首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
H Killmann  R Benz    V Braun 《The EMBO journal》1993,12(8):3007-3016
The FhuA receptor protein is involved in energy-coupled transport of Fe3+ via ferrichrome through the outer membrane of Escherichia coli. Since no energy source is known in the outer membrane it is assumed that energy is provided through the action of the TonB, ExbB and ExbD proteins, which are anchored to the cytoplasmic membrane. By deleting 34 amino acid residues of a putative cell surface exposed loop, FhuA was converted from a ligand specific transport protein into a TonB independent and nonspecific diffusion channel. The FhuA deletion derivative FhuA delta 322-355 formed stable channels in black lipid membranes, in contrast to wild-type FhuA which did not increase membrane conductance. The single-channel conductance of the FhuA mutant channels was at least three times larger than that of the general diffusion porins of E. coli outer membrane. It is proposed that the basic structure of FhuA in the outer membrane is a channel formed by beta-barrels. Since the loop extending from residue 316 to 356 is part of the active site of FhuA, it probably controls the permeability of the channel. The transport-active conformation of FhuA is mediated by a TonB-induced conformational change in response to the energized cytoplasmic membrane. The ferrichrome transport rate into cells expressing FhuA delta 322-355 increased linearly with increasing substrate concentration (from 0.5 to 20 microM), in contrast to FhuA wild-type cells, which displayed saturation at 5 microM. This implies that in wild-type cells ferrichrome transport through the outer membrane is the rate-limiting step and that TonB, ExbB and ExbD are only required for outer membrane transport.  相似文献   

2.
FhuA, outer membrane receptor of Escherichia coli, transports hydroxamate-type siderophores into the periplasm. Cytoplasmic membrane-anchored TonB transduces energy to FhuA to facilitate siderophore transport. Because the N-terminal cork domain of FhuA occludes the C-terminal beta-barrel lumen, conformational changes must occur to enable siderophore passage. To localize conformational changes at an early stage of the siderophore transport cycle, four anti-FhuA monoclonal antibodies (mAbs) were purified to homogeneity, and the epitopes that they recognize were determined by phage display. We mapped continuous and discontinuous epitopes to outer surface-exposed loops 3, 4, and 5 and to beta-barrel strand 14. To probe for conformational changes of FhuA, surface plasmon resonance measured mAb binding to FhuA in its apo- and siderophore-bound states. Changes in binding kinetics were observed for mAbs whose epitopes were mapped to outer surface-exposed loops. Further, we measured mAb binding in the absence and presence of TonB. After forming immobilized FhuA-TonB complexes, changes in kinetics of mAb binding to FhuA were even more pronounced compared with kinetics of binding in the absence of TonB. Measurement of extrinsic fluorescence of the dye MDCC conjugated to residue 336 in outer surface-exposed loop 4 revealed 33% fluorescence quenching upon ferricrocin binding and up to 56% quenching upon TonB binding. Binding of mAbs to apo- and ferricrocin-bound FhuA complemented by fluorescence spectroscopy studies showed that their cognate epitopes on loops 3, 4, and 5 undergo conformational changes upon siderophore binding. Further, our data demonstrate that TonB binding promotes conformational changes in outer surface-exposed loops of FhuA.  相似文献   

3.
FhuA (MM 78.9 kDa) is an Escherichia coli outer membrane protein that transports iron coupled to ferrichrome and is the receptor for a number of bacteriophages and protein antibiotics. Its three-dimensional structure consists of a 22-stranded beta-barrel lodged in the membrane, extracellular hydrophilic loops, and a globular domain (the "cork") located within the beta-barrel and occluding it. This unexpected structure raises questions about the connectivity of the different domains and their respective roles in the different functions of the protein. To address these questions, we have compared the properties of the wild-type receptor to those of a mutated FhuA (FhuA Delta) missing a large part of the cork. Differential scanning calorimetry experiments on wild-type FhuA indicated that the cork and the beta-barrel behave as autonomous domains that unfold at 65 and 75 degrees C, respectively. Ferrichrome had a strong stabilizing effect on the loops and cork since it shifted the first transition to 71.4 degrees C. Removal of the cork destabilized the protein since a unique transition at 61.6 degrees C was observed even in the presence of ferrichrome. FhuA Delta showed an increased sensitivity to proteolysis and to denaturant agents and an impairment in phage T5 and ferrichrome binding.  相似文献   

