首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
A 3.2-kb region of the broad-host-range plasmid RK2 has been shown to encode a highly efficient plasmid maintenance system that functions in a vector-independent manner. This region, designated par, consists of two divergently arranged operons: parCBA and parDE. The 0.7-kb parDE operon promotes plasmid stability by a postsegregational killing mechanism that ensures that plasmid-free daughter cells do not survive after cell division. The 2.3-kb parCBA operon encodes a site-specific resolvase protein (ParA) and its multimer resolution site (res) and two proteins (ParB and ParC) whose functions are as yet unknown. It has been proposed that the parCBA operon encodes a plasmid partitioning system (M. Gerlitz, O. Hrabak, and H. Schwabb, J. Bacteriol. 172:6194-6203, 1990; R. C. Roberts, R. Burioni, and D. R. Helinski, J. Bacteriol. 172:6204-6216, 1990). To further define the role of this region in promoting the stable maintenance of plasmid RK2, the parCBA and parDE operons separately and the intact (parCBA/DE) par region (3.2 kb) were reintroduced into an RK2 plasmid deleted for par and assayed for plasmid stability in two Escherichia coli strains (MC1061K and MV10delta lac). The intact 3.2-kb region provided the highest degree of stability in the two strains tested. The ability of the parCBA or parDE region alone to promote stable maintenance in the E. coli strains was dependent on the particular strain and the growth temperature. Furthermore, the insertion of the ColE1 cer site into the RK2 plasmid deleted for the par region failed to stabilize the plasmid in the MC1061K strain, indicating that the multimer resolution activity encoded by parCBA is not by itself responsible for the stabilization activity observed for this operon. To examine the relative contributions of postsegregational cell killing and a possible partitioning function encoded by the intact 3.2-kb par region, stability assays were carried out with ParD provided in trans by a compatible (R6K) minireplicon to prevent postsegregational killing. In E. coli MV10delta lac, postsegregational killing appeared to be the predominant mechanism for stabilization since the presence of ParD substantially reduced the stability of plasmids carrying either the 3.2- or 0.7-kb region. However, in the case of E. coli MC1061K, the presence of ParD in trans did not result in a significant loss of stabilization by the 3.2-kb region, indicating that the putative partitioning function was largely responsible for RK2 maintenance. To examine the basis for the apparent differences in postsegregational killing between the two E. coli strains, transformation assays were carried out to determine the relative sensitivities of the strains to the ParE toxin protein. Consistent with the relatively small contribution of the postsegregational killing to plasmid stabilization in MC1061K, we found that this strain was substantially more resistant to killing by ParE in comparison to E. coli MV10delta lac. A transfer-deficient mutant of thepar-deleted plasmid was constructed for the stable maintenance studies. This plasmid was found to be lost from E. coli MV10delta lac at a rate three times greater than the rate for the transfer-proficient plasmid, suggesting that conjugation can also play a significant role in the maintenance of plasmid RK2.  相似文献   

2.
ParD is a small, acidic protein from the partitioning system of the plasmid RK2/RP4. The ParD protein exhibits specific DNA binding activity and, as the antidote component of a toxin-antidote plasmid addiction system, ParD forms a tight complex in solution with its toxin antagonist, the ParE protein. Unopposed ParE acts as a toxin that causes growth retardation and killing of plasmid cured cells. ParD negatively autoregulates its expression by binding to an operator sequence in the parDE promoter region. This DNA binding activity is crucial for the regulation of the relative abundance of toxin and antidote which ultimately determines life or death for the bacterial host and its daughter cells. In light scattering studies and gel filtration chromatography we observed the existence of a stable dimer of ParD in solution. The stoichiometry of ParD-DNA complex formation appeared to be 4:1, the molecular mass of the complex was 72.1 kDa. The alpha-helical content of ParD as determined by CD-spectrometry was 35%. The protein exhibited high thermostability with a T(M) of 64 degrees C and deltaH of 25 kcal/mol as shown by differential scanning calorimetry. Upon complex formation the T(M) increased by 10 degrees C. The thermal unfolding of the ParD protein was highly reversible as observed in repeated DSC scans of the same sample. The recovery of the native fold was proven by CD-spectroscopy.  相似文献   

