首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Recently, attention has been focused on pharmacological treatments that increase HDL cholesterol to prevent coronary artery disease. Despite three decades of extensive research of human apolipoprotein A-I (apoA-I), the major protein component of HDL, the molecular basis for its antiatherogenic and anti-inflammatory functions remain elusive. Another protein component of HDL, apoA-II, has structural features similar to those of apoA-I but does not possess atheroprotective properties. To understand the molecular basis for the effectiveness of apoA-I, we used model synthetic peptides. We designed analogs of the class A amphipathic helical motif in apoA-I that is responsible for solubilizing phospholipids. None of these analogs has sequence homology to apoA-I, but all are similar in their lipid-associating structural motifs. Although all of these peptide analogs interact with phospholipids to form peptide:lipid complexes, the biological properties of these analogs are different. Physical-chemical and NMR studies of these peptides have enabled the delineation of structural requirements for atheroprotective and anti-inflammatory properties in these peptides. It has been shown that peptides that interact strongly with lipid acyl chains do not have antiatherogenic and anti-inflammatory properties. In contrast, peptides that associate close to the lipid head group (and hence do not interact strongly with the lipid acyl chain) are antiatherogenic and anti-inflammatory. Understanding the structure and function of apoA-I and HDL through studies of the amphipathic helix motif may lead to peptide-based therapies for inhibiting atherosclerosis and other related inflammatory lipid disorders.  相似文献   

2.
Apolipoprotein A-I (apoA-I), the major protein component of serum high-density lipoproteins (HDL), was found to inhibit herpes simplex virus (HSV)-induced cell fusion at physiological (approximately 1 microM) concentrations, whereas HDL did not exert any inhibitory effect. Lipid-associating, synthetic amphipathic peptides corresponding to residues 1-33 (apoA-I[1-33]) or residues 66-120 (apoA-I[66-120]) of apoA-I, also inhibited HSV-induced cell fusion, whereas a peptide corresponding to residues 8-33 of apoA-I (apoA-I[8-33]), which fails to associate with lipids, did not exert any inhibitory effect. These results suggest that lipid binding may be a prerequisite for peptide-mediated fusion inhibition. Consistent with this idea, a series of lipid-binding 22-amino-acid-residue-long synthetic amphipathic peptides that correspond to the amphipathic helical domains of apoA-I (A-I consensus series), or 18-residue-long model amphipathic peptides (18A series), were found to exert variable levels of fusion-inhibitory activity. The extent of fusion-inhibitory activity did not correlate with hydrophobic moment, hydrophobicity of the nonpolar face, helix-forming ability, or lipid affinity of the different peptides. Peptides in which the nonpolar face was not interrupted by a charged residue displayed greater fusion-inhibitory activity. Also, the presence of positively charged residues at the polar-nonpolar interface was found to correlate with higher fusion-inhibitory activity.  相似文献   

3.
Four peptides capable of forming an amphipathic alpha-helix have been synthesized and their conformational and lipid-binding properties studied. These peptides have been designed to vary the alpha-helix-forming potential as well as the charge distribution of the model peptide. The resulting peptide analogs and their complexes with dimyristoyl phosphatidylcholine were studied by using right angle light scattering, negative stain electron microscopy, nondenaturing gradient gel electrophoresis, circular dichroism, intrinsic tryptophan fluorescence, and differential scanning calorimetry techniques. The four analogs, [Glu4,9, Leu11,17] (reverse-18A, [Glu4,9, Leu5,11,17] reverse-18A, [Glu1,8, Leu11,17] 18A, and [Glu1,8, Leu5,11,17] 18A were derived from a model amphipathic peptide Asp-Trp-Leu-Lys-Ala-Phe-Tyr-Asp-Lys-Val-Ala-Glu-Lys-Leu-Lys-Glu-Ala-Phe (18A) whose lipid-associating properties strongly mimic apolipoprotein A-I or derived from Lys-Trp-Leu-Asp-Ala-Phe-Tyr-Lys-Asp-Val-Ala-Lys-Glu-Leu-Glu-Lys-Ala-Phe (reverse-18A), a peptide with little affinity for lipid and having a reversed charge distribution compared to the 18A peptide. We have shown that by substituting glutamic acid and leucine for aspartic acid and alanine, respectively, in a weak lipid-associating amphipathic helix peptide, the lipid-associating ability can be increased. Thus, peptides with both kinds of charge distribution can associate with the lipid. The ability of the peptide to disrupt phospholipid bilayers, however, is higher for 18A analogs compared to the reverse-18A analogs even after increasing the helix-forming potential and hydrophobicity. In addition to forming smaller lipoprotein particles, the modified 18A analogs were much superior to the modified reverse-18A analogs in their ability to activate the enzyme lecithin:cholesterol acyltransferase. This demonstrates that the positions of charged residues in the amphipathic helix play an important role in lecithin:cholesterol acyltransferase activation.  相似文献   

