首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The affinity of the auxin-transport inhibitor N-1-naphthylphthalamic acid (NPA) for membrane particles as well as for solubilized binding sites from Cucurbita pepo L. hypocotyls was reduced by low concentrations of bisulfite (half-maximal inhibition at 2·10-3–3·10-3 M). Two membrane fractions obtained by sedimentation aided with polyethylene glycol showed differential sensitivity to bisulfite. Other oxidizing or reducing substances tested at 1 mM had no effect, except for N-ethylmaleimide (80% inhibition) and iodine (complete inhibition), both of which reduced the number of binding sites but not their affinity. Addition of bisulfite to either the isoalloxane ring of flavoproteins or to pyridoxal phosphate or quinones is proposed as a possible mechanism of action. Sulfur dioxide, at concentrations measured in polluted air, can lead to bisulfite concentrations in plant tissue sufficient to interfere with NPA-binding sites and hence with auxin transport.Abbreviations DTE dithioerythritol - DTT dithiothreitol - IC50 concentration of half-maximal inhibition - NAA 1-naphthylacetic acid - NEM N-ethylmaleimide - NPA N-1-naphthylphthalamic acid - PEG polyethylene glycol, 6000 molecular weight  相似文献   

2.
Binding protein for N-1-naphthylphthalamic acid (NPA), an auxin transport inhibitor, was studied by analysis of the effects of reactions which modify particular amino acid side chains upon their binding activity. Na2SO3, N-ethylmaleimide (NEM) and dithiobisnitrobenzoic acid all inhibited the specific binding of NPA to its binding protein fromAcer pseudoplatanus L. cells. The presence of 10-6 M Na2SO3 in the binding assay reduced the affinity of the binding protein to NPA from Kd of 1.5 £ 10-8 M to Kd of 2.1 £ 10-8 M, while concentration of the binding protein was not significantly changed. When the same analysis was applied to NPA binding to the NEM-treated membrane particles, it was found that NEM inactivated binding without changing the affinity for NPA. This study revealed the importance of sulphydryl group(s) in the maintenance of NPA binding protein activity.  相似文献   

3.
Treatment of etiolated zucchini (Cucurbita pepo L.) hypocotyl tissue with sub-micromolar concentrations of the cationophore monensin rapidly (<20 min) inhibited the transport catalytic activity of the specific auxin-anion efflux carrier and reduced the inhibition of this carrier by the phytotropin N-1-naphthylphthalamic acid (NPA). Monensin inhibited the basipetal polar transport of indol-3yl-acetic acid (IAA) in long (30 mm) zucchini segments. At concentrations lower than 10–5 mol·dm–3 monensin did not affect uptake of the pH probe [2-14C]5,5-dimethyloxazolidine-2,4-dione (DMO) or that of the membrane-potential probe tetra[14C-phenyl]phosphonium bromide (TPP+), did not affect the response of IAA net uptake to external Ca2+ concentration and did not alter the metabolism of IAA. It was concluded that low concentrations of monensin inhibit transport through the Golgi apparatus of auxin efflux carrier protein and that the efflux carriers turn over very rapidly in the plasma membrane. Monensin pretreatment did not affect the saturable binding of [3H]NPA to microsomal membranes, indicating that the auxin-efflux catalytic sites and the NPA-binding sites are located on separate proteins. At higher concentrations (10–5 mol·dm–3) monensin inhibited both mediated uptake and mediated efflux components of IAA transport. This effect was at least in part attributable to perturbation by monensin of the driving forces for mediated uptake since high concentrations of monensin also reduced the uptake of DMO and TPP+.Abbreviations CH cycloheximide - DMO 5,5-dimethyloxazolidine-2,4-dione - MDMP 2-(4-methyl-2,6-dinitroanlilino)N-methyl-propionamide - NPA N-1-naphthylphthalamic acid - TPP+ tetraphenylphosphonium ion We thank Mrs. R.P. Bell for technical assistance and Drs. G.F. Katekar and M.A. Venis for generous gifts of NPA. S.W. was supported by the U.K. Science and Engineering Research Council.  相似文献   

