首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Dolichyl phosphates of different chain length (C35, C55 , C75 , Dol-mixture of C90 , 95, 100, 105 and C110 ) were tested as lipid acceptors in transglycosylation reactions. In the absence of exogenously added dolichyl phosphates there were no differences in the rate of synthesis in liver of dolichyl phosphate mannose, dolichyl phosphate glucose and dolichyl pyrophosphate N-acetylglucosamine between normal and ethionine-treated animals. Addition of exogenous dolichyl phosphates of different chain length stimulated the synthesis of dolichyl phosphate mannose and dolichyl pyrophosphate N-acetyl-glucosamine 2 to 4 times depending on the chain length of dolichols , both in normal and ethionine-treated animals. In liver of ethionine-treated rats the formation of dolichyl phosphate glucose was not stimulated. Following ethionine treatment the concentration of free and esterified with fatty acids dolichols was increased.  相似文献   

2.
Dolichyl phosphates of various chain length ranging from 7 to 22 isoprene units were tested as lipid acceptors in transglycosylation reactions in chicken liver and Hepatoma MC-29. In the presence of exogenous dolichyl phosphate mixture (18 and 19 isoprene units) the synthesis of dolichyl pyrophosphate N-acetylglucosamine and dolichyl phosphate mannose increased 3 times both in the liver and Hepatoma MC-29, while the formation of dolichyl phosphate glucose was 4 fold higher in the liver and 6-fold higher in Hepatoma MC-29. In liver microsomes the maximum rate of the stimulation of glycosylation was achieved by exogenous dolichyl phosphates, containing 18 and 19 isoprene units, while glycosyl transferases in microsomes from Hepatoma MC-29 did not show any structural requirements to the chain length of dolichyl phosphates.  相似文献   

3.
1) The biological cofactor and carrier activities of dolichyl phosphates of low isoprene multiplicity (n) and defined geometry, (synthesized according to L. Jaenicke and H.-U. Siegmund, Chem. Phys. Lipids 51 (1989) 159-170), were assayed in different transfer reactions of the microsomal dolichyl-phosphate cycle against natural pig liver dolichyl phosphate (n = 18 to 20). 2) The apparent Michaelis constants and maximal velocities were determined from initial reaction rates for the transfer from GDP-mannose, UDP-N-acetylglucosamine, and UDP-glucose to the synthetic truncated dolichyl phosphates. They afford quantitative comparison and show increasing biological activities from dolichyl-6 phosphate to dolichyl-11 phosphate, which is about as active as the natural mixture. This is in accord with previous findings on the starting reactions of the cycle. 3) Truncated dolichyl diphosphochitobioses, biosynthesized in vitro from synthetic dolichyl phosphates, were used as acceptors for nucleoside diphosphohexoses in solubilized membranes. All of them show about the same activity. The kinetics and yield were determined for each of the transfers. Activity is increased by adding UDP-glucose. The inactive very short-chain dolichol compounds do not interfere with the transfer to active longer chain dolichols. 4) The oligosaccharides produced by transfer of mannose and glucose to truncated dolichyl diphosphate-bound chitobiose were isolated and analysed for sugar multiplicity. The heptasaccharide and the un-decasaccharide are accumulated most, pointing to the transport across the endoplasmic membranes (ER) as the rate limiting reaction. 5) The truncated dolichyl-diphosphate-bound oligosaccharides are transferred to protein(s) by the crude, solubilized microsomal preparation independent of chain length of the cofactor/carrier, yet with increasing yield as shown by enzyme immunoblot analysis.  相似文献   

