首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Activating mutants of EGFR have been identified in a subset of non-small-cell lung cancers. To investigate mutant-driven signaling, we focused on Y869, a residue in the same activation loop where the L858R and L861Q mutations are located. We observed ligand-independent phosphorylation of Y869 in 32D cells EGFR(L858R) and EGFR(L861Q). The EGFR tyrosine kinase inhibitor (TKI) erlotinib inhibited Y869 P-EGFR in intact cells as well as in a cell-free kinase reaction. Expression of kinase domain of EGFR(L858R) and EGFR(L861Q) exhibited auto-phosphorylation of Y869; this was inhibited by EGFR TKIs but not by Src kinase inhibitor. P-Y859 of EGFR-mediated downstream component, STAT5, was also analyzed. Y694 P-STAT5 was eliminated by erlotinib treatment. Analysis of immune-complexes showed constitutive association of mutant EGFRs with STAT5 and Src which was unaffected by erlotinib or PP1. On the other hand, 32D-EGFR(WT) exhibited constitutive STAT5 phosphorylation and association of EGFR with JAK2. In these cells, a JAK2 inhibitor abrogated P-STAT5 whereas mutant EGFRs did not associate with JAK2. Expression of c-myc was regulated by EGFR/STAT5 signaling in cells expressing EGFR(L858R) and EGFR(L861Q). Our results suggest that ligand-independent and Src activity-independent phosphorylation of Y869 in mutant EGFR regulates STAT5 activation and c-myc expression.  相似文献   

2.

Background

EGFR, a receptor tyrosine kinase (RTK), is frequently overexpressed and mutated in non-small cell lung cancer (NSCLC). Tyrosine kinase inhibitors (TKIs) have been widely used in the treatment of many cancers, including NSCLC. However, intrinsic and acquired resistance to TKI remains a common obstacle. One strategy that may help overcome EGFR-TKI resistance is to target EGFR for degradation. As EGFR is a client protein of heat-shock protein 90 (HSP90) and sulforaphane is known to functionally regulate HSP90, we hypothesized that sulforaphane could attenuate EGFR-related signaling and potentially be used to treat NSCLC.

Results

Our study revealed that sulforaphane displayed antitumor activity against NSCLC cells both in vitro and in vivo. The sensitivity of NSCLC cells to sulforaphane appeared to positively correlate with the inhibition of EGFR-related signaling, which was attributed to the increased proteasomal degradation of EGFR. Combined treatment of NSCLC cells with sulforaphane plus another HSP90 inhibitor (17-AAG) enhanced the inhibition of EGFR-related signaling both in vitro and in vivo.

Conclusions

We have shown that sulforaphane is a novel inhibitory modulator of EGFR expression and is effective in inhibiting the tumor growth of EGFR-TKI-resistant NSCLC cells. Our findings suggest that sulforaphane should be further explored for its potential clinical applications against NSCLC.  相似文献   

3.
Parathyroid hormone-related protein (PTHrP) is detected in many aggressive tumors and involved in malignant conversion; however, the underlying mechanism remains obscure. Here, we identified PTHrP as a mediator of epidermal growth factor receptor (EGFR) signaling to promote the malignancies of oral cancers. PTHrP mRNA was abundantly expressed in most of the quiescent oral cancer cells, and was significantly upregulated by EGF stimulation via ERK and p38 MAPK. PTHrP silencing by RNA interference, as well as EGFR inhibitor AG1478 treatment, significantly suppressed cell proliferation, migration, and invasiveness. Furthermore, combined treatment of AG1478 and PTHrP knockdown achieved synergistic inhibition of malignant phenotypes. Recombinant PTHrP substantially promoted cell motility, and rescued the inhibition by PTHrP knockdown, suggesting the paracrine/autocrine function of PTHrP. These data indicate that PTHrP contributes to the malignancy of oral cancers downstream of EGFR signaling, and may thus provide a therapeutic target for oral cancer.  相似文献   