4.
Polar transport of the plant hormone auxin is regulated at the cellular level by inhibition of efflux from a plasma membrane (PM) carrier. Binding of the auxin transport inhibitor N-1-naphthylphthalamic acid (NPA) to a regulatory site associated with the carrier has been characterized, but the NPA-binding protein(s) have not been identified. Experimental disparities between levels of high-affinity NPA binding and auxin transport inhibition can be explained by the presence of a low-affinity binding site and in vivo hydrolysis of NPA. In Arabidopsis, colocalization of NPA amidase and aminopeptidase (AP) activities, inhibition of auxin transport by artificial beta-naphthylamide substrates, and saturable displacement of NPA by the AP inhibitor bestatin suggest that PM APs may be involved in both low-affinity NPA binding and hydrolysis. We report the purification and molecular cloning of NPA-binding PM APs and associated proteins from Arabidopsis. This is the first report of PM APs in plants. PM proteins were purified by gel permeation, anion exchange, and NPA affinity chromatography monitored for tyrosine-AP activity. Lower affinity fractions contained two orthologs of mammalian APs involved in signal transduction and cell surface-extracellular matrix interactions. AtAPM1 and ATAPP1 have substrate specificities and inhibitor sensitivities similar to their mammalian orthologs, and have temporal and spatial expression patterns consistent with previous in planta histochemical data. Copurifying proteins suggest that the APs interact with secreted cell surface and cell wall proline-rich proteins. AtAPM1 and AtAPP1 are encoded by single genes. In vitro translation products of ATAPM1 and AtAPP1 have enzymatic activities similar to those of native proteins.  相似文献   

5.
Naphthylphthalamic acid (NPA), an inhibitor of polar auxin transport, binds with high affinity to membrane preparations from callus and cell suspension cultures derived from Nicotiana tabacum (K d approx. 2·10–9 M). The concentration of membrane-bound binding sites is higher in cell suspension than in callus cultures. The binding of NPA to these sites seems to be a simple process, in contrast to the binding of the synthetic auxin naphthylacetic acid (1-NAA) to membrane preparations from callus cultures, which is more complex (A.C. Maan et al., 1983, Planta 158, 10–15). Naphthylacetic acid, a number of structurally related compounds and the auxin-transport inhibitor triiodobenzoic acid were all able to compete with NPA for the same binding site with K d values ranging from 10–6 to 10–4 M. On the other hand, NPA was not able to displace detectable amounts of NAA from the NAA-binding site. A possible explantation is the existence of two different membrane-bound binding sites, one exclusively for auxins and one for NPA as well as auxins, that differ in concentration. The NPA-binding site is probably an auxin carrier.Abbreviations 1-NAA 1-Naphthylacetic acid - 2-NAA 2-Naphthylacetic acid - NPA N-1-Naphthylphthalamic acid  相似文献   

6.
A chemically reactive analog of the phytotropin N-1-naphthylphthalamic acid (NPA) was synthesized and evaluated as a site-directed irreversible ligand for the NPA receptor. The NPA analog (5-isothiocyanato-N-1-naphthylphthalamic acid; NCS-NPA) was synthesized in two steps. Pretreatment of etiolated Helianthus hypocotyl segments with NCS-NPA at concentrations in excess of 1 M resulted in a dose-dependent inhibition of basipetal [14C]IAA transport. Net uptake of IAA by hypocotyl segments was stimulated by NCS-NPA at concentrations of 1 M or greater. NCS-NPA inhibited the saturable binding of [3H]NPA in Helianthus microsomes in a dose-dependent fashion with 50% inhibition occurring at NCS-NPA concentrations of 3 to 10 nM. The binding affinity of [3H]NPA in microsomes pretreated with NCS-NPA followed by extensive washing was substantially reduced. These results demonstrate that NCS-NPA is a site-directed irreversible ligand for the NPA receptor and suggest that it may be of use in the purification and characterization of this biologically important receptor.Abbreviations ANPA 5-amino-naphthylphthalamic acid - IAA indole-3-acetic acid - NCS-NPA 5-isothiocyanato-N-1-naphthylphthalamic acid - NPA N-1-naphthylphthalamic acid - TLC thin-layer chromatography  相似文献   