4.
5.
The ferric hydroxamate uptake receptor FhuA from Escherichia coli transports siderophores across the outer membrane (OM). TonB-ExbB-ExbD transduces energy from the cytoplasmic membrane to the OM by contacts between TonB and OM receptors that contain the Ton box, a consensus sequence near the N terminus. Although the Ton box is a region of known contact between OM receptors and TonB, our biophysical studies established that TonB binds to FhuA through multiple regions of interaction. Panning of phage-displayed random peptide libraries (Ph.D.-12, Ph.D.-C7C) against TonB identified peptide sequences that specifically interact with TonB. Analyses of these sequences using the Receptor Ligand Contacts (RELIC) suite of programs revealed clusters of multiply aligned peptides that mapped to FhuA. These clusters localized to a continuous periplasm-accessible surface: Ton box/switch helix; cork domain/beta1 strand; and periplasmic turn 8. Guided by such matches, synthetic oligonucleotides corresponding to DNA sequences identical to fhuA were fused to malE; peptides corresponding to the above regions were displayed at the N terminus of E.coli maltose-binding protein (MBP). Purified FhuA peptides fused to MBP bound specifically to TonB by ELISA. Furthermore, they competed with ligand-loaded FhuA for binding to TonB. RELIC also identified clusters of multiply aligned peptides corresponding to the Ton box regions in BtuB, FepA, and FecA; to periplasmic turn 8 in BtuB and FecA; and to periplasmic turns 1 and 2 in FepA. These experimental outcomes identify specific molecular contacts made between TonB and OM receptors that extend beyond the well-characterized Ton box.  相似文献   

6.
FhuA is a multifunctional protein in the outer membrane of Escherichia coli that actively transports [Fe3+]ferrichrome, the antibiotics albomycin and rifamycin CGP 4832, and mediates sensitivity of cells to the unrelated phages T5, T1, phi80 and UC-1, and to colicin M and microcin J25. The energy source of active transport is the proton motive force of the cytoplasmic membrane that is required for all FhuA functions except for infection by phage T5. The FhuA crystal structure reveals 22 antiparallel transmembrane beta-strands that form a beta-barrel which is closed by a globular N-terminal domain. FhuA still displays active transport and sensitivity to all ligands except microcin J25 when the globular domain (residues 5-160) is excised and supports weakly unspecific diffusion of substrates across the outer membrane. Here it is shown that isolated FhuADelta5-160 supported diffusion of ions through artificial planar lipid bilayer membranes but did not form stable channels. The double mutant FhuADelta5-160 Delta322-336 lacking in addition to the globular domain most of the large surface loop 4 which partially constricts the channel entrance, displayed an increased single-channel conductance but formed no stable channels. It transported in vivo[Fe3+]ferrichrome with 45% of the rate of wild-type FhuA and did not increase sensitivity of cells to antibiotics. In contrast, a second FhuA double mutant derivative which in addition to the globular domain contained a deletion of residues 335-355 comprising one-third of surface loop 4 and half of the transmembrane beta-strand 8 formed stable channels in lipid bilayers with a large single-channel conductance of 2.5 nS in 1 m KCl. Cells that synthesized FhuADelta5-160 Delta335-355 showed an increased sensitivity to antibiotics and supported diffusion of maltodextrins, SDS and ferrichrome across the outer membrane. FhuADelta5-160 Delta335-355 showed no FhuA specific functions such as active transport of [Fe3+]ferrichrome or sensitivity to the other FhuA ligands. It is concluded that FhuADelta5-160 Delta335-355 assumes a conformation that is incompatible with any of the FhuA functions.  相似文献   

7.
Mutants of Escherichia coli K-12 AB2847 and of E. coli K-12 AN92 were isolated which were unable to grow on ferric citrate as the sole iron source. Of 22 mutants, 6 lacked an outer membrane protein, designated FecA protein, which was expressed by growing cells in the presence of 1 mM citrate. Outer membranes showed an enhanced binding of radioactive iron, supplied as a citrate complex, depending on the amount of FecA protein. The FecA protein was the most resistant of the proteins involved in ferric irion iron translocation across the outer membrane (FhuA = TonA, FepA, Cir, or 83K proteins) to the action of pronase P. It is also shown that previously isolated fec mutants (G. C. Woodrow et al., J. Bacteriol. 133:1524-1526, 1978) which are cotransducible with argF all lack the FecA protein. They were termed fecA to distinguish them from the other ferric citrate transport mutants, now designated fecB, which mapped in the same gene region at 7 min but were not cotransducible with ArgF. E. coli W83-24 and Salmonella typhimurium, which are devoid of a citrate-dependent iron transport system, lacked the FecA protein. It is proposed that the FecA protein participates in the transport of ferric citrate.  相似文献   

