首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Two hypotheses on the synthesis of the protectants glycerol and trehalose of the infective juveniles (IJs) of Steinernema carpocapsae during osmotic dehydration were tested and utilised to evaluate the function and importance of glycerol on survival of the nematodes during osmotic dehydration. This was achieved by comparing the changes in survival, morphology, behaviour and levels of glycerol, trehalose and permeated compounds of the IJs dehydrated in seven hypertonic solutions at two temperature regimes: (1) 5 °C for 15 days; and (2) 23 °C for 1 day followed by 5 °C for another 14 days. The results substantiate both hypotheses tested: (1) the permeability of the IJs to various compounds, such as sucrose or ethylene glycol, when they are dehydrated in hypertonic solutions of these compounds; and (2) suppression of the synthesis of protectant glycerol but not trehalose when IJs are dehydrated at low temperature. The results also showed that: (1) although trehalose was the preferred dehydration protectant, glycerol played an important role in rapidly balancing the osmotic pressure when IJs were exposed in hypertonic solutions; (2) the presence of glycerol was essential for the IJs to survive and function properly even under moderate osmotic dehydration, especially when IJs were dehydrated in salt solutions; and (3) some exogenous compounds permeated into IJs during osmotic dehydration such as ethylene glycol, may function in the same way as glycerol and significantly improve the survival and function of the IJs. The results indicate that each of the protectants glycerol and trehalose has a specific function and neither is replaceable by the other.  相似文献   

2.
Desiccation tolerance of broccoli microspore-derived embryos was induced by exogenous application of abscisic acid (ABA). Embryos, which were desiccated to about 10% water content, were estimated for viability after rehydration. Survival was dependent on the ABA concentration and the development stage of embryo, but not on the length of exposure period to ABA or genotype. Cotyledonary stage embryos acquired the highest desiccation tolerance when treated with 1×10-4M ABA. Under this condition, on average 27–48% of the desiccated embryos could convert into plants. Embryos treated with 1×10-6M ABA or no ABA or earlier development-staged embryos, such as globular and heart stages, lost viability after desiccation. A one day exposure to ABA had the similar effect on the induction of desiccation tolerance as a 7-day treatment. The dried embryos maintained their ability of plant conversion after three months of storage under room conditions. The plants derived from the desiccated embryos were not different in the morphology or ploidy level from those from non-desiccated ones.Abbreviations ABA abscisic acid - RH relative humidity  相似文献   

3.
Very little is known about the capacity of soil chytrids to withstand freezing in the field. Tolerance to freezing was tested in 21 chytrids isolated from cropping and undisturbed soils in temperate Australia. Samples of thalli grown on peptone–yeast–glucose (PYG) agar were incubated for seven days at −15 °C. Recovery of growth after thawing and transferring to fresh medium at 20 °C indicated survival. All isolates in the Blastocladiales and Spizellomycetales survived freezing in all tests. All isolates in the Chytridiales also survived freezing in some tests. None of the isolates in the Rhizophydiales survived freezing in any of the tests. However, some isolates in the Rhizophydiales recovered growth after freezing if they were grown on PYG agar supplemented with either 1 % sodium chloride or 1 % glycerol prior to freezing. After freezing, the morphology of the thalli of all isolates was observed under LM. In those isolates that recovered growth after transfer to fresh media, mature zoosporangia were observed in the monocentric isolates and resistant sporangia or resting spores in the polycentric isolates. Encysted zoospores in some monocentric isolates also survived freezing. In some of the experiments the freezing and thawing process caused visible structural damage to the thalli. The production of zoospores after freezing and thawing was also used as an indicator of freeze tolerance. The chytrids in this study responded differently to freezing. These data add significantly to our limited knowledge of freeze tolerance in chytrids but leave many questions unanswered.  相似文献   