3.
Broad-host-range plasmid RK2 encodes a post-segregational killing system, parDE, which contributes to the stable maintenance of this plasmid in Escherichia coli and many distantly related bacteria. The ParE protein is a toxin that inhibits cell growth, causes cell filamentation and eventually cell death. The ParD protein is a specific ParE antitoxin. In this work, the in vitro activities of these two proteins were examined. The ParE protein was found to inhibit DNA synthesis using an E. coli oriC supercoiled template and a replication-proficient E. coli extract. Moreover, ParE inhibited the early stages of both chromosomal and plasmid DNA replication, as measured by the DnaB helicase- and gyrase-dependent formation of FI*, a highly unwound form of supercoiled DNA. The presence of ParD prevented these inhibitory activities of ParE. We also observed that the addition of ParE to supercoiled DNA plus gyrase alone resulted in the formation of a cleavable gyrase-DNA complex that was converted to a linear DNA form upon addition of sodium dodecyl sulphate (SDS). Adding ParD before or after the addition of ParE prevented the formation of this cleavable complex. These results demonstrate that the target of ParE toxin activity in vitro is E. coli gyrase.  相似文献   

4.
A 3.2-kb fragment encoding five genes, parCBA/DE, in two divergently transcribed operons promotes stable maintenance of the replicon of the broad-host-range plasmid RK2 in a vector-independent manner in Escherichia coli. The parDE operon has been shown to contribute to stabilization through the postsegregational killing of plasmid-free daughter cells, while the parCBA operon encodes a resolvase, ParA, that mediates the resolution of plasmid multimers through site-specific recombination. To date, evidence indicates that multimer resolution alone does not play a significant role in RK2 stable maintenance by the parCBA operon in E. coli. It has been proposed, instead, that the parCBA region encodes an additional stability mechanism, a partition system, that ensures that each daughter cell receives a plasmid copy at cell division. However, studies carried out to date have not directly determined the plasmid stabilization activity of the parCBA operon alone. An assessment was made of the relative contributions of postsegregational killing (parDE) and the putative partitioning system (parCBA) to the stabilization of mini-RK2 replicons in E. coli. Mini-RK2 replicons carrying either the entire 3.2-kb (parCBA/DE) fragment or the 2.3-kb parCBA region alone were found to be stably maintained in two E. coli strains tested. The stabilization found is not due to resolution of multimers. The stabilizing effectiveness of parCBA was substantially reduced when the plasmid copy number was lowered, as in the case of E. coli cells carrying a temperature-sensitive mini-RK2 replicon grown at a nonpermissive temperature. The presence of the entire 3.2-kb region effectively stabilized the replicon, however, under both low- and high-copy-number-conditions. In those instances of decreased plasmid copy number, the postsegregational killing activity, encoded by parDE, either as part of the 3.2-kb fragment or alone played the major role in the stabilization of mini-RK2 replicons within the growing bacterial population. Our findings indicate that the parCBA operon functions to stabilize by a mechanism other than cell killing and resolution of plasmid multimers, while the parDE operon functions solely to stabilize plasmids by cell killing. The relative contribution of each system to stabilization depends on plasmid copy number and the particular E. coli host.  相似文献   

5.
ParD is the antidote of the plasmid-encoded toxin-antitoxin (TA) system ParD-ParE. These modules rely on differential stabilities of a highly expressed but labile antidote and a stable toxin expressed from one operon. Consequently, loss of the coding plasmid results in loss of the protective antidote and poisoning of the cell. The antidote protein usually also exhibits an autoregulatory function of the operon. In this paper, we present the solution structure of ParD. The repressor activity of ParD is mediated by the N-terminal half of the protein, which adopts a ribbon-helix-helix (RHH) fold. The C-terminal half of the protein is unstructured in the absence of its cognate binding partner ParE. Based on homology with other RHH proteins, we present a model of the ParD-DNA interaction, with the antiparallel beta-strand being inserted into the major groove of DNA. The fusion of the N-terminal DNA-binding RHH motif to the toxin-binding unstructured C-terminal domain is discussed in its evolutionary context.  相似文献   

