首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
【目的】LuxS/AI-2型密度感应系统存在于革兰氏阴性和阳性菌中,可产生用于细菌种间交流的通用自诱导信号分子AI-2(Autoinducer-2,AI-2),细菌许多生理功能都受此系统的调节。本研究开展对禽致病性大肠杆菌(Avian Pathogenic Escherichia coli,APEC)自诱导信号分子AI-2的检测和建立体外合成、定量的方法,为进一步研究APEC的AI-2调控作用奠定基础。【方法】利用哈维弧菌BB170(Vibrio harveyi BB170)开展对APEC AI-2的检测;利用表达、纯化的LuxS和Pfs在体外催化S-腺苷同型半胱氨酸(Sadenosylhomocysteine,SAH),进行AI-2的体外合成。【结果】APEC能产生自诱导信号分子AI-2;成功表达可用于AI-2合成的可溶性重组蛋白LuxS和Pfs;纯化的重组蛋白LuxS和Pfs与SAH同时作用后,合成了浓度为300μmol/L的AI-2;运用哈维弧菌BB170对合成的AI-2活性检测表明,其活性是阴性对照的700倍。【结论】APEC存在LuxS/AI-2型密度感应系统,APEC的LuxS和Pfs可以在体外催化SAH生成有活性的AI-2分子。本研究为进一步研究APEC的AI-2的调控作用奠定基础。  相似文献   

2.
Bacterial quorum sensing is mediated by autoinducers, small signaling molecules generated by bacteria. It has been proposed that the LuxS enzyme converts S-ribosyl-L-homocysteine to 4,5-dihydroxy-2,3-pentanedione, the precursor of autoinducer 2 (AI-2). We report here a chemical synthesis of S-ribosyl-L-homocysteine and its analogue using Mitsunobu coupling. Chemically synthesized ribosylhomocysteine has been confirmed as a substrate for LuxS in both an enzyme assay and a whole cell quorum sensing assay. The chemical entities of products from the LuxS reaction were also established. Several ribosylhomocysteine analogues have been tested as LuxS inhibitors.  相似文献   

3.
Rajan R  Zhu J  Hu X  Pei D  Bell CE 《Biochemistry》2005,44(10):3745-3753
S-Ribosylhomocysteinase (LuxS) is an Fe(2+)-dependent metalloenzyme that catalyzes the cleavage of the thioether bond in S-ribosylhomocysteine (SRH) to produce homocysteine (Hcys) and 4,5-dihydroxy-2,3-pentanedione (DPD), the precursor of type II bacterial quorum-sensing molecule. The proposed mechanism involves an initial metal-catalyzed aldose-ketose isomerization reaction, which results in the migration of the ribose carbonyl group from its C1 to C2 position and the formation of a 2-ketone intermediate. A repetition of the isomerization reaction shifts the carbonyl group to the C3 position. Subsequent beta-elimination reaction at the C4 and C5 positions completes the catalytic cycle. In this work, a catalytically inactive mutant (C84A) of Co(2+)-substituted Bacillus subtilis LuxS was cocrystallized with the 2-ketone intermediate and the structure was determined to 1.8 A resolution. The structure reveals that the C2 carbonyl oxygen is directly coordinated with the metal ion, providing strong support for the proposed Lewis acid function of the metal ion during catalysis. Cys-84 and Glu-57 are optimally positioned to act as general acids/bases during the isomerization and elimination reactions. In addition, Ser-6, His-11, and Arg-39 are involved in substrate/ intermediate binding through hydrogen bonding interactions. The above conclusions are further confirmed by site-directed mutagenesis and visible absorption spectroscopic studies.  相似文献   

4.
Zhu J  Knottenbelt S  Kirk ML  Pei D 《Biochemistry》2006,45(40):12195-12203
S-Ribosylhomocysteinase (LuxS) catalyzes the cleavage of the thioether linkage in S-ribosylhomocysteine (SRH) to produce homocysteine (Hcys) and 4,5-dihydroxy-2,3-pentanedione (DPD), the precursor of type II bacterial autoinducer (AI-2). The proposed catalytic mechanism involves two consecutive ribose carbonyl migration steps via an intramolecular redox reaction and a subsequent beta-elimination step, all catalyzed by a divalent metal ion (e.g., Fe(2+) or Co(2+)) and two general acids/bases in the active site. Absorption and EPR spectroscopic studies were performed with both wild-type and various mutant forms of LuxS under a wide range of pH conditions. The studies revealed a pK(a) of 10.4 for the metal-bound water. The pK(a) value of Cys-83 was determined to be <6 by (13)C-(1)H HSQC NMR experiments with [3-(13)C]cysteine-labeled Zn(2+)-substituted Escherichia coli LuxS. The active form of LuxS contains a metal-bound water and a thiolate ion at Cys-83, consistent with the proposed roles of the metal ion (Lewis acid) and Cys-83 (general acid/base) during catalysis. Finally, an invariant Arg-39 in the active site was demonstrated to be at least partially responsible for stabilizing the thiolate anion of Cys-83.  相似文献   