7.
Polar transport of the plant hormone auxin is blocked by substances such as N-1-naphthylphthalamic acid (NPA), which inhibit auxin efflux and block polar auxin transport. To understand how auxin transport is regulated in vivo, it is necessary to discern whether auxin transport inhibitors act at the intra- or extracellular side of the plasma membrane. Populations of predominantly in-side-in plasma membrane vesicles were subjected to treatments that reverse the orientation. These treatments, which included osmotic shock, cycles of freezing and thawing, and incubation with 0.05% Brij-58, all increased NPA-binding activity and the accessibility of the binding protein to protease digestion. Marker activities for inside-out vesicles also increased, indicating that these treatments act by altering the membrane orientation. Finally, binding data were analyzed by multiple analyses and indicated that neither the affinity nor abundance of binding sites changed. Kinetic analyses indicated that the change in NPA-binding activity by Brij-58 treatment was due to an increase in the initial rates of both association and dissociation of this ligand. These experiments indicated that the NPA-binding site is on the cytoplasmic face of the plasma membrane in zucchini (Cucurbita pepo L. cv Burpee Fordhook).  相似文献   

8.
The N-1-naphthylphthalamic acid (NPA)-binding protein is part of the auxin efflux carrier, the protein complex that controls polar auxin transport in plant tissues. This study tested the hypothesis that the NPA-binding protein (NBP) is associated with the actin cytoskeleton in vitro and that an intact actin cytoskeleton is required for polar auxin transport in vivo. Cytoskeletal polymerization was altered in extracts of zucchini hypocotyls with reagents that stabilized either the polymeric or monomeric forms of actin or tubulin. Phalloidin treatment altered actin polymerization, as demonstrated by immunoblot analyses following native and denaturing electrophoresis. Phalloidin increased both filamentous actin (F-actin) and NPA-binding activity, while cytochalasin D and Tris decreased both F-actin and NPA-binding activity in cytoskeletal pellets. The microtubule stabilizing drug taxol increased pelletable tubulin, but did not alter either the amount of pelletable actin or NPA-binding activity. Treatment of etiolated zucchini hypocotyls with cytochalasin D decreased the amount of auxin transport and its regulation by NPA. These experimental results are consistent with an in vitro actin cytoskeletal association of the NPA-binding protein and with the requirement of an intact actin cytoskeleton for maximal polar auxin transport in vivo.  相似文献   

9.
Using both 1-mm segments of corn (Zea mays L.) coleoptiles and a preparation of membranes isolated from the same source, we have compared the effectiveness of several inhibitors of geotropism and polar transport in stimulating uptake of auxin (indole-3-acetic acid, IAA) into the tissue and in competing with N-1-naphthylphthalamic acid (NPA) for a membrane-bound site. Low concentrations of 2,3,5-triiodobenzoic acid (TIBA), NPA, 2-chloro-9-hydroxyfluorene-9-carboxylic acid (morphactin), and fluorescein, eosin, and mercurochrome all stimulated net uptake of [3H]IAA by corn coleoptile tissues while higher concentrations reduced the uptake of both [3H]IAA and another lipophilic weak acid, [14C]benzoic acid. Since low concentrations of fluorescein and its derivatives competed for the same membrane-bound site in vitro as did morphactin and NPA, the basis for both the specific stimulation of auxin accumulation and the inhibition of polar auxin transport by all these compounds may be their ability to interfere with the carrier-mediated efflux of auxin anions from cells. At higher concentrations, the decrease in accumulation of weak acids was nonspecific and thus may be the result of acidification of the cytoplasm and a general decrease in the driving force for uptake of the weak acids. Triiodobenzoic acid was an exception. Low concentration of TIBA (0.1–1 M) were much less effective than NPA in competing for the NPA receptor in vitro, but little different from NPA in ability to stimulate auxin uptake. One possibility is that TIBA, a substance which is polarly transported, may compete with auxin for the polar transport site while NPA, morphactin, and the fluorescein derivatives may render this site inactive.Abbreviations C1-NPA 2,3,4,5-tetrachloro-N-1-naphthylphthalamic acid - IAA indole-3-acetic acid - -NAA -naphthaleneacetic acid - -NAA -naphthalenacetic acid - NPA N-1-naphthylphthalamic acid - TIBA 2,3,5-triiodobenzoic acid  相似文献   