4.
Cold storage effects on both female adults and eggs of the predatory thrips Franklinothrips vespiformis (Crawford) (Thysanoptera: Aeolothripidae) were investigated. The effect of low temperatures (5.5, 7.0, 8.5, 10.0 and 12.5 °C) on survival of F. vespiformis adults was firstly recorded. Survival times were significantly reduced at the lower temperatures tested, whereas storage at 10.0 and 12.5 °C provided the longest survival. Life-history consequences of exposing adults to moderately low temperatures were examined in terms of pre-oviposition period, oviposition rate, egg viability and survival after storage. Adults stored at 7.0 °C showed longer pre-oviposition period and shorter longevity than unstored females but other reproductive attributes were not significantly affected by storage regime. Low temperature and storage period affected egg viability and subsequent development of pre-imaginal stages. No eggs hatched after a 20-day period of storage at 5.5 and 7.0 °C, whereas eggs stored at 12.5 °C hatched significantly faster than ones stored at 10.0 °C and unstored eggs. Increasing the egg storage period from 10 to 20 and 30 days decreased the oviposition rate of adults and egg viability. An essential component in the successful mass rearing and distribution of these predators is the development of a reliable storage schedule of eggs and adults. Long-term storage was unsatisfactory, however their short-term storage (3.5 weeks at 10.0 and 12.5 °C for adults and 4–5 weeks at 12.5 °C for eggs) gave satisfactory results, which suggest the efficacy of such storage during the mass production of the biocontrol agent.  相似文献   

5.
This study compared different temperatures and dormancy‐reversion procedures for preservation of Phakopsora pachyrhizi uredospores. The storage temperatures tested were room temperature, 5°C, ?20°C and ?80°C. Dehydrated and non‐dehydrated uredospores were used, and evaluations for germination (%) and infectivity (no. of lesions/cm2) were made with fresh harvested spores and after 15, 29, 76, 154 and 231 days of storage. The dormancy‐reversion procedures evaluated were thermal shock (40°C/5 min) followed or not by hydration (moist chamber/24 h). Uredospores stored at room temperature were viable only up to a month of storage, regardless of their hydration condition. Survival of uredospores increased with storage at lower temperatures. Dehydration of uredospores prior to storage increased their viability, mainly for uredospores stored at 5°C, ?20°C and ?80°C. At 5°C and ?20°C, dehydrated uredospores showed increases in viability of at least 47 and 127 days, respectively, compared to non‐dehydrated spores. Uredospore germination and infectivity after storage for 231 days (7.7 months), could only be observed at ?80°C, for both hydration conditions. At this storage temperature, dehydrated and non‐dehydrated uredospores exhibited 56 and 28% of germination at the end of the experiment, respectively. Storage at ?80°C also maintained uredospore infectivity, based upon levels of infection frequency, for both hydration conditions. Among the dormancy‐reversion treatments applied to spores stored at ?80°C, those involving hydration allowed recoveries of 85 to 92% of the initial germination.  相似文献   

6.
The objectives of this study were to: (a) test the functional activity of Chinchilla lanigera spermatozoa suspended in either glycerol or ethylene glycol, cooled to 4 degrees C, and stored for 24 or 72 h and (b) investigate, after these cooling periods, the effects of incubating sperm at 37 degrees C (for 4 h) upon sperm functional activity. The ejaculate was mixed with the cryoprotectant medium (at 1 M final concentration) and cooled to 4 degrees C. After warming, sperm motility, sperm viability, hypoosmotic swelling test results, and acrosomal integrity were significantly higher for samples containing ethylene glycol than for those in glycerol, stored for 24 or 72 h, and then assayed after 0 or 4 h incubation at 37 degrees C. A significant reduction of sperm motility and viability was detected only when the glycerol cryoprotectant agent was employed, compared to the fresh samples. These results clearly indicate that under our experimental conditions, ethylene glycol is a better protectant for sperm storage than glycerol.  相似文献   

7.
The recent decline and extinction of amphibian species is a worldwide phenomenon without an identified cause or solution. Assisted reproductive technologies, including sperm cryopreservation, are required to manage endangered amphibian species and preserve their genetic diversity. This study on the Anuran amphibian (Bufo marinus) was undertaken to determine the feasibility of cryopreservation of amphibian sperm. Sperm suspensions for cryopreservation were prepared by macerating testes in cryoprotective additives of 10% (w/v) sucrose or 10% (w/v) sucrose containing either 10, 15, or 20% (v/v) glycerol or 10, 15, or 20% (v/v) dimethyl sulfoxide (Me2SO). Suspensions were then cooled to −85°C using a controlled rate cooler, stored in LN2, and thawed in air. The motility and fertilization rate of cryopreserved suspensions and unfrozen control suspensions in Simplified Amphibian Ringer were compared. Sucrose alone had no cryoprotective effect. All other treatments showed varying degrees of recovery of motility and fertilizing capacity. High rates of recovery of motility and fertilizing capacity were observed with 15% Me2SO (68.9 ± 3.8 and 60.5 ± 4.7%) and 20% glycerol (58.0 ± 5.9 and 81.4 ± 4.3%), respectively. Motility and fertilization rates were similar with Me2SO but diverged with glycerol as cryoprotectant. The data demonstrate the feasibility of using sperm cryopreservation with amphibian species.  相似文献   