8.
FhuA belongs to a family of specific siderophore transport systems located in the outer membrane of Escherichia coli. The energy required for the transport process is provided by the proton motive force of the cytoplasmic membrane and is transmitted to FhuA by the protein TonB. Although the structure of full-length TonB is not known, the structure of the last 77 residues of a fragment composed of the 86 C-terminal amino acids was recently solved and shows an intertwined dimer (Chang, C., Mooser, A., Pluckthun, A., and Wlodawer, A. (2001) J. Biol. Chem. 276, 27535-27540). We analyzed the ability of truncated C-terminal TonB fragments of different lengths (77, 86, 96, 106, 116, and 126 amino acid residues, respectively) to bind to the receptor FhuA. Only the shortest TonB fragment, TonB-77, could not effectively interact with FhuA. We have also observed that the fragments TonB-77 and TonB-86 form homodimers in solution, whereas the longer fragments remain monomeric. TonB fragments that bind to FhuA in vitro also inhibit ferrichrome uptake via FhuA in vivo and protect cells against attack by bacteriophage Phi80.  相似文献   

9.
Abstract Outer membranes of Escherichia coli K-12 were used to isolate hybridoma cell lines that produce monoclonal antibodies against the FhuA (TonA) protein. Two monoclonal antibodies were obtained from independent immunization and fusion experiments. The antibodies belonged to the subclass IgG1 and κ, and IgG2b and κ, respectively. The latter antibody was purified by affinity chromatography on protein A-Sepharose. The culture supernatants of the hybridoma cell lines and the isolated antibody inhibited adsorption of the phages T5 and T1 to E. coli cells while binding of phage ø80, which also uses the FhuA protein as a receptor, remained unaffected. The specificity of the antibodies to the FhuA protein was supported by the prevention of killing of cells by colicin M and by the lack of inhibition of colicin B and of phage BG23. Transport of iron(III) as ferrichrome complex was not inhibited by the isolated antibody. However, partial competition with the adsorption of the phages T2, TuIb and T6 was observed which may indicate an organization of certain functional phage receptors into clusters.  相似文献   

10.
Precise deletions of cell surface-exposed loops of FhuA resulted in mutants of Escherichia coli with distinct phenotypes. Deletion of loop 3 or 11 inactivated ferrichrome transport activity. Deletion of loop 8 inactivated receptor activity for colicin M and the phages T1, T5, and phi80. The loop 7 deletion mutant was colicin M resistant but fully phage sensitive. The loop 4 deletion mutant was resistant to the TonB-dependent phages T1 and phi80 but fully sensitive to the TonB-independent phage T5. The phenotypes of the deletion mutants revealed important sites for the multiple FhuA transport and receptor activities. The ligand binding sites are nonidentical and are distributed among the entire exposed surface. Presumably, FhuA evolved as a ferrichrome transporter and was subsequently used as a receptor by the phages and colicin M, which selected the same as well as distinct loops as receptor sites.  相似文献   

11.
Iron is an essential nutrient for all microorganisms with a few exceptions. Microorganisms use a variety of systems to acquire iron from the surrounding environment. One such system includes production of an organic molecule known as a siderophore by many bacteria and fungi. Siderophores have the capacity to specifically chelate ferric ions. The ferricsiderophore complex is then transported into the cell via a specific receptor protein located in the outer membrane. This is an energy dependent process and is the subject of investigation in many research laboratories. The crystal structures of three outer membrane ferricsiderophore receptor proteins FepA, FhuA and FecA from Escherichia coli and two FpvA and FptA from Pseudomonas aeruginosa have recently been solved. Four of them, FhuA, FecA, FpvA and FptA have been solved in ligand-bound forms, which gave insight into the residues involved in ligand binding. The structures are similar and show the presence of similar domains; for example, all of them consist of a 22 strand-β-barrel formed by approximately 600 C-terminal residues while approximately 150 N-terminal residues fold inside the barrel to form a plug domain. The plug domain obstructs the passage through the barrel; therefore our research focuses on the mechanism through which the ferricsiderophore complex is transported across the receptor into the periplasm. There are two possibilities, one in which the plug domain is expelled into the periplasm making way for the ferricsiderophore complex and the second in which the plug domain undergoes structural rearrangement to form a channel through which the complex slides into the periplasm. Multiple alignment studies involving protein sequences of a large number of outer membrane receptor proteins that transport ferricsiderophores have identified several conserved residues. All of the conserved residues are located within the plug and barrel domain below the ligand binding site. We have substituted a number of these residues in FepA and FhuA with either alanine or glutamine resulting in substantial changes in the chemical properties of the residues. This was done to study the effect of the substitutions on the transport of ferricsiderophores. Another strategy used was to create a disulfide bond between the residues located on two adjacent β-strands of the plug domain or between the residues of the plug domain and the β-barrel in FhuA by substituting appropriate residues with cysteine. We have looked for the variants where the transport is affected without altering the binding. The data suggest a distinct role of these residues in the mechanism of transport. Our data also indicate that these transporters share a common mechanism of transport and that the plug remains within the barrel and possibly undergoes rearrangement to form a channel to transport the ferricsiderophore from the binding site to the periplasm.  相似文献   