5.
The virulence of bacterial communities may be regulated by mechanisms involving the synthesis of the quorum-sensing signal autoinducer 2 (AI-2), which allows both intra- and interspecies communication. AI-2 is produced in bacteria that express the gene luxS . In the present study, expressed and purified LuxS from Streptococcus suis serotype 2 (SS2) was used to catalyze the substrate S -ribosylhomocysteine in a reaction that leads to the production of AI-2. The biological activity of the in vitro synthesized AI-2 was demonstrated in a Vibrio harveyi strain BB170 bioassay; real-time PCR results showed that biosynthesis of AI-2 can increase the virulence of SS2. Phage-encoded peptides that specifically interact with the LuxS enzyme were selected following three rounds of phage display. One such peptide inhibitor (TNRHNPHHLHHV) of LuxS was shown to partially inhibit the activity of the enzyme. Furthermore, 14 peptides containing the consensus sequence HSIR showed high affinity with LuxS. The selected and characterized specific inhibitor as well as the high-affinity ligands may facilitate the identification of new vaccination targets, opening up new approaches to the development of therapeutic drugs.  相似文献   

6.
Zhu J  Patel R  Pei D 《Biochemistry》2004,43(31):10166-10172
S-ribosylhomocysteinase (LuxS) catalyzes the cleavage of the thioether bond in S-ribosylhomocysteine (SRH) to produce homocysteine and 4,5-dihydroxy-2,3-pentanedione (DPD), the precursor of type II bacterial quorum sensing molecule. The proposed mechanism involves a series of proton-transfer reactions, which are catalyzed by an Fe2+ ion and two general acids/bases in the LuxS active site, resulting in the migration of the ribose carbonyl group from its C1 to C3 position. Subsequent beta-elimination at C4 and C5 positions completes the catalytic cycle. In this work, the regiochemistry and stereochemical course of the proton transfer reactions were determined by carrying out the reactions using various specifically deuterium-labeled SRH as substrate and analyzing the reaction products by 1H NMR spectroscopy and mass spectrometry. Our data indicate a suprafacial transfer of the ribose C2 proton to its C1 position and the C3 proton to the C2 position during catalysis, whereas the ribose C4 proton is completely washed into solvent. The primary deuterium kinetic isotope effect suggests that the conversion of 2-keto intermediate to 3-keto intermediate is partially rate limiting. However, mutation of Glu-57, the putative second general acid/base in catalysis, to an aspartic acid renders the final beta-elimination step rate limiting.  相似文献   

7.
Zhu J  Dizin E  Hu X  Wavreille AS  Park J  Pei D 《Biochemistry》2003,42(16):4717-4726
S-Ribosylhomocysteinase (LuxS) catalyzes the cleavage of the thioether linkage of S-ribosylhomocysteine (SRH) to produce L-homocysteine and 4,5-dihydroxy-2,3-pentanedione (DHPD). This is a key step in the biosynthetic pathway of the type II autoinducer (AI-2) in both Gram-positive and Gram-negative bacteria. Previous studies demonstrated that LuxS contains a divalent metal cofactor, which has been proposed to be a Zn(2+) ion. To gain insight into the catalytic mechanism of this unusual reaction and the function of the metal cofactor, we developed an efficient expression and purification system to produce LuxS enriched in either Fe(2+), Co(2+), or Zn(2+). Comparison of the catalytic properties and stability of the metal-substituted LuxS with those of the native enzyme revealed that the native metal ion is Fe(2+). The electronic absorption spectrum of the Co(II)-substituted LuxS underwent dramatic catalysis-dependent changes, suggesting the direct involvement of the metal ion in catalysis. Site-directed mutagenesis studies showed that Glu-57 and Cys-84 are essential for catalysis, most likely acting as general acids/bases. Reaction in D(2)O resulted in the incorporation of deuterium at the C-1, C-2, and C-5 positions of the diketone product. These data suggest a catalytic mechanism in which the metal ion catalyzes an intramolecular redox reaction, shifting the carbonyl group from the C-1 position to the C-3 position of the ribose. Subsequent beta-elimination at the C-4 and C-5 positions releases homocysteine as a free thiol.  相似文献   

