首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Quaternary phosphonium compounds were found to be reversible inhibitors of cholinesterases of various animals and showed species-specificity of action depending on the inhibitor structure. It became possible to reveal difference in inhibitory specificity of various preparations of acetylcholinesterases. A difference has been shown in inhibitory parameters of the series of phosphonium toward cholinesterase of visual ganglia of individuals of the squid Berryteuthis magister from different zones of the habitat areal. For the first time, when comparing phosphonium and ammonium isologues - tetrabutyl- and tributylhe-xyl derivatives, it has been shown that they are agents practically similar by the character of anticholinesterase action.  相似文献   

2.
The quaternary phosphonium compounds were found to be reversible inhibitors of cholinesterases of different animals and showed species-specificity of action depending on their inhibitor structure. We have revealed difference in the inhibitory specificity of various acetylcholinesterase preparations. A difference has been shown in inhibitory parameters of optic ganglia of individuals of the squid Berryteuthis magister from different habitat areas. For the first time in comparing phosphonium and ammonium isologues-tetrabutyl- and tributylhexyl derivatives, it has been shown that they are agents practically similar by the character of the anticholinesterase action.  相似文献   

3.
In ion trap mass spectrometry, fragile ions may fragment under the application of resonance ejection during precursor mass isolation, reducing MS/MS spectral intensity. In this study the steroidal epimers testosterone glucuronide (TG) and epitestosterone glucuronide (EG) have been chosen as a model for exploring whether compound structure is linked to ion trap fragility. Both compounds form multiple adducts by ESI-MS, namely protonation, ammonium and sodium, however, the mass spectrum of EG displays a more intense ammonium adduct peak than TG. [TG + NH4]+, [EG + NH4]+ and [EG + H]+ were found to be fragile ions. To explain the differences in adduct formation and fragility, molecular modelling was employed. Ammonium adduction was localised to the glucuronide ring oxygens and while EG has eight possible adduction sites, only seven were located for TG explaining the increased ammonium adduct abundance with EG. In EG the bond between the steroid and the glucuronide was slightly longer and the oxygen in this bond was more basic than TG. This shows that the EG bond is weaker which may contribute to the fact that [EG + H]+ but not [TG + H]+ is fragile. To investigate whether stability could be restored by chemical means, EG was derivatised with tris(trimethoxyphenyl)phosphonium chloride or methylated on the carboxylic acid and Girard P or methoxylamine on the 3-keto group. Derivatisation of the steroid rather than the glucuronide eliminated fragility and using a charged derivative eliminated adduct formation. This work demonstrates the importance of carefully considering the nature of the derivative and the site of derivatisation.  相似文献   

4.
This review summarizes for the first time data on the design and synthesis of biologically active compounds of a new generation–mitochondria-targeted antioxidants, which are natural (or synthetic) p-benzoquinones conjugated via a lipophilic linker with (triphenyl)phosphonium or ammonium cations with delocalized charge. It also describes the synthesis of mitochondria-targeted antioxidants – uncouplers of oxidative phosphorylation – based on fluorescent dyes.  相似文献   

5.
Quaternary ammonium and phosphonium salts were readily obtained by treating 2,3,4,6-tetra-O-benzyl-α-D-galactopyranosyl bromide with tertiary amines and phosphines in various solvents under anhydrous conditions. Optical rotations and n.m.r. spectra of the hygroscopic syrups indicated that they exist mainly in the β-D configuration. Several dialkyl sulfides reacted very slowly with the galactosyl bromide and no conclusive evidence for sulfonium salt formation was obtained. 2,3,4,6-Tetra-O-benzyl-α-D-galactopyranosyl chloride failed to react with any of the nucleophiles.Methanolysis reactions of the phosphonium salts were too slow to be practical and were not studied extensively. Methanolyses of several quaternary ammonium salts in various solvents were not completely stereospecific, but gave good yields of methyl 2,3,4,6-tetra-O-benzyl-α-D-galactopyranoside. Attempted reactions of benzyl 2-O-benzoyl-4,6-O-benzylidene-β-D-galactopyranoside with quaternary ammonium salts derived from 2,3,4,6-tetra-O-benzyl-α-D-galactopyranosyl bromide failed to produce the corresponding derivative of 3-O-(α-D-galactopyranosyl)-D-galactose.  相似文献   

6.
Allen DD  Lockman PR 《Life sciences》2003,73(13):1609-1615
Choline is a ubiquitous molecule, found throughout almost every tissue in the body. Given it is a charged cation, nearly every cellular membrane has a transport mechanism to meet the intracellular and membrane need for choline. The blood-brain barrier is no exception in that a carrier-mediated transport mechanism is present to deliver choline from plasma to brain. The carrier consists of an anionic binding area that attracts positively charged quaternary ammonium groups or simple cations. Recent reports have shown this vector to be efficacious in delivering quaternary ammonium analogs of nicotine to brain. Future work is being completed to determine if other cationic or positively charged therapeutics can be effectively delivered to brain via this carrier.  相似文献   