12.
The FhuA protein of the outer membrane serves as a receptor for phages T5, T1, and phi 80, for colicin M, for the antibiotic albomycin, and for ferrichrome and related siderophores. To identify protein regions important for the multiple FhuA activities, fhuA genes of spontaneous chromosomal mutants which expressed wild-type amounts of the FhuA protein were sequenced. A mutant which was partially T5 sensitive but impaired in all other functions was missing aspartate residue 348 of the mature protein as a result of a three-base deletion. This aspartate residue is part of the hydrophilic sequence Asp-Asp-Glu-Lys. Replacement by site-specific mutagenesis of each of the Asp residues by Tyr, of Glu by Val, and of Lys by Met reduced FhuA activity but less than the Asp deletion did. Ferrichrome inhibited binding of phage phi 80 and of colicin M to these mutants in an allele-specific manner. A completely resistant derivative of the Asp deletion mutant contained, in addition, a leucine-to-proline substitution at position 106 and eight changed bases, converting at positions 576 to 578 an Arg-Pro-Leu sequence to Ala-Arg-Cys. The latter mutations and the Leu-to-Pro replacement alone did not alter sensitivity to the phages but reduced sensitivity to colicin M and albomycin 10- to 1,000-fold. The proline replacements probably disturb FhuA conformation and, in concert with the Asp deletion, inactivate FhuA completely. It is concluded that the Asp deletion site defines a region of FhuA which directly participates in binding of all FhuA ligands. Growth promotion studies on iron-limited media revealed that certain siderophores of the hydroxamate type, such as butylferrichrome, ferrichrysin, and ferrirubin, are taken up not only via FhuA but also via the FhuE outer membrane receptor protein.  相似文献   

13.
Summary Point mutations in the “TonB box” offhuA were suppressed by point mutations in thetonB gene, suggesting both a functional and physical interaction between the FhuA receptor protein in the outer membrane and the TonB protein in the cytoplasmic membrane ofEscherichia coli K12. Mutations influA were classified into four types according to the extent by which they impaired mutant cells in their growth on ferrichrome as sole iron source and in their sensitivity to the antibiotic albomycin and to colicin M. ThetonB mutation with a glutamine to leucine replacement at position 165 was less efficient in restoring the FhuA functions than the glutamine to lysine exchange at the same position. The better the coupling between FhuA and TonB the poorer was the inhibition of phage T1 binding to FhuA by ferrichrome. A working model is proposed in which the TonB protein assumes different conformations in response to the energized state of the cytoplasmic membrane and thereby allosterically regulates the activity of the FhuA receptor. This model implies an intermembrane coupling between two proteins in adjacent membranes.  相似文献   

14.
FhuA (Mr 78,992, 714 amino acids), siderophore receptor for ferrichrome-iron in the outer membrane of Escherichia coli, was affinity tagged, rapidly purified, and crystallized. To obtain FhuA in quantities sufficient for crystallization, a hexahistidine tag was genetically inserted into the fhuA gene after amino acid 405, which resides in a known surface-exposed loop. Recombinant FhuA405.H6 was overexpressed in an E. coli strain that is devoid of several major porins and using metal-chelate chromatography was purified in large amounts to homogeneity. FhuA crystals were grown using the hanging drop vapor diffusion technique and were suitable for X-ray diffraction analysis. On a rotating anode X-ray source, diffraction was observed to 3.0 A resolution. The crystals belong to space group P6(1) or P6(5) with unit cell dimensions of a=b=174 A, c=88 A (alpha=beta=90 degrees, gamma=120 degrees).  相似文献   