8.
Quorum sensing is the cell population density-dependent regulation of gene expression by small signaling molecules, called autoinducers. LuxS and Pfs catalyze synthesis of the quorum-sensing signaling molecule autoinducer 2 (AI-2), which has been shown to control a variety of cellular processes. We studied the cloning, expression, and purification of LuxS and Pfs from Streptococcus suis Serotype 2 strain HA9801 (SS2); the two enzymes gave an apparent single protein band, and revealed a molecular mass of 21.74 and 28.44 kDa on an SDS-PAGE, respectively. Expressed and purified LuxS and Pfs were incubated with S-ribosylhomocysteine (SAH). The reaction products were able to induce luminescence of Vibrio harveyi BB170, clearly demonstrating that recombinant Pfs and LuxS synthesize AI-2 in vitro from SAH. Optimum pH and temperature for biosynthesis AI-2 in vitro were 8.0 and 37 °C, respectively. Biosynthesis AI-2 in vitro was stimulated by Cr3+, Al3+, and Ba2+and was inhibited by Fe2+ and Ni2+, respectively. It was strongly inhibited by Hg2+, Cu2+, and Mn2+, while enzyme activity was not affected by Li+, Mg2+, and Zn2+. In this study, we cloned, expressed, and purified LuxS and Pfs, identified the pathway of AI-2 synthesis in SS2, and analyzed the impact factor of AI-2 synthesis in vitro, which provided a solid basis for future research concerning the role of AI-2 in SS2.  相似文献   

9.
目的观察LuxS基因缺失后变形链球菌生物膜成熟初期的变化情况。方法通过扫描电镜观察标准菌和缺陷菌在不同营养环境中生物膜成熟初期的形成情况。结果对不同营养环境中形成的生物膜观察,发现在富含蔗糖的环境中,缺陷菌成熟初期的生物膜形成能力较标准菌弱。结论 LuxS基因缺失后变形链球菌在蔗糖环境中生物膜形成的能力减弱。  相似文献   

10.
【目的】对嗜水气单胞菌群体感应信号分子AI-2进行细胞外生物合成及活性检测。【方法】对LuxS、MtnN-1、MtnN-2蛋白进行氨基酸序列分析、表达及纯化。以S-腺苷同型半胱氨酸(SAH)为底物,利用纯化的LuxS分别与MtnN-1及MtnN-2蛋白共同作用合成AI-2,并利用哈维氏弧菌报告菌株BB170检测AI-2活性。【结果】嗜水气单胞菌培养液上清中AI-2活性在8 h达到空白对照的16.96倍。氨基酸序列分析表明,嗜水气单胞菌与水生病原菌哈维式弧菌和迟钝爱德华氏LuxS一致性达到76%以上,MtnN-1与MtnN-2氨基酸序列一致性为26.37%,其中MtnN-2与哈维氏弧菌和迟钝爱德华氏菌Pfs一致性达到53%以上。成功表达及纯化了LuxS、MtnN-1和MtnN-2蛋白,细胞外LuxS和MtnN-1共同作用合成的AI-2活性是空白对照的45.04倍,LuxS和MtnN-2共同作用合成的AI-2活性是空白对照的63.62倍。【结论】嗜水气单胞菌能够合成信号分子AI-2。MtnN-1和MtnN-2氨基酸序列尽管存在较大差异,但两者均能与LuxS共同催化AI-2的细胞外生物合成。  相似文献   

11.
Streptococcus suis has emerged as an important zoonotic pathogen that causes meningitis, arthritis, septicemia and even sudden death in pigs and humans. Quorum sensing is the signaling network for cell-to-cell communication that bacterial cells can use to monitor their own population density through production and exchange of signal molecules. S-Ribosylhomocysteinase (LuxS) is the key enzyme involved in the activated methyl cycle. Autoinducer 2 (AI-2) is the adduct of borate and a ribose derivative and is produced from S-adenosylhomocysteine (SAH). AI-2 can mediate interspecies communication and in some species facilitate the bacterial behavior regulation such as biofilm formation and virulence in both Gram-positive and Gram-negative bacteria. Here, we reported the overexpression, purification and crystallographic structure of LuxS from S. suis. Our results showed the catalytically active LuxS exists as a homodimer in solution. Inductively coupled plasma-mass spectrometry (ICP-MS) revealed the presence of Zn2+ in LuxS. Although the core structure shares the similar topology with LuxS proteins from other bacterial species, structural analyses and comparative amino acid sequence alignments identified two key amino acid differences in S. suis LuxS, Phe80 and His87, which are located near the substrate binding site. The results of site-directed mutagenesis and enzymology studies confirmed that these two residues affect the catalytic activity of the enzyme. These in vitro results were corroborated in vivo by expression of the LuxS variants in a S. suis ΔluxS strain. The single and two amino acid of LuxS variant decreased AI-2 production and biofilm formation significantly compared to that of the parent strain. Our findings highlight the importance of key LuxS residues that influence the AI-2 production and biofilm formation in S.suis.  相似文献   