6.
7.
Three homologues of the plasmid RK2 ParDE toxin-antitoxin system are present in the Vibrio cholerae genome within the superintegron on chromosome II. Here we found that these three loci-two of which have identical open reading frames and regulatory sequences-encode functional toxin-antitoxin systems. The ParE toxins inhibit bacterial division and reduce viability, presumably due to their capacity to damage DNA. The in vivo effects of ParE1/3 mimic those of ParE2, which we have previously demonstrated to be a DNA gyrase inhibitor in vitro, suggesting that ParE1/3 is likewise a gyrase inhibitor, despite its relatively low degree of sequence identity. ParE-mediated DNA damage activates the V. cholerae SOS response, which in turn likely accounts for ParE's inhibition of cell division. Each toxin's effects can be prevented by the expression of its cognate ParD antitoxin, which acts in a toxin-specific fashion both to block toxicity and to repress the expression of its parDE operon. Derepression of ParE activity in ΔparAB2 mutant V. cholerae cells that have lost chromosome II contributes to the prominent DNA degradation that accompanies the death of these cells. Overall, our findings suggest that the ParE toxins lead to the postsegregational killing of cells missing chromosome II in a manner that closely mimics postsegregational killing mediated by plasmid-encoded homologs. Thus, the parDE loci aid in the maintenance of the integrity of the V. cholerae superintegron and in ensuring the inheritance of chromosome II.  相似文献   

8.
DNA gyrase is an essential bacterial enzyme required for the maintenance of chromosomal DNA topology. This enzyme is the target of several protein toxins encoded in toxin-antitoxin (TA) loci as well as of man-made antibiotics such as quinolones. The genome of Vibrio cholerae, the cause of cholera, contains three putative TA loci that exhibit modest similarity to the RK2 plasmid-borne parDE TA locus, which is thought to target gyrase although its mechanism of action is uncharacterized. Here we investigated the V. cholerae parDE2 locus. We found that this locus encodes a functional proteic TA pair that is active in Escherichia coli as well as V. cholerae. ParD2 co-purified with ParE2 and interacted with it directly. Unlike many other antitoxins, ParD2 could prevent but not reverse ParE2 toxicity. ParE2, like the unrelated F-encoded toxin CcdB and quinolones, targeted the GyrA subunit and stalled the DNA-gyrase cleavage complex. However, in contrast to other gyrase poisons, ParE2 toxicity required ATP, and it interfered with gyrase-dependent DNA supercoiling but not DNA relaxation. ParE2 did not bind GyrA fragments bound by CcdB and quinolones, and a set of strains resistant to a variety of known gyrase inhibitors all exhibited sensitivity to ParE2. Together, our findings suggest that ParE2 and presumably its many plasmid- and chromosome-encoded homologues inhibit gyrase in a different manner than previously described agents.  相似文献   

9.
10.
The enzyme peptide methionine sulfoxide reductase catalyzes the conversion of methionine sulfoxide residues in proteins to methionine. The 636 nucleotide coding region of the peptide methionine sulfoxide reductase gene has been amplified from a genomic clone using the polymerase chain reaction and the product was subcloned into plasmid pGEX-2T downstream of the glutathione S-transferase gene under control of the tac promoter. Escherichia coli XL1-Blue cells transformed with this plasmid and induced with isopropylthio-beta-galactoside expressed high levels of the fusion protein. The protein was soluble and was purified to homogeneity by affinity binding to a glutathione-agarose resin followed by cleavage of the fusion protein with thrombin. Both the fusion protein and the purified peptide methionine sulfoxide reductase protein showed high peptide methionine sulfoxide reductase activity.  相似文献   

11.
12.
13.
The deoR gene, which encodes the deor repressor protein in Escherichia coli, was fused to the strong Ptrc promoter in plasmid pKK233-2. The Ptrc promoter is kept repressed by lacI repressor to prevent cell killing. Induction of the Ptrc--deoR fusion plasmid resulted in the accumulation of 4% of the soluble protein as deoR protein. The deoR repressor protein was purified to 80% purity using conventional techniques; it has a mass of 28.5 kd and appears to exist as an octamer in solution. The deoR repressor is shown by DNase I footprinting to bind to the 16 bp palindromic sequence in the Pribnow box region of the deoP1 promoter. Also, the deoR repressor binds cooperatively in vitro to a DNA template with two deoR binding sites separated by 224 bp in keeping with the conclusion from genetic experiments that more than one operator is required for efficient repression of the deo operon.  相似文献   