4.
The amphipathic helix hypothesis for the lipid-associating domains of exchangeable plasma apolipoproteins has been further studied by analysis of the structure of the complexes formed between four synthetic peptide analogs of the amphipathic helix and dimyristoyl phosphatidylcholine (DMPC). Density gradient ultracentrifugation, negative stain electron microscopy, nondenaturing gradient gel electrophoresis, 1H NMR, high sensitivity differential scanning calorimetry, and circular dichroism were the techniques used in these studies. The two analogs Asp-Trp-Leu-Lys-Ala-Phe-Tyr-Asp-Lys-Val-Ala-Glu-Lys-Leu-Lys-Glu-Ala-Phe (18A) and 18A-Pro-18A whose sequences most strongly mimic native amphipathic sequences were found also most strongly to mimic apolipoprotein A-I in DMPC complex structure. The covalently linked dimer of the prototype amphipathic analog 18A, 18A-Pro-18A, appears to have greater lipid affinity than 18A. This presumably is the result of the cooperativity provided by two covalently linked lipid-associating domains in 18A-Pro-18A. The studies further suggest that the charge-reversed analog of the prototype 18A, reverse-18A, has the lowest lipid affinity of the four analogs studied and forms only marginally stable discoidal DMPC complexes. We postulate that this low lipid affinity is due predominantly, but not necessarily exclusively, to the lack of a hydrophobic contribution of lysine residues at the polar-nonpolar interface of reverse-18A versus 18A. The intermediate lipid affinity of des-Val10-18A, the fourth analog peptide, to produce a rank order of 18A-Pro-18A greater than 18A greater than des-Val10-18A greater than reverse-18A, supports this interpretation. Des-Val10-18A which has Val deleted from 18A has an amphipathic helical structure partially disrupted by the shift of 2 lysine residues away from the polar-nonpolar interface.  相似文献   

5.
PURPOSE OF REVIEW: Apolipoprotein A-I is the major structural protein of HDL. Its physicochemical properties maintain a delicate balance between maintenance of stable lipoproteins and the ability to associate with and dissociate from the lipid transported. Here we review the progress made in the last 2-3 years on the structure-function relationships of apolipoprotein A-I, including elements related to the ATP binding cassette transporter A1. RECENT FINDINGS: Current evidence now supports the so-called 'belt' or 'hairpin' models for apolipoprotein A-I conformation when bound to discoidal lipoproteins. In-vivo expression of apolipoprotein A-I mutant proteins has shown that both the N- and C-terminal domains are important for lipid association as well as for the esterification reaction, particularly binding of cholesteryl esters and formation of mature alpha-migrating lipoproteins. This property is apparently quite distinct from the activation of the enzyme lecithin cholesterol acyl transferase, which requires interaction with the central helix 6. The interaction of apolipoprotein A-I with the ATP binding cassette transporter A1 has been shown to require the C-terminal domain, which is proposed to mediate the opening of the helix bundle formed by lipid-free or lipid-poor apolipoprotein A-I and allow its association with hydrophobic binding sites. SUMMARY: Significant progress has been made in the understanding of the molecular mechanisms controlling the folding of apolipoprotein A-I and its interaction with lipids and various other protein factors involved in HDL metabolism.  相似文献   