10.
M. Sabater  F. Sabater 《Planta》1986,167(1):76-80
The pH-driven accumulation of [3H]indolyl-3-acetic acid (IAA) has been found to occur in membrane vesicles of lupin (Lupinus albus L.) hypocotyls. Most of this association of auxin with membranes is very sensitive to osmotic shock, high concentrations of permeable weak acids, incubation at 20° C for 20 min and to some ionophores. Long incubation times also depress the ability to accumulate radioactive IAA but this ability can be partially restored by a treatment that presumably reconstitutes the pH gradient across the membranes. Two specific inhibitors of auxin transport, N-1-naphtylphthalamic acid and 2,3,5-triiodobenzoic acid, stimulate net IAA uptake with an optimum at about 10-6 M (pH 5.0). At least two auxin carriers appear to be present in the lupin membrane vesicles. An uptake carrier seems to be saturated at 10-7 M IAA in the presence of N-1-naphtylphthalamic acid, but higher IAA concentrations are needed to saturate an efflux carrier. The uptake carrier also shows a high affinity for IAA and 2,4-dichlorophenoxyacetic acid and a low affinity for 1-naphthylacetic acid.Abbreviations CCCP carbonylcyanide m-chlorophenylhydrazone - 2,4-D 2,4-dichlorophenoxyacetic acid - IAA indolyl-3-acetic acid - NAA naphthalene-1-acetic acid - NIG nigeriein - NPA N-1-naphthylphthalamic acid - TIBA 2,3,5-triiodobenzoic acid - VAL valinomycin  相似文献   

11.
N-1-Naphthylphthalmic acid (NPA)-binding protein is a plasmalemma (PM) protein involved in the control of cellular auxin efflux. We re-evaluated the spatial relationship of this protein with the PM of zucchini (Cucurbita pepo L.) hypocotyls. First, Triton X-114 partitioning indicated that the NPA-binding protein was more hydrophobic than most PM proteins. Second, the NPA-binding activity was found to be resistant to proteolytic digestion in membranes. Maximum concentrations of binding sites for NPA were virtually identical in untreated and proteinase K-treated PMs: 19.2 and 20.6 pmol [3H]NPA bound/mg protein, respectively. The insensitivity of the NPA-binding protein was not due to its presence inside tightly sealed vesicles or due to lack of protease activity in the conditions tested. This protein could be made sensitive to proteolytic degradation upon solubilization by 3-[(3-cholamidopropyl)dimethylammonio]-1-propanesulfonate in the presence of sodium molybdate. Proteinase K treatment decreased the concentration of binding sites to 0.84 pmol [3H]NPA bound/mg protein from 9.2 for untreated, solubilized PM. Third, this activity could not be solubilized by chaotropic agents or sodium carbonate treatment of intact PM. This study indicates that the NPA-binding protein may be an integral membrane protein and contradicts previously reported findings that suggested that this protein was peripheral to the PM.  相似文献   