14.
The galR gene, which encodes the Gal repressor protein in Escherichia coli, has been fused to the strong pL promoter of bacteriophage lambda in plasmid pKC31. The pL promoter is kept repressed by a thermolabilie lambda repressor, CIts857, to prevent cell killing. Heat induction of the pL-galR fusion plasmid synthesizes large amounts of active Gal repressor. The protein has been purified to homogeneity in three steps. The purification is greatly aided by the reversible insolubility of active repressor in crude extract at salt concentrations of less than 200 mM. The amino-terminal amino acid sequence determined by automated Edman degradation is: N-Ala-Thr-Ile-Lys-Asp-Val-Ala-Arg-Leu-Ala-Gly-Val-Ser-Val-Ala-Thr-Val-. Comparison of this sequence with that deduced from the DNA sequence of the galR gene showed that the formyl methionine residue preceding alanine at position 1 is cleaved off. The repressor is present in solution as a dimer of a 37-kDa subunit. The protein binds to gal DNA containing wild type and not mutant operator sequences. As predicted, this sequence-specific binding is inhibited by the presence of D-galactose or D-fucose, both of which are in vivo inducers of the gal operon. Gal repressor inhibits the expresison of gal operon by binding to two spatially separated operators which flank, but do not overlap, the gal promoter segment. Experiments to study the mechanism of repressor action are discussed.  相似文献   

15.
The parCBA operon of the 3.2-kb stabilization region of plasmid RK2 encodes three cotranslated proteins. ParA mediates site-specific recombination to resolve plasmid multimers, ParB has been shown to be a nuclease, and the function of ParC is unknown. In this study ParB was overexpressed by cotranslation with ParC in Escherichia coli by using a plasmid construct that contained the parC and parB genes under the control of the T7 promoter. Purification was achieved by treatment of extracts with Polymin P, followed by ammonium sulfate precipitation and heparin and ion-exchange chromatography. Sizing-column analysis indicated that ParB exists as a monomer in solution. Analysis of the enzymatic properties of purified ParB indicated that the protein preferentially cleaves single-stranded DNA. ParB also nicks supercoiled plasmid DNA preferably at sites with potential single-stranded character, like AT-rich regions and sequences that can form cruciform structures. ParB also exhibits 5'-->3' exonuclease activity. This ParB activity on a 5'-end-labeled, double-stranded DNA substrate produces a 3', 5'-phosphorylated dinucleotide which is further cleaved to a 3', 5'-phosphorylated mononucleotide. The role of the ParB endonuclease and exonuclease activities in plasmid RK2 stabilization remains to be determined.  相似文献   

16.
17.
18.
The cydABCD operon of Bacillus subtilis encodes products required for the production of cytochrome bd oxidase. Previous work has shown that one regulatory protein, YdiH (Rex), is involved in the repression of this operon. The work reported here confirms the role of Rex in the negative regulation of the cydABCD operon. Two additional regulatory proteins for the cydABCD operon were identified, namely, ResD, a response regulator involved in the regulation of respiration genes, and CcpA, the carbon catabolite regulator protein. ResD, but not ResE, was required for full expression of the cydA promoter in vivo. ResD binding to the cydA promoter between positions -58 and -107, a region which includes ResD consensus binding sequences, was not enhanced by phosphorylation. A ccpA mutant had increased expression from the full-length cydA promoter during stationary growth compared to the wild-type strain. Maximal expression in a ccpA mutant was observed from a 3'-deleted cydA promoter fusion that lacked the Rex binding region, suggesting that the effect of the two repressors, Rex and CcpA, was cumulative. CcpA binds directly to the cydA promoter, protecting the region from positions -4 to -33, which contains sequences similar to the CcpA consensus binding sequence, the cre box. CcpA binding was enhanced upon addition of glucose-6-phosphate, a putative cofactor for CcpA. Mutation of a conserved residue in the cre box reduced CcpA binding 10-fold in vitro and increased cydA expression in vivo. Thus, CcpA and ResD, along with the previously identified cydA regulator Rex (YdiH), affect the expression of the cydABCD operon. Low-level induction of the cydA promoter was observed in vivo in the absence of its regulatory proteins, Rex, CcpA, and ResD. This complex regulation suggests that the cydA promoter is tightly regulated to allow its expression only at the appropriate time and under the appropriate conditions.  相似文献   

19.
The aceBAK operon was partially induced by a multicopy plasmid which carried the promoter region of the gene which encodes its repressor, iclR. Gel shift and DNase I analyses demonstrated that IclR binds to its own promoter. Disruption of iclR increased the expression of an iclR::lacZ operon fusion. Although aceBAK and iclR are both regulated by IclR, aceBAK expression responds to the carbon source, while expression of iclR does not.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号