7.
Interactions of iodide ions with isolated photosystem 2 particles   总被引:1,自引:0,他引:1  
The effects of I- ions on O2 evolution by photosystem 2 particles, which were depleted of the 18-kDa and the 23-kDa extrinsic proteins of the O2 evolution complex by NaCl washing (dPS2 particles) were examined. In the absence of Cl- (incompetent dPS2) I- stimulated O2 evolution up to 3-6 mM, depending on the associated cation, and inhibited it at higher concentrations. In the presence of Cl- (competent dPS2), I- was inhibitory at all concentrations. The inhibition was reversible, it occurred at a site preceding Tyrz (Tyr residue mediating electron transfer from H2O to photosystem 2), and it interfered noncompetitively with the reactivation of incompetent dPS2 with Cl-. Furthermore, the organic salts tetrabutyl ammonium iodide and tetraphenyl phosphonium iodide proved to be stronger inhibitors than the inorganic NaI. This is interpreted as an indication of a negatively charged surface, situated behind a hydrophobic permeability barrier. Permeant organic cations, being better compensators of the inner surface charge than Na+, are also more apt in facilitating access of the I- ions to the inhibitory site in the vicinity of Tyrz.  相似文献   

8.
Calmidazolium (CMZ) is a positively charged, hydrophobic compound used as a calmodulin antagonist. It may cause unspecific effects in mitochondria, e.g., a decrease in membrane potential (deltapsi), swelling, and uncoupling. Several groups have advised against use of CMZ in studying signal transduction in mitochondria. We report here that it interferes with measurement of deltapsi in rat liver mitochondria (RLM) when using the tetraphenyl phosphonium (TPP+) electrode. We also found that CMZ reduces the signal, indicating an apparent drop in deltapsi. CMZ itself gave a signal with the TPP+ electrode in the absence of RLM. At high concentrations, > 10 microM, it also reduced the fluorescence quenching of the probe rhodamine 123. This may be due to an interference with mitochondrial uptake and binding of this positively charged probe or to an uncoupling effect. It is concluded that CMZ and similar positively charged calmodulin antagonists such as trifluoperazine may be used in mitochondria if these interferences are controlled and calibration is carried out under the experimental conditions used.  相似文献   

9.
Non-aqueous capillary electrophoresis was used to study the separation selectivity of positively charged drug substances and negatively charged diuretics. Study was made of the effects of organic solvent composition and the background electrolyte on the separation. The separation selectivity could be altered considerably by varying the methanol/acetonitrile composition. In addition, the migration order and the resolution of the pharmaceuticals could be altered merely by changing the electrolyte cation or the anion. The electrolytes tested were alkali metal acetates, ammonium acetate, ammonium chloride and ammonium bromide. As with aqueous background electrolyte solutions, the electroosmotic flow was decreased with increasing size of the alkali metal cation of the electrolyte in methanol/acetonitrile 50:50 (v/v).  相似文献   

10.
P Sch?nfeld 《FEBS letters》1992,303(2-3):190-192
The action of such membrane-permeant cations as tetraphenyl phosphonium and dibenzyldimethyl ammonium upon fatty acid-uncoupled respiration has been studied with oligomycin-inhibited rat liver mitochondria. Both cations enhance fatty acid-stimulated respiration. This synergistic effect is explained by a facilitated permeation of the fatty acid anion across the inner membrane due to an ion-pair complex. It is concluded that fatty acid uncoupling in rat liver mitochondria is limited by fatty acid anion permeation.  相似文献   

11.
The anti-cancer activity and cytotoxicity of phosphonium and ammonium-based ionic liquids (ILs) have been determined for the first time via NCI’s in vitro 60 human tumor cell lines. The preliminary SAR showed that the chain length of alkyl substitution on the cations plays crucial role towards anti-tumor activity and cytotoxicity of these ionic liquids. In general, phosphonium-based ILs were found to be more active and less cytotoxic as compared to ammonium ILs. Cell line data and hollow fiber study has demonstrated the potential of ILs to be developed as therapeutic agent.  相似文献   

12.
Analytical review of literature data has been presented about constants of interaction of cholinesterases of various animals (verterbrates and squids) with 89 onium (ammonium, phosphonium, and sulfonium) reversible inhibitors forming homologous series with regularly changed structure. Values of competitive, uncompetitive, and generalized inhibition constants have been compared. On this basis, conclusions are made about mechanism of action of the studied compounds and the predominant areas of their sorption--in the or peripheral sites of the enzymes. The presented data are discussed from the point of view of comparative biochemistry and in the light of the current information about structure of the cholinesterase active center.  相似文献   