6.
Apolipoprotein A-IV is a member of the apo A-I/C-III/A-IV gene cluster. In order to investigate its hypothetical coordinated regulation, an acute phase was induced in pigs by turpentine oil injection. The hepatic expression of the gene cluster as well as the plasma levels of apolipoproteins were monitored at different time periods. Furthermore, the involvement of the inflammatory mediators' interleukins 1 and 6 and tumor necrosis factor in the regulation of this gene cluster was tested in cultured pig hepatocytes, incubated with those mediators and apo A-I/C-III/A-IV gene cluster expression at the mRNA level was measured. In response to turpentine oil-induced inflammation, a decreased hepatic apo A-IV mRNA expression was observed (independent of apo A-I and apo C-III mRNA) not correlating with the plasma protein levels. The distribution of plasma apo A-IV experienced a shift from HDL to larger particles. In contrast, the changes in apo A-I and apo C-III mRNA were reflected in their corresponding plasma levels. Addition of cytokines to cultured pig hepatocytes also decreased apo A-IV and apo A-I mRNA levels. All these results show that the down-regulation of apolipoprotein A-I and A-IV messages in the liver may be mediated by interleukin 6 and TNF-alpha. The well-known HDL decrease found in many different acute-phase responses also appears in the pig due to the decreased expression of apolipoprotein A-I and the enlargement of the apolipoprotein A-IV-containing HDL.  相似文献   

7.
Effect of oxidation on the properties of apolipoproteins A-I and A-II   总被引:7,自引:0,他引:7  
Purified apolipoprotein A-I has been separated by reversed-phase high performance liquid chromatography (HPLC) into multiple peaks and these peaks have been characterized. One peak, apoA-Ib had a relatively longer retention time on HPLC but its retention time could be shortened by treatment by hydrogen peroxide. CNBr cleavage studies indicated that the differences in apoA-Ib and in its oxidation product, apoA-Ia, were due to the different oxidation states of methionine. This phenomenon was also observed in apoA-II, where methionine oxidation produced two more forms of this apolipoprotein in addition to the native form. These isomers were found to have different secondary structures and affinities for lipid. Model peptide analogs of the amphipathic helix with the same sequence but with methionine and methionine sulfoxide at the nonpolar face of the amphipathic helix were synthesized and studied. It was found that the lipid affinities of these synthetic peptide isomers were very different. They also differed in their secondary structures as studied by circular dichroism (CD). We propose that methionine oxidation introduces hydrophilic residues at the nonpolar face of the amphipathic helical domains of these apolipoproteins and, therefore, alters their secondary structure and lipid affinity.  相似文献   

8.
Apolipoprotein(apo)A-I(Milano) (R173C) and apoA-I(Paris) (R151C) are rare cysteine variants of wild-type (WT) apoA-I that possess novel antioxidant properties on phospholipid surfaces. Yet, the two variants differ in their ability to inhibit lipid peroxidation. In this study, we used synthetic peptides (18mers) to investigate the structural basis for the difference in antioxidant activity between apoA-I(Milano) and apoA-I(Paris). A peptide (aa 167-R173C-184) based on the amphipathic alpha helix harboring the R173C mutation inhibited superoxide anion-mediated oxidation of phospholipid in a dose-dependent manner, but it failed to directly quench superoxide anions in aqueous solution, indicating that the peptide acted at the level of phospholipid to inhibit lipid peroxidation just like the full-length cysteine variant. Peptide 145-R151C-162 based on the helical segment containing R151C exhibited the same capacity as peptide 167-R173C-184 to inhibit lipid peroxidation. Thus, the difference in antioxidant activity between apoA-I(Milano) and apoA-I(Paris) was not governed by the primary amino acid sequence of their individual amphipathic alpha helices, rather contextual constraints within the full-length variants set the difference in antioxidant activity. Cysteine-free peptides were weak inhibitors of lipid peroxidation. These results suggest that thiol-bearing helical peptides based on apoA-I(Milano) may be useful to combat inflammatory related diseases.  相似文献   