15.
H Killmann  R Benz    V Braun 《Journal of bacteriology》1996,178(23):6913-6920
Escherichia coli transports Fe3+ as a ferrichrome complex through the outer membrane in an energy-dependent process mediated by the FhuA protein. A FhuA deletion derivative lacking residues 322 to 355 (FhuA delta322-355) forms a permanently open channel through which ferrichrome diffused. This finding led to the concept that the FhuA protein forms a closed channel that is opened by input of energy derived from the electrochemical potential across the cytoplasmic membrane, mediated by the Ton system. In this study, we constructed various FhuA derivatives containing deletions inside and outside the gating loop. FhuA delta322-336 bound ferrichrome and displayed a residual Ton-dependent ferrichrome transport activity. FhuA delta335-355 no longer bound ferrichrome but supported ferrichrome diffusion through the outer membrane in the absence of the Ton system. FhuA delta335-355 rendered cells sensitive to sodium dodecyl sulfate and supported diffusion of maltotetraose and maltopentaose in a lamB mutant lacking the maltodextrin-specific channel in the outer membrane. Cells expressing FhuA delta70-223, which has a large deletion outside the gating loop, were highly sensitive to sodium dodecyl sulfate and grew on maltodextrins but showed only weak ferrichrome uptake, suggesting formation of a nonspecific pore through the outer membrane. FhuA delta457-479 supported Ton-dependent uptake of ferrichrome. None of these FhuA deletion derivatives formed pores in black lipid membranes with a stable single-channel conductance. Rather, the conductance displayed a high degree of current noise, indicating a substantial influence of the deletions on the conformation of the FhuA protein. FhuA also supports infection by the phages T1, T5, and phi80 and renders cells sensitive to albomycin and colicin M. Cells expressing FhuA delta322-336 were sensitive to albomycin and colicin M but were only weakly sensitive to T5 and phi480 and insensitive to T1. Cells expressing FhuA delta335-355 were resistant to all FhuA ligands. These results indicate different structural requirements within the gating loop for the various FhuA ligands. Cells expressing FhuA delta457-479 displayed a strongly reduced sensitivity to all FhuA ligands, while cells expressing FhuA delta70-223 were rather sensitive to all FhuA ligands except albomycin, to which they were nearly resistant. It is concluded that residues 335 to 355 mainly determine the properties of the gate with regard to FhuA permeability and ligand binding.  相似文献   

16.
Abstract The current model of TonB-dependent colicin transport through the outer membrane of Escherichia coli proposes initial binding to receptor proteins, vectorial release from the receptors and uptake into the periplasm from where the colicins, according to their action, insert into the cytoplasmic membrane or enter the cytoplasm. The uptake is energy-dependent and the TonB protein interacts with the receptors as well as with the colicins. In this paper we have studied the uptake of colicins B and Ia, both pore-forming colicins, into various tonB point mutants. Colicin Ia resistance of the tonB mutant (G186D, R204H) was consistent with a defective Cir receptor-TonB interaction while colicin Ia resistance of E. coli expressing TonB of Serratia marcescens , or TonB of E. coli carrying a C-terminal fragment of the S. marcescens TonB, seemed to be caused by an impaired colicin Ia-TonB interaction. In contrast, E. coli tonB (G174R, V178I) was sensitive to colicin Ia and resistant to colicin B unless TonB, ExbB and ExbD were overproduced which resulted in colicin B sensitivity. The differential effects of tonB mutations indicate differences in the interaction of TonB with receptors and colicins.  相似文献   