13.
The analytic review of the literature data on constants of interaction of cholinesterases of different animal (vertebrates and squids) with 89 onium (ammonium, phosphonium, sulfonium) reversible inhibitors constituting homologous series with regularly varied structure is carried out. Values of the competitive, uncompetitive and generalized inhibitor constants are compared. On the basis of that, conclusions about the mechanism of action of the studied compounds and primary place of their sorption—in “anionic” or peripheral “anionic” sites of enzymes—are made. The presented data are considered from the point of view of comparative biochemistry and in light of current concepts of cholinesterase active center structure.  相似文献   

14.
Fluorescent and optical spectroscopy were used to study the interaction of alcohol dehydrogenase (ADH) with negatively charged polystyrene sulfonate (PSS) and dextran sulfate (DS), as well as positively charged poly(diallyldimethylammonium) (PDADMA). As found, DS and PDADMA did not affect the structural and catalytic enzyme properties. In contrast, PSS slightly decreased the protein self-fluorescence over 1 h of incubation, which is associated with partial destruction of its quaternary (globular) structure. Investigation of the ADH activity with and without PSS showed its dependency on the incubation time and the PSS presence. Sodium chloride (2.0 and 0.2 M) or ammonium sulfate (0.1 M) added to the reaction mixture did not completely protect the enzyme quaternary structure from the PSS action. However ammonium sulfate or 0.2 M sodium chloride stabilized the enzyme and partially inhibited the negative PSS effect.  相似文献   

15.
The study includes partitioning of proteins in aqueous two-phase systems consisting of the polymer dextran and the non-ionic surfactant C12E5 (pentaethylene glycol mono-n-dodecyl ether). In this system a micelle-enriched phase is in equilibrium with a polymer-enriched phase. Charges can be introduced into the micelles by the addition of charged surfactants. The charge of the mixed micelles is easily varied in sign and magnitude independently of pH, by the addition of different amounts of negatively charged surfactant, sodium dodecyl sulphate (SDS), or positively charged surfactant dodecyl trimethyl ammonium chloride (DoTAC). A series of water-soluble model proteins (BSA, β-lactoglobulin, myoglobin, cytochrome c and lysozyme), with different net charges at pH 7.1, have been partitioned in non-charged systems and in systems with charged mixed micelles or charged polymer (dextran sulphate). It is shown that partition coefficients for charged proteins in dextran-C12E5 systems can be strongly affected by addition of charged surfactants (SDS, DoTAC) or polymer (dextran sulphate) and that the effects are directly correlated to protein net charge.  相似文献   

16.
Nonviral gene therapy focuses intensely on nitrogen-containing macromolecules and lipids to condense and deliver DNA as a therapeutic for genetic human diseases. For the first time, DNA binding and gene transfection experiments compared phosphonium-containing macromolecules with their respective ammonium analogs. Conventional free radical polymerization of quaternized 4-vinylbenzyl chloride monomers afforded phosphonium- and ammonium-containing homopolymers for gene transfection experiments of HeLa cells. Aqueous size exclusion chromatography confirmed similar absolute molecular weights for all polyelectrolytes. DNA gel shift assays and luciferase expression assays revealed phosphonium-containing polymers bound DNA at lower charge ratios and displayed improved luciferase expression relative to the ammonium analogs. The triethyl-based vectors for both cations failed to transfect HeLa cells, whereas tributyl-based vectors successfully transfected HeLa cells similar to Superfect demonstrating the influence of the alkyl substituent lengths on the efficacy of the gene delivery vehicle. Cellular uptake of Cy5-labeled DNA highlighted successful cellular uptake of triethyl-based polyplexes, showing that intracellular mechanisms presumably prevented luciferase expression. Endocytic inhibition studies using genistein, methyl β-cyclodextrin, or amantadine demonstrated the caveolae-mediated pathway as the preferred cellular uptake mechanism for the delivery vehicles examined. Our studies demonstrated that changing the polymeric cation from ammonium to phosphonium enables an unexplored array of synthetic vectors for enhanced DNA binding and transfection that may transform the field of nonviral gene delivery.  相似文献   