8.
Limited shelf life of entomopathogenic nematodes severely restricts their use in biological control programs. In a series of experiments, the dehydration and rehydration response of Heterorhabditis bacteriophora infective juveniles (IJs) was investigated under a range of glycerol concentrations, temperatures and incubation periods. Based on the outcome of these initial studies, nematodes dehydrated using the optimal process were formulated in alginate granules to understand how these nematodes would undergo survival formulation in a model carrier. The highest rate of osmotically arrested IJs occurred in the 22% glycerol solution (98.06%). IJ recovery was considerably improved when dehydration was processed at 10% glycerol solution and 15°C. By trapping IJs in calcium alginate, depending on the adjuvants, the survival rate of IJs differed significantly. IJ state (dehydrated or non-dehydrated) and the addition of formaldehyde had a profound effect on IJ viability, though the severity of the effect varied was dependent on whether the IJs were alginate formulated. Among different formulations, the highest viability (84.18%) was observed where dehydrated IJs were formulated in alginate granules containing formaldehyde. The results showed that the concentration of osmotic solution not only determines the percentage of dehydrated IJs but also affect their subsequent recovery in an aqueous environment. Overall, the results indicate that the shelf life of formulated IJs is significantly affected by combination effects of a broad range of factors. Then understanding the interactive mode of actions of involved factors in formulation play a critical role in developing and introducing more efficient formulations.  相似文献   

9.
Infective juveniles (IJs) of entomopathogenic nematodes (EPNs) are susceptible to a wide variety of environmental factors, including desiccation, which limit their usefulness as biocontrol agents. Although EPNs can be subjected to a gradual loss of water in their natural environment they are not full anhydrobiotes, being able to survive only moderate levels of desiccation at high relative humidities (rh). We investigated the desiccation tolerance of IJs of several Heterorhabditisspecies and strains when exposed to fast and slow desiccation regimes. We also investigated the behavioural and biochemical responses of Heterorhabditis IJs when exposed to 98% rh for 4 days. IJs of H. megidis UK211 (but not IJs of H. indica) aggregate into large clumps when desiccated at high rh, but unlike Steinernema spp., neither H. megidis nor H. indica IJs showed any tendency to coil. Preincubation of H. megidis UK211 IJs at high (98%) rh enhances their ability to survive for 150 min at 57% rh. We show that preincubation of H. megidis and H. indica at 98% rh induces the synthesis of glycerol but not of trehalose, whereas identical preincubation conditions do induce trehalose synthesis in Steinernema carpocapsae and Aphelenchus avenae. The biosynthesis of glycerol rather than trehalose by IJs of two species of Heterorhabditis in response to moderate levels of desiccation indicates that Heterorhabditis is unlikely to have the necessary metabolic responses to desiccation required to enable it to enter into a fully anhydrobiotic state.  相似文献   

10.
Embryonic axes, excised or included in cotyledonary tissue, of Quercus faginea were tested for viability after rapid freezing and storage in liquid nitrogen (−196 °C). Explants were previously pretreated by desiccation at different moisture contents or by soaking in cryoprotectant (15% dimethyl sulfoxide). Best germination response after freezing (60%) was observed when embryonic axes were desiccated from 53 to 21% moisture content (on a fresh weight basis). Desiccation below 39% moisture content or freezing produced damage resulting in loss of organized growth and the induction of callus formation.  相似文献   

11.
J. Klingler 《BioControl》1990,35(3):493-496
Heterorhabditis sp. (HW79) was stored in its culture substrate in Erlenmeyer flasks at a temperature of 6,0±0,4°C. Surviving infective juveniles were counted after 1, 22, 42 and 63 days of storage respectively. No significant decrease in surviving juveniles was found even after 63 days, nor was there any increase in numbers of dead juveniles after this same time. No reduction in parasitic activity againstO. sulcatus-larvae could be observed of juveniles stored at 6°C for up to 66 days. These experiments demonstrate thatHeterorhabditis sp. survives well under the mentioned conditions and fully maintains its infectivity. This is an important aspect in planning mass production of nematodes for commercialization.   相似文献   