4.
The prenyltransferase involved in the biosynthesis of dolichyl phosphate has been characterized in Saccharomyces cerevisiae. Although the enzyme is predominantly membrane-bound, a significant percentage was found in the soluble fraction. The prenyltransferase preferentially utilizes farnesyl pyrophosphate as the allylic substrate and isopentenyl pyrophosphate as cosubstrate with half-maximal velocities obtained at 25 and 6.7 microM, respectively. The enzymatic activity is sensitive to sulfhydryl reagents and is inhibited by all detergents tested, except 3-[(3-cholamidopropyl)dimethylammonio]-1-propanesulfonate at concentrations less than 5 mM. The product of the reaction has been characterized as an alpha-unsaturated polyprenyl pyrophosphate, containing 12-15 isoprene units, approximately two isoprene units shorter than the endogenous yeast dolichyl phosphate. The stereochemistry of addition of isoprene units by the prenyltransferase was shown to be cis by a comparison of the HPLC retention time for a pentadecaprenyl phosphate derived from the in vitro reaction product with that for an authentic mixture of alpha-cis- and alpha-trans-pentadecaprenyl phosphates.  相似文献   

5.
Microsomal membrane preparations from rat livers, when incubated with labelled sugar-nucleotides, were shown to synthesize labelled oligosaccharide-lipids in the presence of excess exogenous dolichyl phosphate. Under the incubation conditions defined in the present study, dolichyl pyrophosphoryl(DolPP)GlcNAc2-Man5, DolPPGlcNAc2Man9 and DolPPGlcNAc2Man9Glc3 were the principal oligosaccharide-lipids formed by both control and vitamin A-deficient membranes. However, deficient membranes synthesized 3.2 +/- 0.8 times as much oligosaccharide-lipids and 2.6 +/- 0.7 times as much dolichyl phosphate mannose (DolPMan) and dolichyl phosphate glucose (DolPGlc) as the controls. The transfer of the oligosaccharide chain from the dolichol carrier to the endogenous protein acceptors in vitamin A-deficient microsomes (microsomal fractions) was only 57.5 +/- 9.5% of that of controls. After endo-beta-N-acetylglucosaminidase treatment, only one oligosaccharide species was isolated from both control and vitamin A-deficient microsomal glycoproteins, and was characterized as GlcNAcMan9Glc3. We conclude that the decreased incorporation of labelled mannose and glucose from sugar-nucleotides into the glycoproteins must be due to decreased transfer of GlcNAc2Man9Glc3 from the dolichol carrier to the protein acceptors. This conclusion was further substantiated by the finding that control membranes transferred 4-6 times as much labelled oligosaccharides from exogenously added dolichol-linked substrate (DolPPGlcNAc2Man9Glc3) to endogenous microsomal protein acceptors as compared with the vitamin A-deficient membranes. Attempts to reverse this defect by addition of retinol or retinyl phosphate (a source of retinyl phosphate mannose) to the incubations were unsuccessful.  相似文献   

6.
Hyperplastic liver nodules were induced in rats by administration of an initiator (diethylnitrosamine or 3'-methyl-4-dimethylaminoazobenzene) and/or a promoter (phenobarbital) by the method reported by Tatematsu et al. (1983, Carcinogenesis 4, 381-386). The dolichol content in the liver and liver microsomes of the rats treated with the initiator were approx. 1.5-times higher than that of the control and rats treated with only the promoter. However, the composition of dolichols was not changed. The time course of the dolichyl phosphate concentration in the rat liver treated with both initiator and promoter showed a pattern different from that in the control liver, the initiator-treated liver or the promoter-treated liver. The main component of dolichyl phosphate in liver treated with both the initiator and promoter changed from that with 18 isoprene units to that with 19. It is suggested that the changes in liver dolichols and dolichyl phosphates may be related to the formation of hyperplastic liver nodules.  相似文献   