17.
Phosphorus-31 nuclear magnetic resonance (NMR) studies on the two phosphorus nuclei of the phosphonium analogue (Me3P+CH2CH2OPO3(2-)) of phosphocholine are used to monitor the charged subsites in the phosphocholine-binding immunoglobulin A mouse myeloma M603. Comparison of the 270-MHz 1H NMR difference spectrum on addition of either this analogue or phosphocholine to M603 and the almost identical changes in the pKa values of the phosphate groups on binding to M603 confirm that the analogue is a good model for phosphocholine. The pKa of the phosphate groups is decreased by 0.5 unit on binding to M603, which is consistent with the phosphate group being hydrogen bonding to Tyr-33H and Arg-95L, as suggested from the X-ray structure, and also implies that the binding energies for the mono- and dianion are similar. The P+Me3 moiety is used to probe the electrostatic interactions in the choline subsite. Titration of the chemical shift of the phosphonium phosphorus reflects a group on the protein that has a pKa value of less than or equal to 5, which from the refined X-ray structure (D.R. Davies, personal communication) of the site is assigned to Asp-97L. The choline subsite is monitored by using 1H NMR difference spectra, which indicates that the subsite is highly aromatic as expected from the crystal structure that places Trp-107H and Tyr-100L in this subsite. The ring current interactions from these rings can account for the 1H NMR chemical shift data on choline.  相似文献   

18.
Sonicated liposomes composed of dioleoylphosphatidylethanolamine (DOPE) and a quaternary ammonium detergent (dodecyl-, tetradecyl-, or cetyl-trimethylammonium bromide) mediates functional transfer of pSV2 CAT plasmid DNA to mouse L929 fibroblasts. Successful transfection was determined by assaying for chloramphenicol acetyltransferase activity in cell lysates collected 40 h after exposure to the lipid-DNA complexes. Liposomes prepared with the quaternary ammonium detergents were less toxic than the free detergents at the same concentrations and were more efficient in their delivery of the plasmid DNA to the cells. Analysis of the three detergents in combination with the lipid showed that cetyltrimethylammonium bromide was least toxic to the cells. This detergent, at a minimal concentration of 20 mol% in DOPE, allowed for stable liposome preparations and efficient transfection. Optimal efficiency of transfection occurred with 30 micrograms of DNA. Further increases in the DNA concentration caused a decrease in the transfection efficiency, perhaps due to charge repulsions between the liposomes now saturated with negatively charged DNA and the negatively charged cell surface. The transfection activity of the liposome was limited by its cytotoxicity at high liposome concentrations. These results are compared with that of the Lipofectin, another positively charged liposome preparation which is commercially available. Although the overall transfection activity of the liposome containing the quaternary ammonium detergent is somewhat lower than that of the Lipofectin, it may serve as an inexpensive and convenient alternative.  相似文献   

19.
In receptor-rich vesicles isolated from Torpedo, paramagnetic or fluorescent phosphonium ions bind to both the acetylcholine receptor (AcChR) and the receptor membrane. When added to receptor vesicles, two to three phosphoniums undergo a slow time-dependent binding to the AcChR. The presence of agonist increases the rate but not the extent of binding of the alkylphosphonium nitroxides. Approximately one phosphonium per receptor can be displaced by the addition of saturating concentrations of the high-affinity histrionicotoxin derivative isodihydrohistrionicotoxin or by the addition of phencyclidine or quinacrine mustard. In addition, preincubation of the receptor with these channel blockers prevents approximately one phosphonium from binding to the receptor. When a series of alkyltriphenylphosphonium ions was studied, it was found that the rate of phosphonium binding to the receptor decreased with increasing probe hydrophobicity. This appears to be a function of the partitioning of the probe between membrane and aqueous phases. The phosphonium ions used here promote desensitization of the receptor, as judged by the binding rate of the fluorescent agonist NBDA-C5-acylcholine or alpha-bungarotoxin. Preincubation of the receptor with isodihydrohistrionicotoxin virtually eliminates the phosphonium-mediated desensitization. The rates of the phosphonium-mediated desensitization also appear to be dependent upon the phase partitioning of the probe. These results strongly suggest that the binding sites for the phosphonium ion (and the high-affinity histrionicotoxin blocking site) are accessible only through the aqueous phase. The phosphonium binding and agonist-induced transitions observed here are not observed with a negative hydrophobic ion probe, or a negative surface amphiphile, indicating that modifications in membrane electrostatics do not contribute to the observed changes.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

20.
New two-component systems using quaternary ammonium or phosphonium salts as a co-matrix have been developed for the analysis of acidic carbohydrates by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOFMS). In the analysis of the sodium salt of heparin disaccharide I-S, the combination of 2-amino-5-nitropyridine with tetraphenylphosphonium bromide gave the best result. In the analysis of gangliosides containing the sialic acid moiety, the combination of 2,4,6-trihydroxyacetophenone with dimethyldipalmitylammonium bromide was determined to be the system of choice. Under optimum conditions all acidic carbohydrates gave molecular ions in the form of [M(Q(n))-Q]-, where M(Q(n)) is the molecular mass of a molecule containing n molecules of quaternary ions as salt.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号