12.
I. J. Faulkner  P. H. Rubery 《Planta》1992,186(4):618-625
The accumulation of IAA by sealed microsomal vesicles prepared from hypocotyls of dark-grown Cucurbita pepo L. (zucchini) seedlings was stimulated by N-1-naphthylphthalamic acid (NPA: an inhibitor of carrier-mediated auxin efflux and hence of polar auxin transport) as well as by quercetin and certain other flavonoids with a specificity pattern similar to that previously shown for their NPA-like effects on auxin transport and inhibition of NPA binding to saturable sites. In contrast, putatively nonpenetrant negatively charged quercetinsulphate esters did not stimulate such auxin accumulation although they were able to oppose stimulation by NPA or quercetin itself. However, the binding of NPA to hypocotyl microsomes was 30- to 80-fold more strongly inhibited by the quercetin sulphates than by unsubstituted quercetin. As with vesicles, net IAA uptake by hypocotyl segments (2 mm) from dark-grown zucchini was stimulated less effectively by quercetin-sulphate esters than by quercetin itself. We discuss the implications of these observations for the accessibility of the NPA receptor from cell wall or cytoplasm and for the coupling of its occupancy to inhibition of the auxin efflux carrier.Abbreviations ION3 mixture of 4 M carbonylcyanide m-chlorophenylhydrazone, nigericin and valinomycin - NPA N-1-naphthylphthalamic acid - PMSF phenylmethylsulphonyl fluoride This work was supported by a Studentship (I.J.F.) from the Science and Engineering Research Council and by the Gatsby Charitable Foundation. We are particularly grateful to Dr. W. Michalke for a preprint and permission to use his method of microsome preparation in advance of publication.  相似文献   

13.
The transport of exogenous indol-3yl-acetic acid (IAA) from the apical tissues of intact, light-grown pea (Pisum sativum L. cv. Alderman) shoots exhibited properties identical to those associated with polar transport in isolated shoot segments. Transport in the stem of apically applied [1-14C]-or [5-3H]IAA occurred at velocities (approx. 8–15 mm·h-1) characteristic of polar transport. Following pulse-labelling, IAA drained from distal tissues after passage of a pulse and the rate characteristics of a pulse were not affected by chases of unlabelled IAA. However, transport of [1-14C]IAA was inhibited through a localised region of the stem pretreated with a high concentration of unlabelled IAA or with the synthetic auxins 1-napthaleneacetic acid and 2,4-dichlorophenoxyacetic acid, and label accumulated in more distal tissues. Transport of [1-14C]IAA was also completely prevented through regions of the intact stem treated with N-1-naphthylphthalamic acid (NPA) and 2,3,5-triiodobenzoic acid.Export of IAA from the apical bud into the stem increased with total concentration of IAA applied (labelled+unlabelled) but approached saturation at high concentrations (834 mmol·m-3). Transport velocity increased with concentration up to 83 mmol·m-3 IAA but fell again with further increase in concentration.Stem segments (2 mm) cut from intact plants transporting apically applied [1-14C]IAA effluxed 93% of their initial radioactivity into buffer (pH 7.0) in 90 min. The half-time for efflux increased from 32.5 to 103.9 min when 3 mmol·m-3 NPA was included in the efflux medium. Long (30 mm) stem sections cut from immediately below an apical bud 3.0 h after the apical application of [1-14C]IAA effluxed IAA when their basal ends, but not their apical ends, were immersed in buffer (pH 7.0). Addition of 3 mmol·m-3 NPA to the external medium completely prevented this basal efflux.These results support the view that the slow long-distance transport of IAA from the intact shoot apex occurs by polar cell-to-cell transport and that it is mediated by the components of IAA transmembrane transport predicted by the chemiosmotic polar diffusion theory.Abbreviations IAA indol-3yl-acetic acid - 2,4-D 2,4-dichlorophenoxyacetic acid - NAA 1-naphthaleneacetic acid - NPA N-1-naphthylphthalamic acid - TIBA 2,3,5-triiodobenzoic acid  相似文献   

14.
N-1-naphthylphthalamic acid (NPA), an auxin transport inhibitor, was found to bind specifically to a crude membrane preparation from sugar beet seedling leaf cell suspension cultures. The dissociation constant (Kd) and binding protein concentration were found to be 1.71 mol dm–3 and 220 pmol g–1(membrane protein), respectively. The amount of specific 3H-NPA binding was significantly increased by adding Mg2+ATP to the binding assay solution. Treatment of membrane preparations with acid phosphatase, prior to the NPA binding assay, resulted in lower specific binding. ATP activation and phosphatase inactivation were culture stage dependent. Although a considerable effect could be detected when using cells from day 8 (representing the linear phase), the same treatment did not alter the binding if cells from day 1 (representing lag phase) or day 14 (representing the stationary phase) were used. These observations have strongly highlighted the possible involvement of a phosphorylation and dephosphorylation mechanism in vivo in the regulation of the activity of the NPA binding protein. High phosphatase activity was found in the supernatant, but not in the membrane pellet) after 50 000 g centrifugation. Our present study has indicated that receptor activity could be regulated by a phosphorylation and dephosphorylation mechanism in plants.  相似文献   