12.
Formulations of a Streptomyces biological control agent for Rhizoctonia damping-off in tomato seedlings were developed for the first time from vegetative propagules obtained from actively growing, nonsporulating liquid cultures. Alginate beads, durum flour (starch) granules, and talcum powder formulation of this new actinomycetous antagonist (Streptomyces sp. Di-944) isolated from the rhizosphere of field-grown tomato (Lycopersicon esculentum) suppressed damping-off caused by Rhizoctonia solani in tomato plug transplants (cv. Bonny Best) in a peat-based, soilless potting mix under greenhouse conditions. For formulations, vegetative biomass of Streptomyces sp. Di-944 from 3-day-old liquid fermentation in yeast extract–malt extract–glucose broth was lyophilized and pulverized to obtain fragments of viable vegetative filaments. The pulverized biomass had an initial viable count of 2 × 107colony forming units/g and retained 100% viability for 2 weeks when stored at 4°C. Formulations stored at 4°C had a longer shelf life than those stored at 24°C based on viability at 2-week intervals over a 6-month storage period. In addition, dual culture tests showed declining efficacy for surviving Streptomyces propagules in formulations during this storage period. At 4°C, the powder and granular formulations were found to be the most stable and were shown to be 100% viable after 14 and 10 weeks of storage, respectively. However, at the end of 24 weeks, the number of viable propagules in the powder and granular formulations declined to 1.2 × 105 and 7 × 103 colony forming units/g, respectively. Alginate beads were the least stable in storage. Even at 4°C, 6.9 × 104 and 7.3 × 102 viable propagules/g formulation were detected at the end of 12 and 24 weeks, respectively. The talcum powder formulation delivered to tomato seeds as a seed-coating was the most effective biocontrol treatment. It suppressed damping-off in 10-day-old tomato transplants by almost 90% compared to 30 and 22% damping-off reduction when alginate beads or starch granules were delivered concomitantly with tomato seeds. Seed-coating with powder formulation of the biocontrol agent was as effective as drench application of the fungicide, oxine benzoate (No-Damp), in controlling Rhizoctonia damping-off and superior to the commercial biocontrol agent, Streptomyces griseoviridis (Mycostop), applied to tomato seeds as seed-coating.  相似文献   

13.
Summary A method of clonal germplams preservation utilizing dehydrated somatic embryos and cool temperature storage conditions was demonstrated. Somatic embryos of grapevine (Vitis vinifera L) Autumn Seedless and Chardonnay were produced from suspension cultures. After washing twice with sterile water mature somatic embryos were blot-dried and placed on sterile filter paper in an open Petri dish in a laminar flow hood until they reached about 25% of their initial weight. Approximately 300 dried embryos were placed in each sterile 90×15 mm Petri dish, which was tightly sealed with two layers of ParafilmTM. Sealed dishes were stored in the dark at 4°C in a standard refrigerator. Samples of 25–60 individual dehydrated somatic embryos were periodically tested for viability by placing them on solidified MS medium for germination and plant regeneration. After 42 mo. of dehydrated storage, 90% of the somatic embryos regenerated into plants. To further test utility, of this storage method dehydrated embryos stored for 12 and 26 mo. were shipped from Florida to Washington where 75 and 87.5% regenerated into plants, respectively. Cool temperature storage of dehydrated somatic embryos is a simple and inexpensive method of clonal, germplasm preservation when compared to alternatives such as cryopreservation.  相似文献   

14.
It has been shown in the past that mouse spermatozoa could be dried under a stream of nitrogen gas at ambient temperature and stored at 4 °C or 22 °C for up to 3 months and was capable of generating live-born offspring. In previous desiccation work, dried sperm were stored in a vacuum-sealed plastic bag placed in a vacuum-packed Mylar bag. However, dried specimens stored in this way often lost moisture, particularly in samples stored at higher temperatures (22 °C) compared to lower temperatures (4 °C). The present report describes a method which minimizes this water loss from the dried sperm samples. Its use is described in a preliminary study on the effect of supplementing the trehalose with glycerol. The results have demonstrated that mouse sperm can be stored at 4 °C over saturated NaBr without the uptake of water which occurs when they are stored in Mylar packages. In addition, we were able to get some survival of sperm (9–15%) at room temperature storage after 3 months. The addition of glycerol to trehalose had little effect on the survival of dried mouse sperm stored over NaBr for 1 and 3 months.  相似文献   