4.
5.
Metastasis is a major cause of breast cancer death. MPP7 is a cell polarity controller highly linked to cell migration; however, the function of MPP7 in breast cancer remains unknown. In this study, we reported that MPP7 expression was upregulated in breast cancer tissues and high MPP7 expression predicted poor survival in patients with breast cancer. Ectopic expression of MPP7 markedly enhanced the migration and invasion in breast cancer cells. In contrast, depletion of MPP7 resulted in impaired cell mobility and metastasis. Moreover, we demonstrated that MPP7 exerted its promotional effect via modulation of EMT and activation of the EGFR/AKT cascade. Our study reveals an oncogenic role of MPP7 in breast cancer and suggests that MPP7 may serve as a potential target for exploring novel therapeutic strategies against breast cancer metastasis.  相似文献   

6.

Aims

Pentacyclic triterpenes are a group of molecules with promising anticancer potential, although their precise molecular target remains elusive. The current work aims to investigate the antiproliferative and associated mechanisms of triterpenes in breast cancer cells in vitro.

Main methods

Effect of triterpenes on cell cycle distribution, ROS and key regulatory proteins were analyzed in three breast cancer cells in vitro. Growth inhibition, new DNA synthesis, colony formation assays and Western blot analysis were performed to assess the EGFR inhibitory effect of triterpenes. Molecular docking was performed to study the interaction between EGFR and triterpenes.

Key findings

We have demonstrated the ability of dimethyl melaleucate (DMM), a pentacyclic triterpene to exhibit cell cycle arrest at G0/G1 phase by down-regulation of cyclin D1 through PI3K/AKT inhibition. Further, to identify the upstream target of DMM, potential EGFR inhibitory activity of DMM and three structurally related pentacyclic triterpenes, ursolic acid, 18α-glycyrrhetinic acid and carbenoxolone was investigated. Interestingly, pentacyclic triterpenes limit EGF mediated breast cancer proliferation through sustained inhibition of EGFR and its downstream effectors STAT3 and cyclin D1 in breast cancer lines. We also show pentacyclic triterpenes to bind at the ATP binding pocket of tyrosine kinase domain of EGFR leading to the hypothesis that pentacyclic triterpenes could be a novel class of EGFR inhibitors. In conclusion, pentacyclic triterpenes inhibit EGFR activation through binding with tyrosine kinase domain thereby suppressing breast cancer proliferation.

Significance

Pentacyclic triterpenes may serve as a potential platform for development of novel drugs against breast cancer.  相似文献   

7.
We observed that treatment of prostate cancer cells for 24 h with magnolol, a phenolic component extracted from the root and stem bark of the oriental herb Magnolia officinalis, induced apoptotic cell death in a dose‐ and time‐dependent manner. A sustained inhibition of the major survival signal, Akt, occurred in magnolol‐treated cells. Treatment of PC‐3 cells with an apoptosis‐inducing concentration of magnolol (60 µM) resulted in a rapid decrease in the level of phosphorylated Akt leading to inhibition of its kinase activity. Magnolol treatment (60 µM) also caused a decrease in Ser(136) phosphorylation of Bad (a proapoptotic protein), which is a downstream target of Akt. Protein interaction assay revealed that Bcl‐xL, an anti‐apoptotic protein, was associated with Bad during treatment with magnolol. We also observed that during treatment with magnolol, translocation of Bax to the mitochondrial membrane occurred and the translocation was accompanied by cytochrome c release, and cleavage of procaspase‐8, ‐9, ‐3, and poly(ADP‐ribose) polymerase (PARP). Similar results were observed in human colon cancer HCT116Bax+/? cell line, but not HCT116Bax?/? cell line. Interestingly, at similar concentrations (60 µM), magnolol treatment did not affect the viability of normal human prostate epithelial cell (PrEC) line. We also observed that apoptotic cell death by magnolol was associated with significant inhibition of pEGFR, pPI3K, and pAkt. These results suggest that one of the mechanisms of the apoptotic activity of magnolol involves its effect on epidermal growth factor receptor (EGFR)‐mediated signaling transduction pathways. J. Cell. Biochem. 106: 1113–1122, 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