7.
Efficient methods were developed in our group in recent years for chemical synthesis of polyprenyl phosphates, polyprenyl monophosphate sugars, and polyprenyl diphosphate sugars, which were known to serve as important intermediates in biosynthesis of complex carbohydrates. A simple procedure was developed involving the phosphorylation of aliphatic alcohols with tetra-n-butylammonium dihydrogen phosphate and trichloroacetonitrile. Monophosphates of various natural and modified dolichols and polyprenols, as well as the derivatives of retinol, cholesterol, and nonacosanol, were prepared in high yields. First syntheses of dolichyl thiophosphate and dolichyl hydrogen phosphonate were developed, and these derivatives were of interest as analogs of dolichyl phosphate. Polyprenyl monophosphate sugars, including derivatives of alpha- and beta-anomers of D-glucopyranose, D-galactopyranose, D-mannopyranose, and 2-acetamido-2-deoxy-D-glucopyranose, were obtained smoothly from moraprenyl trichloroacetimidate and acylated glycosyl phosphates after deprotection. A method for the synthesis of polyprenyl diphosphate sugars from polyprenyl phosphoroimidazolidate and unprotected glycosyl phosphates was shown to be applicable for a wide range of the monosaccharide derivatives including hexoses, deoxyhexoses, 2-acetamido-2-deoxyhexoses, and uronic acids. A series of the oligosaccharide derivatives was also prepared by this method.  相似文献   

8.
Dolichyl phosphate, an essential carrier lipid in the biosynthesis of N-linked glycoprotein, has been found to induce apoptosis in rat glioma C6 cells and human monoblastic leukemia U937 cells. In the present study, dolichyl phosphate and structurally related compounds were examined regarding their apoptosis-inducing activities in U937 cells. Dihydroheptaprenyl and dihydrodecaprenyl phosphates, of which isoprene units are shorter than that of dolichyl phosphate, induced apoptosis in U937 cells. This phenomenon occurred in a dose- and time-dependent manner, as seen with dolichyl phosphate-induced apoptosis. Derivatives of the same isoprene units of dolichyl phosphate, such as dolichol, dolichal or dolichoic acid, did not induce DNA fragmentation. Farnesyl phosphate and geranylgeranyl phosphate also failed to induce apoptosis. During apoptosis, the caspase family of cysteine proteases play important roles. We observed that apoptosis induced by dihydroprenyl phosphate was mediated by caspase-3-like (CPP32-like) activation but not by caspase-1-like (ICE-like) activation. This caspase-3-like activation was inhibited by a specific inhibitor of caspase-3, DEVD-CHO, but not by an caspase-1 inhibitor YVAD-CHO. We interpret these results to mean that dihydroprenyl phosphates with more than seven isoprene units have apoptosis-inducing activity and that their signal is mediated by caspase-3-like activation.  相似文献   

9.
D D Carson  J P Tang  G Hu 《Biochemistry》1987,26(6):1598-1606
The steroid hormone 17 beta-estradiol dramatically induces uterine N-linked glycoprotein assembly [Dutt, A., Tang, J.-P., Welply, J. K., & Carson, D. D. (1986) Endocrinology (Baltimore) 118, 661-673]. To determine the role that dolichyl phosphate availability plays in this induction, we studied the effects of estrogen priming on the content of dolichyl phosphate and the distribution of dolichyl phosphate among various glycolipids in uteri. Dolichol-linked saccharides were metabolically labeled to equilibrium with either [3H]glucosamine or [3H]mannose and extracted from primary explants of uterine tissue. The amount of dolichol-linked saccharide was calculated from the specific radioactivity determined for the corresponding sugar nucleotides extracted from the tissues. The major dolichol-linked saccharides identified were mannosylphosphoryldolichol (MPD), oligosaccharylpyrophosphoryldolichol (OSL), and N,N'-diacetylchitobiosylpyrophosphoryldolichol (CBL). Estrogen increased the levels of MPD and OSL 4-fold; however, CBL levels did not change. After 3 days of treatment, the levels of these glycolipids were very similar to those in uteri from pregnant mice. Remarkably, MPD constituted 90-95% of dolichol-linked saccharides detected under all conditions. The tissue contents of total dolichyl phosphate and alkali-labile dolichyl phosphate, presumably MPD, were estimated by liquid chromatography. The levels of alkali-labile dolichyl phosphate determined in this way were in good agreement with the values estimated for MPD by metabolic labeling; moreover, alkali-labile dolichyl phosphate constituted 50-98% of the total dolichyl phosphate pool. The variations in MPD content depended upon the steroid hormone influence, most notably that of estrogen.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