9.
To develop a detailed double belt model for discoidal HDL, we previously scored inter-helical salt bridges between all possible registries of two stacked antiparallel amphipathic helical rings of apolipoprotein (apo) A-I. The top score was the antiparallel apposition of helix 5 with 5 followed closely by appositions of helix 5 with 4 and helix 5 with 6. The rationale for the current study is that, for each of the optimal scores, a pair of identical residues can be identified in juxtaposition directly on the contact edge between the two antiparallel helical belts of apoA-I. Further, these residues are always in the ‘9th position’ in one of the eighteen 11-mer repeats that make up the lipid-associating domain of apoA-I. To illustrate our terminology, 129j (LL5/5) refers to the juxtaposition of the Cα atoms of G129 (in a ‘9th position’) in the pairwise helix 5 domains. We reasoned that if identical residues in the double belt juxtapositions were mutated to a cysteine and kept under reducing conditions during disc formation, we would have a precise method for determining registration in discoidal HDL by formation of a disulfide-linked apoA-I homodimer. Using this approach, we conclude that 129j (LL5/5) is the major rotamer orientation for double belt HDL and propose that the small ubiquitous gap between the pairwise helix 5 portions of the double belt in larger HDL discoidal particles is significantly dynamic to hinge off the disc edge under certain conditions, e.g., in smaller particles or perhaps following binding of the enzyme LCAT. This article is part of a Special Issue entitled Advances in High Density Lipoprotein Formation and Metabolism: A Tribute to John F. Oram (1945-2010).  相似文献   

10.
ApoA-I is a uniquely flexible lipid-scavenging protein capable of incorporating phospholipids into stable particles. Here we report molecular dynamics simulations on a series of progressively smaller discoidal high density lipoprotein particles produced by incremental removal of palmitoyloleoylphosphatidylcholine via four different pathways. The starting model contained 160 palmitoyloleoylphosphatidylcholines and a belt of two antiparallel amphipathic helical lipid-associating domains of apolipoprotein (apo) A-I. The results are particularly compelling. After a few nanoseconds of molecular dynamics simulation, independent of the starting particle and method of size reduction, all simulated double belts of the four lipidated apoA-I particles have helical domains that impressively approximate the x-ray crystal structure of lipid-free apoA-I, particularly between residues 88 and 186. These results provide atomic resolution models for two of the particles produced by in vitro reconstitution of nascent high density lipoprotein particles. These particles, measuring 95 angstroms and 78 angstroms by nondenaturing gradient gel electrophoresis, correspond in composition and in size/shape (by negative stain electron microscopy) to the simulated particles with molar ratios of 100:2 and 50:2, respectively. The lipids of the 100:2 particle family form minimal surfaces at their monolayer-monolayer interface, whereas the 50:2 particle family displays a lipid pocket capable of binding a dynamic range of phospholipid molecules.  相似文献   