8.
9.
Furano-1,2-naphthoquinone (FNQ), prepared from 2-hydroxy-1,4-naphthoquinone and chloroacetaldehyde in an efficient one-pot reaction, exhibits an anti-carcinogenic effect. FNQ exerted anti-proliferative activity with the G(2)/M cell cycle arrest and apoptosis in A549 cells. FNQ-induced G(2)/M arrest was correlated with a marked decrease in the expression levels of cyclin A and cyclin B, and their activating partner cyclin-dependent kinases (Cdk) 1 and 2 with concomitant induction of p53, p21, and p27. FNQ-induced apoptosis was accompanied with Bax up-regulation and the down-regulation of Bcl-2, X-linked inhibitor of apoptosis (XIAP), and survivin, resulting in cytochrome c release and sequential activation of caspase-9 and caspase-3. Western blot analysis revealed that FNQ suppressed EGFR phosphorylation and JAK2, STAT3, and STAT5 activation, but increased in activation of p38 MAPK and c-Jun NH2-terminal kinase (JNK) stress signal. The combined treatment of FNQ with AG1478 (a specific EGFR inhibitor) significantly enhanced the G(2)/M arrest and apoptosis, and also led to up-regulation in Bax, p53, p21, p27, release of mitochondrial cytochrome c, and down-regulation of Bcl-2, XIAP, survivin, cyclin A, cyclin B, Cdk1, and Cdk2 in A549 cells. These findings suggest that FNQ-mediated cytotoxicity of A549 cell related with the G(2)/M cell cycle arrest and apoptosis via inactivation of EGFR-mediated signaling pathway.  相似文献   

10.
目的:研究Cytohesins介导EGFR通路在结直肠癌细胞增殖中的作用。方法:选择人结直肠癌细胞系HT-29作为研究细胞,采用免疫荧光检测结直肠癌细胞系HT29中EGFR表达情况,Secin H3阻断结直肠癌细胞系HT29细胞内cytohensins观察细胞内EGFR通路激活情况,MTT法检测细胞增殖情况。结果:EGF+Secin H3组细胞内p-EGFR水平显著低于EGF组(P0.05)。第3、5天,各组细胞增殖情况存在显著差异(F=38.072,P0.05),其中EGF组显著高于Secin H3阻断组(P0.05)和对照组(P0.05),对照组吸光度值显著高于Secin H3阻断组(P0.05)。结论:EGF与结直肠癌细胞的增殖密切相关,通过阻断Cytohesins介导EGFR通路能够显著抑制结直肠癌细胞的增殖。  相似文献   

11.
The use of agents targeting EGFR represents a new frontier in colon cancer therapy. Among these, mAbs and EGFR tyrosine kinase inhibitors seemed to be the most promising. However they have demonstrated scarce utility in therapy, the former being effective only at toxic doses, the latter resulting inefficient in colon cancer. This paper presents studies on a new EGFR inhibitor, FR18, a molecule containing the same naphthoquinone core as shikonin, an agent with great anti-tumor potential. In HT29, a human colon carcinoma cell line, flow cytometry, immunoprecipitation, and Western blot analysis, confocal spectral microscopy have demonstrated that FR18 is active at concentrations as low as 10 nM, inhibits EGF binding to EGFR while leaving unperturbed the receptor kinase activity. At concentration ranging from 30 nM to 5 microM, it activates apoptosis. FR18 seems therefore to have possible therapeutic applications in colon cancer.  相似文献   

12.
The epidermal growth factor receptor (EGFR) signaling network is activated in most solid tumors, and small‐molecule drugs targeting this network are increasingly available. However, often only specific combinations of inhibitors are effective. Therefore, the prediction of potent combinatorial treatments is a major challenge in targeted cancer therapy. In this study, we demonstrate how a model‐based evaluation of signaling data can assist in finding the most suitable treatment combination. We generated a perturbation data set by monitoring the response of RAS/PI3K signaling to combined stimulations and inhibitions in a panel of colorectal cancer cell lines, which we analyzed using mathematical models. We detected that a negative feedback involving EGFR mediates strong cross talk from ERK to AKT. Consequently, when inhibiting MAPK, AKT activity is increased in an EGFR‐dependent manner. Using the model, we predict that in contrast to single inhibition, combined inactivation of MEK and EGFR could inactivate both endpoints of RAS, ERK and AKT. We further could demonstrate that this combination blocked cell growth in BRAF‐ as well as KRAS‐mutated tumor cells, which we confirmed using a xenograft model.  相似文献   