12.
LuxS (S-ribosylhomocysteinase) catalyzes the cleavage of the thioether linkage of S-ribosylhomocysteine (SRH) to produce homocysteine and 4,5-dihydroxy-2,3-pentanedione (DPD), the precursor to a small signaling molecule that mediates interspecies bacterial communication called autoinducer 2 (AI-2). Inhibitors of LuxS should interfere with bacterial interspecies communication and potentially provide a novel class of antibacterial agents. In this work, SRH analogues containing substitution of a nitrogen atom for the endocyclic oxygen as well as various deoxyriboses were synthesized and evaluated for LuxS inhibition. Two of the [4-aza]SRH analogues showed modest competitive inhibition (K(I) ~40 μM), while most of the others were inactive. One compound that contains a hemiaminal moiety exhibited time-dependent inhibition, consistent with enzyme-catalyzed ring opening and conversion into a more potent species (K(I)(?)=3.5 μM). The structure-activity relationship of the designed inhibitors highlights the importance of both the homocysteine and ribose moieties for high-affinity binding to LuxS active site.  相似文献   

13.
Let LuxS speak up in AI-2 signaling   总被引:8,自引:0,他引:8  
Quorum sensing is a process of bacterial cell-cell communication that uses small diffusible molecules to coordinate diverse behaviors in response to population density. The only quorum-sensing system shared by Gram-positive and Gram-negative bacteria involves the production of autoinducer-2 (AI-2). The AI-2 synthase LuxS is widely distributed among the Bacteria, which suggests that AI-2 is a language for interspecies communication. However, LuxS is also an integral component of the activated methyl cycle in bacteria. LuxS-based quorum sensing has been intensively studied in the past decade, mostly in relation to the AI-2 molecule and the downstream effects of luxS knockouts; few studies have focused on the gene and protein activity itself. Ongoing attempts to dissect the metabolic and signaling roles of LuxS leave little doubt that unraveling the regulation of luxS expression and cellular LuxS activity is the key to understanding LuxS-based quorum sensing.  相似文献   

14.
Plummer P  Zhu J  Akiba M  Pei D  Zhang Q 《PloS one》2011,6(1):e15876
Autoinducer-2 (AI-2) mediated quorum sensing has been associated with the expression of virulence factors in a number of pathogenic organisms and has been demonstrated to play a role in motility and cytolethal distending toxin (cdt) production in Campylobacter jejuni. We have initiated the work to determine the molecular basis of AI-2 synthesis and the biological functions of quorum sensing in C. jejuni. In this work, two naturally occurring variants of C. jejuni 81116 were identified, one producing high-levels of AI-2 while the other is defective in AI-2 synthesis. Sequence analysis revealed a G92D mutation in the luxS gene of the defective variant. Complementation of the AI-2(-) variant with a plasmid encoded copy of the wild-type luxS gene or reversion of the G92D mutation by site-directed mutagenesis fully restored AI-2 production by the variant. These results indicate that the G92D mutation alone is responsible for the loss of AI-2 activity in C. jejuni. Kinetic analyses showed that the G92D LuxS has a ~100-fold reduced catalytic activity relative to the wild-type enzyme. Findings from this study identify a previously undescribed amino acid that is essential for AI-2 production by LuxS and provide a unique isogenic pair of naturally occurring variants for us to dissect the functions of AI-2 mediated quorum sensing in Campylobacter.  相似文献   