11.
In a recent classification of biologically active amphipathic α-helixes, the lipid-associating domains in exchangeable plasma apolipoproteins have been classified as class A amphipathic helixes (Segrest, J. P., De Loof, H., Dohlman, J. G., Brouillette, C. G., Anantharamaiah, G. M. Proteins 8:103–117, 1990). A model peptide analog with the sequence, Asp Trp Leu Lys Ala Phe Tyr Asp Lys Val Ala Glu Lys Leu Lys Glu Ala Phe (18A), possesses the characteristics of a class A amphipathic helix. The addition of an acetyl group at the α-amino terminus and an amide at the α-carboxyl terminus, to obtain Ac-18A-NH2, produces large increases in helicity for the peptide both in solution and when associated with lipid (for 18A vs Ac-18A-NH2, from 6 to 38% helix in buffer and from 49 to 92% helix when bound to dimyristoyl phosphatidylcholine in discoidal complexes). Blocking of the end-groups of 18A stabilizes the α-helix in the presence of lipid by approximately 1.3 kcal/mol. There is also an increase in the self-association of the blocked peptide in aqueous solution. The free energy of binding to the PC–water interface is increased only by about 3% (from ?8.0 kcal/mol for 18A to ?8.3 kcal/mol for Ac-18A-NH2). The Ac-18A-NH2 has a much greater potency in raising the bilayer to hexagonal phase transition temperature of dipalmitoleoyl phosphatidylethanolamine than does 18A. In this regard Ac-18A-NH2 more closely resembles the behavior of the apolipoprotein A-I, which is the major protein component of high-density lipoprotein and a potent inhibitor of lipid hexagonal phase formation. The activation of the plasma enzyme lecithin: cholesterol acyltransferase by the Ac-18A-NH2 peptide is greater than the 18A analog and comparable to that observed with the apo A-I. In the case of Ac-18A-NH2, the higher activating potency may be due, at least in part, to the ability of the peptide to micellize egg PC vesicles. © 1993 Wiley-Liss, Inc.  相似文献   

12.
Apolipoprotein A-IV, apolipoprotein E-2 and apolipoprotein E-3 were individually incorporated into defined phosphatidylcholine/cholesterol liposomes for study of lecithin:cholesterol acyltransferase activation. Enzyme activities obtained with these liposomes were compared with that from liposomes containing purified apolipoprotein A-I. Apolipoprotein A-IV, apolipoprotein E-2, and apolipoprotein E-3 all activated lecithin:cholesterol acyltransferase. With purified enzyme and with egg yolk phosphatidylcholine as the acyl donor, maximal activation was obtained at a concentration of approximately 0.5 nmol for apolipoprotein A-IV and 0.4 nmol for the apolipoprotein E isoforms. Apolipoprotein A-IV was approximately 25% as efficient as apolipoprotein A-I for the activation of purified enzyme; apolipoprotein E-2 was 40% as efficient, and apolipoprotein E-3, 30%. Similar activation results were obtained using plasma as the enzyme source. Analysis of the plasma of patients with absence of apolipoprotein A-I or with only trace amounts of apolipoprotein A-I exhibited a reduced rate of cholesterol esterification and lecithin:cholesterol acyltransferase activity that was proportional to the reduced level of the enzyme's mass. These results indicate that apolipoprotein A-IV and apolipoprotein E may serve as physiological cofactors for the enzyme reaction.  相似文献   

13.
A method has been developed for quantitative analysis of 'free' apolipoprotein A-I and apolipoprotein A-I associated with high-density lipoprotein (HDL) in serum. The method utilizes the difference between the rate of electrophoretic migration of apolipoprotein A-I associated with HDL (alpha) and 'free' apolipoprotein A-I (pre-beta) in agarose gel. Apolipoprotein A-I is subsequently quantitated by electrophoresis in a second dimensional gel containing anti-apolipoprotein A-I antibodies. Using this method all apolipoprotein A-I of normal fasting serum was found associated with HDL (n = 16). By contrast, 'free' apolipoprotein A-I accounted for up to 12% of the total in the serum of patients with isolated hypertriglyceridemia (n = 8) or mixed hyperlipoproteinemia (n = 8). Between 30 and 35% of 'free' apolipoprotein A-I was found in one patient afflicted with the apolipoprotein C-II deficiency syndrome. Also, 'free' apolipoprotein A-I could be detected in normal postabsorptive serum. 30 and 90 min following heparin-enhanced lipolysis 'free' apolipoprotein A-I accounted for 23 and 20%, respectively, of the total apolipoprotein A-I of serum. Apolipoprotein A-I associated with HDL remained unaltered. It appears, therefore, that 'free' apolipoprotein A-I is liberated from triglyceride-rich lipoproteins during lipolysis.  相似文献   