13.
Epidermal growth factor receptor (EGFR) is an effective molecular target of anti-cancer therapies. Curcumin inhibits cancer cell growth in vitro by suppressing gene expression of EGFR and reduces tumor growth in various animal models. To overcome instable and insoluble properties of curcumin as therapeutics, we designed and synthesized six novel pyrimidine-substituted curcumin analogues with or without a hydroxyl group originally present in curcumin. The cell viability tests indicated that IC50 of the analogues containing hydroxyl group were 3 to 8-fold lower than those of the analogues without hydroxyl group in two colon cancer cell lines tested. Western blot analysis indicates the analogues containing hydroxyl group inhibited expression and tyrosine phosphorylation of EGFR. Further protein analyses showed that the analogues had anti-cellular proliferation, pro-apoptosis, and cell cycle arrest properties associated with suppressed EGFR expression. These results indicate that the hydroxyl groups in curcumin and the analogues were critical for observed biological activities.  相似文献   

14.
候选抑瘤基因NGX6具有抑制结肠癌增殖和转移的作用,研究表明其为表皮生长因子受体(epidermal growth factor receptor, EGFR)的负性调控因子,并可下调JNK通路中重要分子MADD (MAP-kinase activating death domain)的表达,其抑瘤机制是否与抑制EGFR介导的JNK信号通路的活性有关?在已建立的转染NGX6的细胞模型基础上,借助蛋白质印迹(Western blot)和免疫组化方法在细胞和组织水平检测NGX6转染前后EGFR/K-ras/JNK/c-Jun/cyclin D1信号通路中重要蛋白质的表达.结果表明,NGX6转染后结肠癌细胞HT-29在裸鼠体内成瘤明显受抑,差异有统计学意义.Western blot结果显示,在结肠癌细胞中NGX6可明显下调EGFR、K-ras、p-JNK、c-Jun和cyclin D1的表达;进一步采用Western blot和免疫组化法验证NGX6在体内对上述关键分子表达的影响,发现NGX6可抑制裸鼠移植瘤组织中EGFR、K-ras、p-JNK、c-Jun和cyclin D1的表达,与体外结果一致.上述研究表明,NGX6在结肠癌中主要通过抑制EGFR介导的JNK通路的活性而发挥其抑瘤作用,该研究为深入探讨NGX6的机制提供了重要的实验依据.  相似文献   

15.
16.
17.
Synaptic target selection is critical for establishing functional neuronal circuits. The mechanisms regulating target selection remain incompletely understood. We describe a role for the EGF receptor and its ligand Gurken in target selection of octopaminergic Type II neurons in the Drosophila neuromuscular system. Mutants in happyhour, a regulator of EGFR signaling, form ectopic Type II neuromuscular junctions. These ectopic innervations are due to inappropriate target selection. We demonstrate that EGFR signaling is necessary and sufficient to inhibit synaptic target selection by these octopaminergic Type II neurons, and that the EGFR ligand Gurken is the postsynaptic, muscle-derived repulsive cue. These results identify a new pathway mediating cell-type and branch-specific synaptic repulsion, a novel role for EGFR signaling in synaptic target selection, and an unexpected role for Gurken as a muscle-secreted repulsive ligand.  相似文献   