15.
LuxS, a conserved bacterial enzyme involved in the activated methyl cycle, catalyzes S-ribosylhomocysteine (SRH) into homocysteine and AI-2 (the inter-species quorum-sensing signal molecule). This enzyme has been reported to be essential for the survival of Actinobacillus pleuropneumoniae in its natural host. Therefore, it is a potential drug target against A. pleuropneumoniae, an important swine respiratory pathogen causing great economic losses in the pig industry worldwide. In this study, the enzymatic activity determination method was established using the recombinant LuxS of A. pleuropneumoniae. Thirty-five compounds similar to the shape of SRH were screened from the Specs compound library by the software vROCS and were evaluated for LuxS inhibition. Three compounds could inhibit LuxS activity. Two of them were confirmed to be competitive inhibitors and the third one was uncompetitive. All the three compounds displayed inhibitory effects on the growth of A. pleuropneumoniae and two other important swine pathogens, Haemophilis parasuis and Streptococcus suis, with MIC50 values ranging from 11 to 51 μg/ml. No significant cytotoxic effect of the compounds was detected on porcine PK-15 cells at the concentration which showed inhibitory effect on bacterial growth. These results suggest that LuxS is an ideal target to develop antimicrobials for porcine bacterial pathogens. The three LuxS inhibitors identified in this study can be used as lead compounds for drug design.  相似文献   

16.
17.
BACKGROUND: Quorum sensing is the mechanism by which bacteria control gene expression in response to cell density. Two major quorum-sensing systems have been identified, system 1 and system 2, each with a characteristic signaling molecule (autoinducer-1, or AI-1, in the case of system 1, and AI-2 in system 2). The luxS gene is required for the AI-2 system of quorum sensing. LuxS and AI-2 have been described in both Gram-negative and Gram-positive bacterial species and have been shown to be involved in the expression of virulence genes in several pathogens. RESULTS: The structure of the LuxS protein from three different bacterial species with resolutions ranging from 1.8 A to 2.4 A has been solved using an X-ray crystallographic structural genomics approach. The structure of LuxS reported here is seen to have a new alpha-beta fold. In all structures, an equivalent homodimer is observed. A metal ion identified as zinc was seen bound to a Cys-His-His triad. Methionine was found bound to the protein near the metal and at the dimer interface. CONCLUSIONS: These structures provide support for a hypothesis that explains the in vivo action of LuxS. Specifically, acting as a homodimer, the protein binds a methionine analog, S-ribosylhomocysteine (SRH). The zinc atom is in position to cleave the ribose ring in a step along the synthesis pathway of AI-2.  相似文献   