14.
15.
To develop a detailed double belt model for discoidal HDL, we previously scored inter-helical salt bridges between all possible registries of two stacked antiparallel amphipathic helical rings of apolipoprotein (apo) A-I. The top score was the antiparallel apposition of helix 5 with 5 followed closely by appositions of helix 5 with 4 and helix 5 with 6. The rationale for the current study is that, for each of the optimal scores, a pair of identical residues can be identified in juxtaposition directly on the contact edge between the two antiparallel helical belts of apoA-I. Further, these residues are always in the '9th position' in one of the eighteen 11-mer repeats that make up the lipid-associating domain of apoA-I. To illustrate our terminology, 129j (LL5/5) refers to the juxtaposition of the Cα atoms of G129 (in a '9th position') in the pairwise helix 5 domains. We reasoned that if identical residues in the double belt juxtapositions were mutated to a cysteine and kept under reducing conditions during disc formation, we would have a precise method for determining registration in discoidal HDL by formation of a disulfide-linked apoA-I homodimer. Using this approach, we conclude that 129j (LL5/5) is the major rotamer orientation for double belt HDL and propose that the small ubiquitous gap between the pairwise helix 5 portions of the double belt in larger HDL discoidal particles is significantly dynamic to hinge off the disc edge under certain conditions, e.g., in smaller particles or perhaps following binding of the enzyme LCAT. This article is part of a Special Issue entitled Advances in High Density Lipoprotein Formation and Metabolism: A Tribute to John F. Oram (1945-2010).  相似文献   

16.
PURPOSE OF REVIEW: Apolipoprotein A-II, the second major HDL apolipoprotein, was often considered of minor importance relatively to apolipoprotein A-I and its role was controversial. This picture is now rapidly changing, due to novel polymorphisms and mutations, to the outcome of clinical trials, and to studies with transgenic mice. RECENT FINDINGS: The -265 T/C polymorphism supports a role for apolipoprotein A-II in postprandial very-low-density lipoprotein metabolism. Fibrates, which increase apolipoprotein A-II synthesis, significantly decrease the incidence of major coronary artery disease events, particularly in subjects with low HDL cholesterol, high plasma triglyceride, and high body weight. The comparison of transgenic mice overexpressing human or murine apolipoprotein A-II has highlighted major structural differences between the two proteins; they have opposite effects on HDL size, apolipoprotein A-I content, plasma concentration, and protection from oxidation. Human apolipoprotein A-II is more hydrophobic, displaces apolipoprotein A-I from HDL, accelerates apolipoprotein A-I catabolism, and its plasma concentration is decreased by fasting. Apolipoprotein A-II stimulates ATP binding cassette transporter 1-mediated cholesterol efflux. Human and murine apolipoprotein A-II differently affect glucose metabolism and insulin resistance. A novel beneficial role for apolipoprotein A-II in the pathogenesis of hepatitis C virus has been shown. SUMMARY: The hydrophobicity of human apolipoprotein A-II is a key regulatory factor of HDL metabolism. Due to the lower plasma apolipoprotein A-II concentration during fasting, measurements of apolipoprotein A-II in fed subjects are more relevant. More clinical studies are necessary to clarify the role of apolipoprotein A-II in well-characterized subsets of patients and in the insulin resistance syndrome.  相似文献   

17.
ABCA1 mediates the transport of cellular cholesterol and phospholipids to HDL apolipoproteins. Apolipoprotein A-I (apoA-I) interactions with ABCA1-expressing cells elicit several responses, including removing cellular lipids, stabilizing ABCA1 protein, and activating Janus kinase 2 (JAK2). Here, we used synthetic apolipoprotein-mimetic peptides to characterize the relationship between these responses. Peptides containing one amphipathic helix of L- or D-amino acids (2F, D-2F, or 4F) and a peptide containing two helices (37pA) all promoted ABCA1-dependent cholesterol efflux, competed for apoA-I binding to ABCA1-expressing cells, blocked covalent cross-linking of apoA-I to ABCA1, and inhibited ABCA1 degradation. 37pA was cross-linked to ABCA1, confirming the direct binding of amphipathic helices to ABCA1. 2F, 4F, 37pA, and D-37pA all stimulated JAK2 autophosphorylation. Inhibition of JAK2 greatly reduced peptide-mediated cholesterol efflux, peptide binding to ABCA1-expressing cells, and peptide cross-linking to ABCA1, indicating that these processes require an active JAK2. In contrast, apoA-I and peptides stabilized ABCA1 protein even in the absence of an active JAK2, implying that this process is independent of JAK2 and lipid efflux-promoting binding of amphipathic helices to ABCA1. These findings show that amphipathic helices coordinate the activity of ABCA1 by several distinct mechanisms that are likely to involve different cell surface binding sites.  相似文献   