10.
We examined changes in the levels of the dolichol forms in Chinese hamster ovary cells containing alterations in the levels of activity of two enzymes in the oligosaccharyl-P-P-dolichol biosynthetic pathway, namely UDP-GlcNAc:dolichyl phosphate:GlcNAc-phosphotransferase (GlcNAc-1-phosphotransferase) and mannosylphosphoryldolichol (Man-P-Dol) synthase. Under normal conditions in wild type cells, Glc3Man9GlcNAc2-pyrophosphoryldolichol was the most abundant form. Of the other anionic forms of dolichols, dolichyl phosphate, Man-P-Dol, glucosylphosphoryldolichol, and Man5GlcNAc2-pyrophosphoryl dolichol were approximately equally abundant. When 3E11 cells (a tunicamycin-resistant Chinese hamster ovary line containing 15 times more GlcNAc-1-phosphotransferase activity than wild type), B4-2-1 cells (a mutant lacking Man-P-Dol synthase activity), and wild type cells incubated with or without tunicamycin were utilized, significant changes in the levels of most of the anionic dolichol derivatives, with the exception of dolichyl phosphate, were found. Since changes in dolichyl phosphate levels were not detected under a variety of conditions where the levels of enzyme activity utilizing this substrate were varied, all three enzymes appear to have access to the same pool of dolichyl phosphate, and further, to have similar Km values for dolichyl phosphate.  相似文献   

11.
Abstract Mutants deficient in sterol (thermosensitive ergosterol auxotrophs) erg 8, 9, 12 and heme synthesis hem 1, 12 were screened for the level of free dolichol and dolichyl phosphate synthesized in the mevalonate pathway as well as for the activity of dolichyl phosphate-dependent glycosyl transferases. The amount of DolP synthesized via CTP-dependent phosphorylation was the same in mutants and parental strains. However, mannosylation and glucosylation of endogenous dolichyl phosphates in ergosterol mutants was about four times lower compared to parental strains, while the same reactions carried out with exogenous Dol24P reached 80% of the level observed in parental strains indicating that activities of DolPMan and DolPGlc synthases are not the rate-limiting factors. It is postulated that the de novo synthesis of DolP is impaired in the ergosterol mutants. Moreover, a block in the ergosterol branch of the metabolic pathway ( erg 9 ) causes an increase in the de novo synthesis of dolichyl phosphate.  相似文献   

12.
A crude membrane preparation of the unicellular green alga Chlamydomonas reinhardii was found to catalyse the incorporation of D-[14C]mannose from GDP-D-[14C]-mannose into a chloroform/methanol-soluble compound and into a trichloroacetic acid-insoluble polymer fraction. The labelled lipid revealed the chemical and chromatographic properties of a short-chain (about C55-C65) alpha-saturated polyprenyl mannosyl monophosphate. In the presence of detergent both long-chain (C85-C105) dolichol phosphate and alpha-unsaturated undecaprenyl phosphate (C55) were found to be effective as exogenous acceptors of D-mannose from GDP-D-[14C]mannose to yield their corresponding labelled polyprenyl mannosyl phosphates. Exogenous dolichyl phosphate stimulated the incorporation of mannose from GDP-D-[14C]mannose into the polymer fraction 5-7-fold, whereas the mannose moiety from undecaprenyl mannosyl phosphate was not further transferred. Authentic dolichyl phosphate [3H]mannose and partially purified mannolipid formed from GDP-[14C]mannose and exogenous dolichyl phosphate were found to function as direct mannosyl donors for the synthesis of labelled mannoproteins. These results clearly indicate the existence of dolichol-type glycolipids and their role as intermediates in transglycosylation reactions of this algal system. Both the saturation of the alpha-isoprene unit and the length of the polyprenyl chain may be regarded as evolutionary markers.  相似文献   