15.
Phenylacetic acid (PAA), a naturally-occurring acidic plant growth substance, was readily taken up by pea (Pisum sativum L. cv. Alderman) stem segments from buffered external solutions by a pH-dependent, non-mediated diffusion. Net uptake from a 0.2 M solution at pH 4.5 proceeded at a constant rate for at least 60 min and, up to approx. 100 M, the rate of uptake was directly proportional to the external concentration of the compound. The net rate of uptake of PAA was not affected by the inclusion of indol-3yl-acetic acid (IAA) in the uptake medium (up to approx. 30 M) and, unlike the net uptake of IAA, was not stimulated by N-1-naphthylphthalamic acid (NPA) or 2,3,5-triiodobenzoic acid. At an external concentration of 0.2 M and pH 4.5, the net rate of uptake of PAA was about twice that of IAA. It was concluded that the uptake of PAA did not involve the participation of carriers and that PAA was not a transported substrate for the carriers involved in the uptake and polar transport of IAA. Nevertheless, the inclusion of 3–100 M unlabelled PAA in the external medium greatly stimulated the uptake by pea stem segments of [1-14C]IAA (external concentration 0.2 M). It was concluded that whilst PAA was not a transported substrate for the NPA-sensitive IAA efflux carrier, it interacted with this carrier to inhibit IAA efflux from cells. Over the concentration range 3–100 M, PAA progressively reduced the stimulatory effect of NPA on IAA uptake, indicating that PAA also inhibited carrier-mediated uptake of IAA. The consequences of these observations for the regulation of polar auxin transport are discussed.Abbreviations IAA indol-3yl-acetic acid - DMO 5,5-dimethyloxazolidine-2,4-dione - NPA N-1-naphthylphthalamic acid - PAA phenylacetic acid - TIBA 2,3,5-triiodobenzoic acid  相似文献   

16.
17.
M. Sabater  P. H. Rubery 《Planta》1987,171(4):514-518
Carrier-mediated uptake of indole-3-acetic acid (IAA) by microsomal vesicles from Cucurbita pepo L. hypocotyls was strongly inhibited by 2,4-dichlorophenoxyacetic acid (2,4-D; i 50= 0.3 M) but only weakly by 1-naphthylacetic acid (NAA). The fully ionised auxin indol-3-yl methanesulphonic acid also inhibited (i 50=3 M). The same affinity ranking of these auxins for the uptake carrier, an electroimpelled auxin anion-H+ symport, is demonstrable in hypocotyl segments. The specificity of the auxin-anion eflux carrier was tested by the ability of different nonradioactive auxins to compete with [3H]IAA and reduce the stimulation of net radioactive uptake by N-1-naphthylphthalamic acid (NPA), a noncompetitive inhibitor of this carrier. By this criterion, NAA and IAA had comparable affinities, with 2,4-D interaction more weakly. Stimulation of [3H]IAA uptake by NAA, as a result of competition for the efflux carrier, could also be demonstrated when a suitable concentration of 2,4-D was used selectively to inhibit the uptake carrier. However, when [3H]NAA was used, no stimulation of its association with vesicles by NPA, 2,3,5-triiodobenzoic acid, or nonradioactive NAA was found. In hypocotyl segments, [3H]NAA net uptake was much less sensitive to NPA stimulation than was [14C]IAA uptake. The apparent contradictions concerning NAA could be explained by carrier-mediated auxin efflux making a smaller relative contribution to the overall transport of NAA than of IAA. The relationship between carrier specificity as manifested in vitro and the specificity of polar auxin transport is discussed.Abbreviations 2,4-D 2,4-dichlorophenoxyacetic acid - IAA indole-3-acetic acid - ION3 mixture of 4 M carbonylcyanide m-chlorophenylhydrazone, nigericin and valinomycin - IMS indol-3-yl methanesulphonic acid - NAA 1-naphthylacetic aci - NPA N-1-naphthylphthalamic acid  相似文献   

