect to assume genetic homogeneity among populations even where there is no evidence of physical barriers and dispersal can occur freely. In the case of A. sylvaticus , it is not clear whether dispersal does not occur across habitat barriers or behavioural dispersal occurs without consequent gene flow.  相似文献   

18.
为揭示白及蔗糖合成酶基因与生长发育的关系,该研究以白及为材料,利用RT-PCR技术同源克隆白及蔗糖合成酶的关键基因SuSy,对SuSy基因的生物学特性及表达特征进行了分析,并利用实时荧光定量PCR检测SuSy基因在不同组织中的表达规律。结果表明:(1)白及SuSy基因长度为2 215 bp,编码737个氨基酸,与铁皮石斛、文心兰和蝴蝶兰的蛋白质氨基酸序列的相似性分别为97%、92%和95%。(2)生物信息学分析表明,SuSy蛋白质序列具有较高的亲水性,与拟南芥SuSy蛋白质氨基酸三级结构一致性为75.2%;系统进化树分析发现,白及SuSy蛋白与铁皮石斛处于同一个分支上。(3) qRT-PCR结果表明,SuSy基因在叶片中的表达量最高,块茎中的表达量最低;成熟叶片的表达量高于未成熟叶片的表达量;数据差异性分析显示,SuSy基因在根、块茎中表达量具有极显著性差异,但在一年生叶和二年生叶中的表达量无显著性差异,幼苗叶和一、二年生叶中表达量具有极显著性差异。由此推测,SuSy基因可能受生长发育的诱导,是调控白及生长发育关键基因。  相似文献   

19.
Eco‐evolutionary responses of natural populations to spatial environmental variation strongly depend on the relative strength of environmental differences/natural selection and dispersal/gene flow. In absence of geographic barriers, as often is the case in lake ecosystems, gene flow is expected to constrain adaptive divergence between environments – favoring phenotypic plasticity or high trait variability. However, if divergent natural selection is sufficiently strong, adaptive divergence can occur in face of gene flow. The extent of divergence is most often studied between two contrasting environments, whereas potential for multimodal divergence is little explored. We investigated phenotypic (body size, defensive structures, and feeding morphology) and genetic (microsatellites) structure in threespine stickleback (Gasterosteus aculeatus) across five habitat types and two basins (North and South) within the geologically young and highly heterogeneous Lake Mývatn, North East Iceland. We found that (1) North basin stickleback were, on average, larger and had relatively longer spines than South basin stickleback, whereas (2) feeding morphology (gill raker number and gill raker gap width) differed among three of five habitat types, and (3) there was only subtle genetic differentiation across the lake. Overall, our results indicate predator and prey mediated phenotypic divergence across multiple habitats in the lake, in face of gene flow.  相似文献   

20.
Jang Y  Hahm EH  Lee HJ  Park S  Won YJ  Choe JC 《PloS one》2011,6(8):e23297

Background

In a species with a large distribution relative to its dispersal capacity, geographic variation in traits may be explained by gene flow, selection, or the combined effects of both. Studies of genetic diversity using neutral molecular markers show that patterns of isolation by distance (IBD) or barrier effect may be evident for geographic variation at the molecular level in amphibian species. However, selective factors such as habitat, predator, or interspecific interactions may be critical for geographic variation in sexual traits. We studied geographic variation in advertisement calls in the tree frog Hyla japonica to understand patterns of variation in these traits across Korea and provide clues about the underlying forces for variation.

Methodology

We recorded calls of H. japonica in three breeding seasons from 17 localities including localities in remote Jeju Island. Call characters analyzed were note repetition rate (NRR), note duration (ND), and dominant frequency (DF), along with snout-to-vent length.

Results

The findings of a barrier effect on DF and a longitudinal variation in NRR seemed to suggest that an open sea between the mainland and Jeju Island and mountain ranges dominated by the north-south Taebaek Mountains were related to geographic variation in call characters. Furthermore, there was a pattern of IBD in mitochondrial DNA sequences. However, no comparable pattern of IBD was found between geographic distance and call characters. We also failed to detect any effects of habitat or interspecific interaction on call characters.

Conclusions

Geographic variations in call characters as well as mitochondrial DNA sequences were largely stratified by geographic factors such as distance and barriers in Korean populations of H. japoinca. Although we did not detect effects of habitat or interspecific interaction, some other selective factors such as sexual selection might still be operating on call characters in conjunction with restricted gene flow.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号