15.
The yeast Saccharomyces cerevisiae was shown to be extremely sensitive to dehydration–rehydration treatments when stationary phase cells were subjected to conditions of severe oxygen limitation, unlike the same cells grown in aerobic conditions. The viability of dehydrated anaerobically grown yeast cells never exceeded 2 %. It was not possible to increase this viability using gradual rehydration of dry cells in water vapour, which usually strongly reduces damage to intracellular membranes. Specific pre-dehydration treatments significantly increased the resistance of anaerobic yeast to drying. Thus, incubation of cells with trehalose (100 mM), increased the viability of dehydrated cells after slow rehydration in water vapour to 30 %. Similarly, pre-incubation of cells in 1 M xylitol or glycerol enabled up to 50–60 % of cells to successfully enter a viable state of anhydrobiosis after subsequent rehydration. We presume that trehalose and sugar alcohols function mainly according to a water replacement hypothesis, as well as initiating various protective intracellular reactions.  相似文献   

16.
Infective juveniles of four Heterorhabditis isolates (H. bacteriophora HI, H. megidis UK211 and HF85, and H. downesi M245) were stored in moist (pF 1.7) and dry (pF 3.3) loam soil at 20°C for up to 141 days. Survival, assessed by the number of nematodes extracted by centrifugal flotation, declined over time, reaching fewer than 18% alive by day 141 for all but one treatment (H. bacteriophora HI in dry soil). The infectivity of nematodes in soil for Tenebrio molitor also declined over time, roughly in accordance with the decline in numbers of nematodes. Energy reserves of extracted nematodes were assessed by image analysis densitometry. There were differences among isolates both in survival and in the depletion of reserves, and there was a significant correlation between these two parameters, suggesting that the extent to which energy reserves are depleted affects survival or that a common factor influences both. However, significant nematode mortality occurred while levels of reserves remained high, and the maximum reduction in utilizable body content for any treatment was 51%, well above starvation level. Therefore, the decline in numbers of living nematodes and the reduced nematode infectivity in soil cannot directly result from starvation of the nematodes. Survival and infectivity declined more rapidly in moist than in dry soil; one isolate, H. downesi M245, was less affected by soil moisture content than the other three isolates.  相似文献   

17.
Moritz C  Labbe C 《Cryobiology》2008,56(3):181-188
When gametes and embryos are not available, cryobanking of somatic tissues is one possibility to keep a genetic record of fish valuables in a context of biodiversity conservation and animal breeding management. Cryopreservation of whole fin pieces would be more advantageous than the commonly used cryopreservation of cells after fin culture, as it would allow extensive sampling without immediate need for laboratory facilities. The objective of this work was to assess the cryopreservation ability of fin pieces from goldfish (Carassius auratus) and to test whether a laboratory procedure could be adapted to field conditions. Caudal fin explants were cryopreserved in culture medium with 125 mM sucrose and 10% Me2SO. After 14 days of culture, the frozen–thawed explants showed the same cell growth rate and grew the same somatic cell number as the fresh ones. Cells proliferated inside and around the explants as shown by BrdU labeling. Neither the size of the fin pieces nor the freezer type, −70 °C upright or −20 °C chest, influenced the outcome of cryopreservation. Fin pieces were stored 4 days at 4 °C in dry conditions prior to cryopreservation without alteration of the fin explant culture success. This study demonstrated that field collecting of goldfish fin pieces is possible as whole fin pieces can be stored in standard fridge or be shipped at subzero temperature before they are frozen into a plain −20 °C chest freezer. After incorporation in cryobanks in liquid nitrogen, thawed fin pieces reliably produce somatic cells in cell culture conditions.  相似文献   