18.
The mechanism for the assembly of HDL with cellular lipid by ABCA1 and helical apolipoprotein was investigated in hepatocytes. Both HepG2 cells and mouse primary culture hepatocytes produced HDL with apolipoprotein A-I (apoA-I) whether endogenously synthesized or exogenously provided. Probucol, an ABCA1 inactivator, inhibited these reactions, as well as the reversible binding of apoA-I to HepG2. Primary cultured hepatocytes of ABCA1-deficient mice also lacked HDL production regardless of the presence of exogenous apoA-I. HepG2 cells secreted apoA-I into the medium even when ABCA1 was inactivated by probucol, but it was all in a free form as HDL production was inhibited. When a lipid-free apoA-I-specific monoclonal antibody, 725-1E2, was present in the culture medium, production of HDL was suppressed, whether with endogenous or exogenously added apoA-I, and the antibody did not influence HDL already produced by HepG2 cells. We conclude that the main mechanism for HDL assembly by endogenous apoA-I in HepG2 cells is an autocrine-like reaction in which apoA-I is secreted and then interacts with cellular ABCA1 to generate HDL.  相似文献   

19.
Treatment of 125I-labelled high-density lipoprotein ([125I]HDL3) with monospecific polyclonal antibodies against apolipoproteins A-I and A-II resulted in a dose-dependent inhibition of the [125I]HDL3 binding to isolated human small intestine epithelial cells by 25% and 50%, respectively. Both antibodies also inhibited intracellular degradation of [125I]HDL3 by 80%. Treatment of enterocytes with polyclonal antibody against apolipoprotein A-I binding protein, a putative HDL receptor, inhibited both binding and degradation of [125I]HDL3 by these cells by 50%. Antibodies to apolipoprotein A-I, A-II and apo A-I-binding protein also inhibited [125I]HDL3 binding to cholesterol-loaded cells.  相似文献   

20.
To measure the effect of hydrophobicity on the binding of model apoproteins to lipoproteins, we synthesized a 15 amino acid lipid-associating peptide (LAP) with acyl chains of various lengths (0-18 carbons) bound to the N-terminal amino acid through a peptide bond. The acylated LAPs preferentially bound to high-density lipoprotein (HDL) and were activators of lecithin:cholesterol acyltransferase. Circular dichroic spectra indicated that the LAP association with phospholipid was accompanied by increased alpha-helical structure. The LAPs self-associated in solution as judged from tryptophan fluorescence analysis. These characteristics, which are comparable to those of apolipoprotein A-I, were strongly dependent upon the acyl chain length of the LAPs. The equilibrium constants (Keq) for the association of LAPs to reassembled HDL were measured by equilibrium dialysis at several temperatures. At 37 degrees C, Keq increased by 3 orders of magnitude as the number of carbon units was increased from 0 to 16; there was a log-linear relationship between Keq and the acyl chain length. The free energy of association (delta Ga) decreased by a constant value for each methylene unit added to the acyl chain (0.35 kcal mol-1), clearly demonstrating a strict hydrophobic effect. This change of delta Ga was enthalpy rather than entropy driven. Our data show that, with all other parameters including putative alpha-helicity, sequence, and molecular weight being constant, the binding of a lipid-associating peptide to lipoprotein is governed by its hydrophobicity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号