17.
TonB protein of Escherichia coli couples the electrochemical potential of the cytoplasmic membrane (CM) to active transport of iron-siderophores and vitamin B(12) across the outer membrane (OM). TonB interacts with OM receptors and transduces conformationally stored energy. Energy for transport is provided by the proton motive force through ExbB and ExbD, which form a ternary complex with TonB in the CM. TonB contains three distinct domains: an N-terminal signal/anchor sequence, a C-terminal domain, and a proline-rich region. The proline-rich region was proposed to extend TonB's structure across the periplasm, allowing it to contact spatially distant OM receptors. Having previously identified a 2:1 stoichiometry for the complex of full-length (FL) TonB and the OM receptor FhuA, we now demonstrate that deletion of the proline-rich region of TonB (TonBDelta66-100) prevents formation of the 2:1 complex. Sedimentation velocity analytical ultracentrifugation of TonBDelta66-100 with FhuA revealed that a 1:1 TonB-FhuA complex is formed. Interactions between TonBDelta66-100 and FhuA were assessed by surface plasmon resonance, and their affinities were determined to be similar to those of TonB (FL)-FhuA. Presence of the FhuA-specific siderophore ferricrocin altered neither stoichiometry nor affinity of interaction, leading to our conclusion that the proline-rich region in TonB is important in forming a 2:1 high-affinity TonB-FhuA complex in vitro. Furthermore, TonBDelta66-100-FhuADelta21-128 interactions demonstrated that the cork region of the OM receptor was also important in forming a complex. Together, these results demonstrate a novel function of the proline-rich region of TonB in mediating TonB-TonB interactions within the TonB-FhuA complex.  相似文献   

18.
The ferrichrome-iron receptor encoded by the fhuA gene of Escherichia coli K-12 is a multifunctional outer membrane receptor required for the binding and uptake of ferrichrome and bacteriophages T5, T1, phi 80, and UC-1 as well as colicin M. To identify domains of the protein which are important for FhuA activities, a library of 31 overlapping deletion mutants in the fhuA gene was generated. Export of FhuA deletion proteins to the outer membrane and receptor functions of the deletion proteins were analyzed. All but three of the deletion mutant FhuA proteins cofractionated with the outer membrane; no FhuA proteins were detected in outer membrane preparations or in cell extracts when the deletions spanned amino acids 418 to 440. Most deletion proteins were susceptible to cleavage by endogenous proteolytic activity; some degradation products were detected on Coomassie blue-stained gels and on Western blots (immunoblots). Receptor functions were measured with the mutated genes present on multicopy plasmids. Two deletion mutants, FhuA delta 060-069 and FhuA delta 129-168, conferred wild-type phenotypes: they demonstrated growth promotion by ferrichrome and the same efficiency of plating of bacteriophages as that of wild-type FhuA; killing by colicin M was also unaffected. For FhuA delta 021-128 and FhuA delta 406-417, reduced sensitivity to colicin M was detected; wild-type phenotypes were observed for all other FhuA functions. Deletions from amino acids 169 to 195 slightly reduced sensitivities to bacteriophages and to colicin M; ferrichrome growth promotion was unaffected. When deletions extended into the region of amino acids 196 to 405, all FhuA functions were either reduced or abolished. The results indicate that selected regions of the FhuA protein have receptor activities and demonstrate the presence of both shared and unique ligand-responsive domains.  相似文献   

19.
Many new Escherichia coli outer membrane proteins have recently been identified by proteomics techniques. However, poorly expressed proteins and proteins expressed only under certain conditions may escape detection when wild-type cells are grown under standard conditions. Here, we have taken a complementary approach where candidate outer membrane proteins have been identified by bioinformatics prediction, cloned and overexpressed, and finally localized by cell fractionation experiments. Out of eight predicted outer membrane proteins, we have confirmed the outer membrane localization for five-YftM, YaiO, YfaZ, CsgF, and YliI--and also provide preliminary data indicating that a sixth--YfaL--may be an outer membrane autotransporter.  相似文献   

20.
In spite of the similarities in a structural organization of T5 and IRA phages their thermal and hydrodynamical peculiarities are completely different. One of the significant differences is observed in temperature value at which thermally induced DNA ejection starts. If in the case of physiological conditions this difference equals to 30°С, then it decreases as ionic strength of the solvent decreases. Also, from our experimental results follows that in the opening of phage tail channel for T5 phage (at pH7) significant role-play electrostatic forces. In spite of that both of these phages grow on the same Escherichia coli strain, we have shown that these phages need different receptors to penetrate into the bacterial cell precisely FhuA serves as receptor only for T5 phage. The higher FhuA concentration in T5 phage suspension is, the more intensive DNA ejection in environment is. The minimal FhuA/T5 ratio, which is 300/1, correspondingly, necessary for effective DNA ejection from the phage head was experimentally determined. For the first time the ejection of T5 phage DNA induced by FhuA was observed in an incessant regime. The deconvolution of calorimetric curve of FhuA’s denaturation has been shown that in a chosen condition there are four thermodynamically independent domains in the structure of FhuA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号