13.
Summary Microsome enriched Ceratitis capitata extracts synthesized a glucosylated lipid linked oligosaccharide. Its properties were closely related to those of the previously described insect mannosylated dolichyl diphosphate oligosaccharides and almost the same as those of the rat liver dolichyl-diphosphate-(GlcNAc)2-(Man)9-(Glc)1–3. The saccharide moiety of, the latter was transferred to an unknown endogenous protein-like acceptor by the fly extracts. These represent the first evidence of a protein glycosylation in a pluricellular invertebrate through dolichyl derivatives.Abbreviations Dol-P dolichyl phosphate - Dol-P-P dolichyl diphosphate  相似文献   

14.
Dolichols of defined uniform chain length (C35, C45, and C55) and geometry were prepared by total synthesis according to the following principle: (E,E)-Farnesol, activated as its 4-tolyl sulfone, is condensed with 8-chloroneryl benzyl ether, the sulfonyl group removed and the ether linkage cleaved by lithium/triethylamine. The resulting elongated prenol is converted again to its corresponding 4-toly/sulfone; at this stage isomers are removed by chromatography. After several cycles of this C10-elongation sequence the synthesis is completed in the same way but using 8-chlorocitronellyl benzyl ether as building block to introduce the saturated alpha-isoprene unit. The dolichols obtained were chemically phosphorylated (POCl3/Et3N). Both, the alcohols and their phosphate esters, are characterized spectroscopically. 1H- and 13C-NMR data are recorded for qualitative and stereochemical comparison with natural dolichols. The authentic dolichyl phosphates (Dol-7-P, Dol-9-P, and Dol-11-P) were assayed relative to the natural dolichyl phosphate mixture from pig liver as acceptors for transglycosylation from nucleoside diphosphate sugars (glucose, mannose) by standardized membrane vesicle preparations from plants (Volvox) and animals (liver). Even the shortest chain dolichyl 7-phosphate has full activity in this lipoglycan-forming reaction.  相似文献   

15.
Tetrahymena pyriformis contains an enzyme which hydrolyzed dolichyl phosphate. This activity was solubilized from lyophilized samples of this organism and was relatively stable when stored frozen. The soluble enzyme preparation had an acid pH optimum and hydrolyzed both dolichyl and phytanyl phosphates at equivalent rates. The polyprenylphosphate phosphatase activity was compared with the acid phosphatases which hydrolyzed p-nitrophenyl phosphate and marked differences were found. Dolichyl phosphate hydrolysis required Mg2+ for maximum activity while the bulk of the phosphatase activity was not effected by the absence of this ion. Other differences were that the polyprenylphosphate phosphatase was relatively insensitive to inhibitors such as tartrate and vanadium oxide sulfate which had a pronounced effect on the rate of p-nitrophenyl phosphate hydrolysis. The two activities also appeared to have different subcellular distributions. The polyprenylphosphate phosphatase was markedly inhibited by ethoxy formic anhydride, a reagent which is active against enzymes containing a histidine residue at their active site, while p-nitrophenyl phosphate hydrolysis was unaffected. The polyprenylphosphate phosphatase may be important in regulating the level of dolichyl phosphate in T. pyriformis and thus the rate of glycoprotein synthesis. It is also a useful tool which is capable of liberating dolichol from dolichyl phosphate under mild conditions which will permit the further characterization of the polyprenols.  相似文献   

16.
The in vivo and in vitro synthesis and turnover of dolichol and dolichyl phosphate have been studied over the course of early development in sea urchin embryos. Synthesis of dolichol and dolichyl phosphate was studied in vivo and in vitro using [3H]acetate and [14C] isopentenylpyrophosphate, respectively, as precursors. Both the in vivo and in vitro results indicate that the principal labeled end product of de novo synthesis is the free alcohol, and that this alcohol is subsequently phosphorylated to produce dolichyl phosphate. The presence of 30 microM compactin inhibits the de novo synthesis of dolichol from [3H]acetate by greater than 90%, but has no effect on the incorporation of 32Pi into dolichyl phosphate for more than 6 h, thus suggesting that during this time interval the major source of dolichyl phosphate is preformed dolichol. The rate of turnover of the [3H]acetate-labeled polyisoprenoid backbone of dolichyl phosphate is very slow (t1/2 = 40-70 h). In contrast, the rate of loss of the [32P]phosphate headgroup is more rapid (t1/2 = 5.7-7.7 h) and increases over the course of development. Finally, dolichyl phosphate phosphatase activity has been measured in vitro. The activity of this enzyme, which can be distinguished from phosphatidic acid phosphatase, was found to increase as a function of development, in qualitative agreement with the increased turnover of 32P from dolichyl phosphate observed in vivo. These results suggest that the phosphate moiety of dolichyl phosphate is in a dynamic state, and that dolichol kinase and dolichyl phosphate phosphatase play key roles in regulating the cellular level of dolichyl phosphate.  相似文献   