18.
In order to recover without any apparent damage, tardigrades have evolved effective adaptations to preserve the integrity of cells and tissues in the anhydrobiotic state. Despite those adaptations and the fact that the process of biological ageing comes to a stop during anhydrobiosis, the time animals can persist in this state is limited; after exceedingly long anhydrobiotic periods tardigrades fail to recover. Using the single cell gel electrophoresis (comet assay) technique to study the effect of anhydrobiosis on the integrity of deoxyribonucleic acid, we showed that the DNA in storage cells of the tardigrade Milnesium tardigradum was well protected during transition from the active into the anhydrobiotic state. Specimens of M. tardigradum that had been desiccated for two days had only accumulated minor DNA damage (2.09 ± 1.98% DNA in tail, compared to 0.44 ± 0.74% DNA in tail for the negative control with active, hydrated animals). Yet the longer the anhydrobiotic phase lasted, the more damage was inflicted on the DNA. After six weeks in anhydrobiosis, 13.63 ± 6.41% of DNA was found in the comet tail. After ten months, 23.66 ± 7.56% of DNA was detected in the comet tail. The cause for this deterioration is unknown, but oxidative processes mediated by reactive oxygen species are a possible explanation.  相似文献   

19.
Oxidative stress is a major component of cryoinjury in plant tissues. This study investigated the ability of recalcitrant (i.e. desiccation sensitive) Amaryllis belladonna L. and Haemanthus montanus Baker zygotic embryos to survive cryopreservation, in relation to oxidative stress. The study also investigated whether glycerol cryoprotection promoted embryo post-cryo survival by protecting enzymic antioxidant activities. Zygotic embryos excised from hydrated stored seeds were subjected to various combinations of rapid dehydration (to < or >0.4 g g?1 [dmb]), cryoprotection (with sucrose or glycerol), and cooling (either rapidly or slowly), and were thereafter assessed for viability, extracellular superoxide (·O??) production, lipid peroxidation (TBARS) and antioxidant enzyme activities. Short-term hydrated storage of whole seeds was accompanied by ·O?? production and lipid peroxidation, but ·O?? levels were lower than in dehydrated and cooled embryos and viability was 100%, possibly associated with the high activities of certain antioxidant enzymes. Partial dehydration and cryoprotection (in H. montanus only) increased ·O?? production (especially in cryoprotected-dried embryos) and was associated with some viability loss, but this was not correlated with enhanced lipid peroxidation. Cooling was generally accompanied by the greatest increase in ·O?? production, and with a decline in viability. In A. belladonna only, post-cryo TBARS levels were generally higher than for fresh and pre-conditioned embryos. Partial dehydration and cooling decreased antioxidant activities, but these were consistently less severe in glycerol cryoprotected-dried, as opposed to non-cryoprotected-dried embryos. Post-cryo viability retention for glycerol cryoprotected-dried embryos was significantly higher than for non-cryoprotected-dried embryos, possibly facilitated by relatively low post-drying TBARS levels and high post-drying and post-rewarming activities of some antioxidant enzymes in the former. Pre-conditioning treatments such as glycerol cryoprotection, when used in combination with partial drying, may enhance post-cryo viability retention in recalcitrant zygotic embryos by protecting the activities of certain antioxidant enzymes during pre-conditioning for, and after retrieval from, cryostorage.  相似文献   

20.
In order to effectively preserve green spores, which have relatively higher water content and lose viability more quickly than non-green spores, we studied the effect of desiccation level and storage temperature on Osmunda japonica spores. The water content of fresh spores was 11.20%. After 12 h desiccation by silica gel, the water content decreased to 6% but spore viability did not change significantly. As the desiccation continued, the decrease in water content slowed, but spore viability dropped. For almost all storage periods, the effects of storage temperature, desiccation level, and temperature × desiccation level were significantly different. After seven days of storage, spores at any desiccation level stored at 4 °C obtained high germination rates. After more than seven days storage, liquid nitrogen (LN) storage obtained the best results. Storage at −18 °C led to the lowest germination rates. Spores stored at room temperature and −18 °C all died within three months. For storage at 4 °C and in LN, spores desiccated 12 and 36 h obtained better results. Spores without desiccation had the highest germination rates after being stored at room temperature, but suffered the greatest loss after storage at −18 °C. These results suggest that LN storage is the best method of long-term storage of O. japonica spores. The critical water content of O. japonica spores is about 6% and reduction of the water content to this level improves outcome after LN storage greatly. The reason for various responses of O. japonica spores to desiccation and storage temperatures are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号