18.
Endothelin (ET)-1 is an important peptide in cancer progression stimulating cellular proliferation, tumor angiogenesis and metastasis. ET-1 binds with high affinity to the ETA receptor (R) and ETBR on cancer cells. High levels of tumor ET-1 and ETAR are associated with poor survival of lung cancer patients. Here the effects of ET-1 on epidermal growth factor (EGF)R and HER2 transactivation were investigated using non-small cell lung cancer (NSCLC) cells. ETAR mRNA was present in all 10 NSCLC cell lines examined. Addition of ET-1 to NCI-H838 or H1975 cells increased EGFR, HER2 and ERK tyrosine phosphorylation within 2 min. The increase in EGFR and HER2 transactivation caused by ET-1 addition to NSCLC cells was inhibited by lapatinib (EGFR and HER2 tyrosine kinase inhibitor (TKI)), gefitinib (EGFR TKI), ZD4054 or BQ-123 (ETAR antagonist), GM6001 (matrix metalloprotease inhibitor), PP2 (Src inhibitor) or Tiron (superoxide scavenger). ET-1 addition to NSCLC cells increased cytosolic Ca2+ and reactive oxygen species. ET-1 increased NSCLC clonal growth, whereas BQ123, ZD4054, lapatinib or gefitinib inhibited proliferation. The results indicate that ET-1 may regulate NSCLC cellular proliferation in an EGFR- and HER2-dependent manner.  相似文献   

19.
Although non-small cell lung cancer (NSCLC) tumors with activating mutations in the epidermal growth factor receptor (EGFR) are highly responsive to EGFR tyrosine kinase inhibitors (TKIs) including gefitinib and erlotinib, development of acquired resistance is almost inevitable. Statins show antitumor activity, but it is unknown whether they can reverse EGFR-TKIs resistance in NSCLC with the T790M mutation of EGFR. This study investigated overcoming resistance to EGFR-TKI using simvastatin. We demonstrated that addition of simvastatin to gefitinib enhanced caspase-dependent apoptosis in T790M mutant NSCLC cells. Simvastatin also strongly inhibited AKT activation, leading to suppression of β-catenin activity and the expression of its targets, survivin and cyclin D1. Both insulin treatment and AKT overexpression markedly increased p-β-catenin and survivin levels, even in the presence of gefitinib and simvastatin. However, inhibition of AKT by siRNA or LY294002 treatment decreased p-β-catenin and survivin levels. To determine the role of survivin in simvastatin-induced apoptosis of gefitinib-resistant NSCLC, we showed that the proportion of apoptotic cells following treatment with survivin siRNA and the gefitinib–simvastatin combination was greater than the theoretical additive effects, whereas survivin up-regulation could confer protection against gefitinib and simvastatin-induced apoptosis. Similar results were obtained in erlotinib and simvastatin-treated HCC827/ER cells. These findings suggest that survivin is a key molecule that renders T790M mutant NSCLC cells resistant to apoptosis induced by EGFR-TKIs and simvastatin. Overall, these data indicate that simvastatin may overcome EGFR-TKI resistance in T790M mutant NSCLCs via an AKT/β-catenin signaling-dependent down-regulation of survivin and apoptosis induction.  相似文献   

20.
目的:检测EGFR外显子19缺失突变(以下简称EGFR Del 19)和信号分子JAK/STAT在NSCLC组织中的表达,探讨EGFR Del 19表达与下游信号通路JAK/STAT表达之间的相关性,为进一步研究EGFR Del 19之NSCLC发生发展机制提供依据。方法:经ARMS法筛选出125例EGFR Del 19的NSCLC组织,应用免疫组织化学法检测该组织样本中EGFR Del 19、p-JAK1和p-STAT1的表达,统计分析三者在临床病理特点中的表达差异及EGFR Del 19与p-JAK1、p-STAT1表达之间的相关性。结果:EGFR Del 19阳性主要在细胞膜上表达,p-JAK1、p-STAT1阳性表达主要定位于细胞质和细胞核中。EGFR Del 19与NSCLC的病理分级、TNM分期、淋巴结转移与否显著相关(P值均0.05)。EGFR Del 19与p-JAK1、p-STAT1表达在不同病理分级、TNM分期及淋巴结转移与否组间具有显著相关性(P值均0.05,rs值均0.3)。结论:EGFR Del 19可能通过活化JAK1-STAT1途径促进NSCLC的发生发展。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号