18.
A photolabile analog of N-1-naphthylphthalamic acid (NPA), 5′-azido-N-1-naphthylphthalamic acid (Az-NPA), has been synthesized and characterized. This potential photoaffinity label for the plasma membrane NPA binding protein competes with [3H]NPA for binding sites on Curcurbita pepo L. (zucchini) hypocotyl cell membranes with K0.5 = 2.8 × 10−7 molar. The K0.5 for NPA under these conditions is 2 × 10−8 molar, indicating that the affinity of Az-NPA for the membranes is only 14-fold lower than NPA. While the binding of Az-NPA to NPA binding sites is reversible in the dark, exposure of the Az-NPA treated membranes to light results in a 30% loss in [3H]NPA binding ability. Pretreatment of the membranes with NPA protects the membranes against photodestruction of [3H]NPA binding sites by Az-NPA supporting the conclusion that Az-NPA destroys these sites by specific covalent attachment.  相似文献   

19.
Phenylacetic acid (PAA) significantly stimulated the elongation of isolated Phaseolus vulgaris internodal segments and prevented the decline in acid invertase specific activity observed in segments incubated in the absence of growth substances. Unlike IAA, which stimulated both elongation and invertase activity over a very wide range of concentrations (<10-4 - 1 mol.m-3; optimum 10-2 mol.m-3), the response to PAA was restricted to a much narrower range of concentrations (3 × 10-2 - 1 mol.m-3; optimum ca. 1–2 × 10-1mol.m-3). At the optimum concentration of PAA, the stimulation of both responses was about 63–75% of that induced by the optimum concentration of IAA. The differences in the concentration range and magnitude of the responses to IAA and PAA were not due to differences in uptake of the two compounds. The stimulation of elongation by both compounds was prevented by 3.6 × 10-2mol.m-3 cycloheximide (CH), and acid invertase activites were greatly reduced compared with samples treated with growth substances alone. A saturating concentration of the specific auxin efflux carrier inhibitor N-1-naphthylphthalamic acid (NPA) slightly promoted the growth of control segments, probably by reducing the loss of residual endogenous auxin to the incubation medium. The elongation induced by PAA at its optimum concentration was considerably greater than the elongation induced by NPA, indicating that PAA did not cause growth by preventing the loss of endogenous auxin from the segments. Elongation responses to combinations of IAA and PAA suggested that the compounds were acting additively and that they were affecting growth by the same mechanism.  相似文献   

20.
Muday GK  Lomax TL  Rayle DL 《Planta》1995,195(4):548-553
Roots of the tomato (Lycopersicon esculentum, Mill.) mutant diageotropica (dgt) exhibit an altered phenotype. These roots are agravitropic and lack lateral roots. Relative to wild-type (VFN8) roots, dgt roots are less sensitive to growth inhibition by exogenously applied IAA and auxin transport inhibitors (phytotropins), and the roots exhibit a reduction in maximal growth inhibition in response to ethylene. However, IAA transport through roots, binding of the phytotropin, tritiated naphthylphthalamic acid ([3H]NPA), to root microsomal membranes, NPA-sensitive IAA uptake by root segments, and uptake of [3H]NPA into root segments are all similar in mutant and wild-type roots. We speculate that the reduced sensitivity of dgt root growth to auxin-transport inhibitors and ethylene is an indirect result of the reduction in sensitivity to auxin in this single gene, recessive mutant. We conclude that dgt roots, like dgt shoots, exhibit abnormalities indicating they have a defect associated with or affecting a primary site of auxin perception or action.Abbreviations BCA bicinchoninic acid - IAA indole 3-acetic acid - dgt diageotropica - IC50 concentration for 50% inhibition of growth - NPA N-1-naphthylphthalamic acid - SCB-1 semicarbazone 1 This research was supported by grants from Sandoz Agro, Inc. (G.K.M), the National Aeronautics and Space Administration (NASA) and the National Science Foundation (T.L.L), and NASA (D.L.R.).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号