18.
Edwardsiella tarda is a gram-negative pathogen with a broad host range that includes humans, animals, and fish. Recent studies have shown that the LuxS/autoinducer type 2 (AI-2) quorum sensing system is involved in the virulence of E. tarda. In the present study, it was found that the E. tarda LuxS mutants bearing deletions of the catalytic site (C site) and the tyrosine kinase phosphorylation site, respectively, are functionally inactive and that these dysfunctional mutants can interfere with the activity of the wild-type LuxS. Two small peptides, 5411 and 5906, which share sequence identities with the C site of LuxS, were identified. 5411 and 5906 proved to be inhibitors of AI-2 activity and could vitiate the infectivity of the pathogenic E. tarda strain TX1. The inhibitory effect of 5411 and 5906 on AI-2 activity is exerted on LuxS, with which these peptides specifically interact. The expression of 5411 and 5906 in TX1 has multiple effects (altering biofilm production and the expression of certain virulence-associated genes), which are similar to those caused by interruption of luxS expression. Further study found that it is very likely that 5411 and 5906 can be released from the strains expressing them and, should TX1 be in the vicinity, captured by TX1. Based on this observation, a constitutive 5411 producer (Pseudomonas sp. strain FP3/pT5411) was constructed in the form of a fish commensal isolate that expresses 5411 from a plasmid source. The presence of FP3/pT5411 in fish attenuates the virulence of TX1. Finally, it was demonstrated that fish expressing 5411 directly from tissues exhibit enhanced resistance against TX1 infection.Quorum sensing is a process of cell-cell communication whereby the population behaviors of bacteria are coordinated to adapt to various environmental situations (15, 17). During quorum sensing, bacteria synthesize and secrete small signaling molecules called autoinducers that can diffuse across cellular membranes and be sensed by neighboring cells. In response to the signal, the cells adjust the expression of certain genes, thus resulting in alterations of community behaviors. For gram-negative bacteria, the classical quorum-sensing system, as represented by the LuxI/LuxR circuit of Vibrio fischeri (12, 13), involves autoinducer type 1 (AI-1). AI-1 molecules are acyl homoserine lactones that are synthesized by the enzyme LuxI and its homologues. Since AI-1 molecules are generally species specific and can only be responded to by the same bacterial species that produced them, AI-1 is considered an intraspecies signaling signal. In contrast, AI-2, which was first discovered in Vibrio harveyi (2) and later found in diverse bacteria, is a universal signaling molecule that communicates between bacteria of different species and genera. The V. harveyi AI-2 is a furanosyl borate diester that is synthesized from S-adenosylhomocysteine (SAH) via the enzymatic steps involving the nucleosidase Pfs, which converts SAH to S-ribosylhomocysteine (SRH), and LuxS, which catalyzes the cleavage of the thioether linkage of SRH to produce 4,5-dihydroxy-2,3-pentanedione, from which AI-2 is derived (29, 43). AI-2 and its synthase, LuxS, have been discovered to exist in both gram-negative and gram-positive bacteria (8, 45), and interruption of LuxS/AI-2-mediated quorum sensing is known to affect multiple aspects of cellular processes, such as bioluminescence, biofilm formation, conjugation, sporulation, and virulence development (9, 16, 19, 26, 27, 30, 33, 36, 40, 44, 48, 51).LuxS is conserved at the primary structure in many different bacterial species. Sequence comparisons of the known LuxS proteins have revealed the existence in these proteins of a highly conserved motif called the catalytic site (C site), with the sequence feature H-X-X-E-H. In addition, a semiconserved tyrosine kinase phosphorylation site (P site), characterized by K/R-X2-3-D/E-X2-3-Y (8, 14), is found in some of the LuxS proteins. Site-directed mutagenesis analyses have shown that the C site is essential to the catalytic activity of LuxS (58). The potential importance of the P site is not clear. Being a metalloenzyme, the activity of LuxS requires a divalent metal ion, which was initially proposed to be Zn2+ but later demonstrated to be Fe2+. Structural analyses have indicated that LuxS exists as a homodimer with two active sites, each of which contains an Fe2+ ion that is coordinated tetrahedrally by two residues of the C site, a water molecule, and a conserved cysteine residue (7, 20, 30, 37, 41, 58).Edwardsiella tarda is a gram-negative pathogen with a broad host range that includes both humans and animals. It is considered an important aquaculture pathogen because of its ability to cause edwardsiellosis, a systematic disease that affects a number of farm-reared marine species. Recently, we have cloned and analyzed the luxS gene of E. tarda (55). We found that the E. tarda LuxS is an enzyme of 171 amino acid residues that possesses the conserved C site and P site motifs. Both luxS expression and the AI-2 activity of E. tarda are regulated by the culturing conditions, and the temporal production of LuxS/AI-2 is required for optimal bacterial pathogenicity. In the present study, we investigate the potential for mitigating E. tarda infection by blocking the LuxS/AI-2 signal transduction process. Our results show that small peptides bearing homology to the C site of LuxS can function as specific inhibitors of the LuxS/AI-2 pathway and, as a result, attenuate the virulence of E. tarda.  相似文献   

19.
Mycobacteria show peculiar aggregated outgrowth like biofilm on the surface of solid or liquid media. Biofilms harbor antibiotic resistant bacteria in a self-produced extracellular matrix that signifies the bacterial fate to sedentary existence. Despite years of research, very little is known about the mechanisms that contribute to biofilm formation. LuxS has been previously known to play a role in biofilm formation in Autoinducer-2 dependent manner. We here show the effect of LuxS product-homocysteine, on the biofilm forming ability of non-tuberculous mycobacteria, Mycobacterium smegmatis and Mycobacterium bovis BCG showing AI-2 independent phenotypic effect of LuxS. Exogenous supplementation of homocysteine in the culture media leads to aberrant cording, pellicle outgrowth, and biofilm formation. Thus, our study contributes to the better understanding of the mechanism of mycobacterial biofilm formation and sheds light on the role of LuxS product homocysteine. In addition, we highlight the contribution of activated methyl cycle in bacterial quorum sensing.  相似文献   

20.

Background  

LuxS may function as a metabolic enzyme or as the synthase of a quorum sensing signalling molecule, auto-inducer-2 (AI-2); hence, the mechanism underlying phenotypic changes upon luxS inactivation is not always clear. In Helicobacter pylori, we have recently shown that, rather than functioning in recycling methionine as in most bacteria, LuxS (along with newly-characterised MccA and MccB), synthesises cysteine via reverse transsulphuration. In this study, we investigated whether and how LuxS controls motility of H. pylori, specifically if it has its effects via luxS-required cysteine metabolism or via AI-2 synthesis only.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号