17.
Dolichyl D-[14C]mannosyl phosphate formed in calf pancreas microsomes was compared to dolichyl alpha-D-[14C]mannopyranosyl phosphate, a chemical synthesis of which is described. Jack bean alpha-mannosidase, which converted citronellyl alpha-D-mannopyranosyl phosphate, but not its beta anomer, to citronellyl phosphate and D-mannose, was effective in releasing D-[14C]mannose from dolichyl alpha-D-[14C]manopyranosyl phosphate in the presence of detergent. In contrast, alpha-mannosidase did not cause any significant release from the pancreatic dolichyl D-[14C]mannosyl phosphate. Alkali treatment (0.1 M NaOH in propanol at 65 and 90 degrees) degraded both dolichyl D-[14C]mannosyl phosphates with the formation of water-soluble 14C-labeled products. The pattern of 14C-labeled breakdown products formed from the synthetic dolichyl alpha-D-[14C]mannopyranosyl phosphate differed from that obtained from the pancreatic dolichyl D-[14C]mannosyl phosphate. Dolichyl alpha-D-[14C]mannopyranosyl phosphate yielded several 14C-labeled products, including a trace of D-[14C]mannosyl phosphate, and an acidic fraction which appeared to result from degradation of D-[14C]mannose. The pancreatic dolichyl D-[14C]mannosyl phosphate gave various products, depending on the temperature of the reaction: at 90 degrees, 20 to 30% of the radioactivity was found in D-[14C]mannosyl phosphate and the rest in acidic breakdown products; at 65 degrees, about two-thirds of the radioactivity was recovered in a compound which behaved as D-MANNOSE 2-PHOSPHATE, A Product characteristic of a beta-linked D-mannosyl residue. It is concluded that the pancreatic compound is dolichyl beta-D-[14C]mannosyl phosphate.  相似文献   

18.
Polyprenyl phosphates of different structure were prepared and their ability to serve as sugar acceptors in the biosynthesis of O-specific polysaccharides of Salmonella anatum was investigated. It was demonstrated that C30-C80-polyprenyl phosphates with unsaturated alpha-isoprene unit were as active as natural acceptor (undecaprenyl phosphate) in this enzymic system. C15- and C100-polyprenyl phosphates of this series were less effective in O-antigen repeating unit formation. Citronellyl and dolichyl phosphates (derivatives of C10- and C105-polyprenols, respectively, with saturated alpha-isoprene unit) were poor substrates. For polymerization of repeating units, the polyprenol chain-length is of utmost importance: its shortening results in a marked drop in the efficiency of respective compounds as substrates.  相似文献   

19.
Rat liver slices were pulse labeled for 6 min with [3H]mevalonolactone and then chased for 90 min with unlabeled mevalonolactone in order to study the mechanism of dolichyl phosphate biosynthesis. The cholesterol pathway was also monitored and served to verify the pulse-chase. Under conditions in which radioactivity in the methyl sterol fraction chased to cholesterol, radioactivity in alpha-unsaturated polyprenyl (pyro)-phosphate chased almost exclusively into dolichyl (pyro)phosphate. Lesser amounts of radioactivity appeared in alpha-unsaturated polyprenol and dolichol, and neither exhibited significant decline after 90 min of incubation. The relative rates of cholesterol versus dolichyl phosphate biosynthesis were studied in rat liver under four different nutritional conditions using labeled acetate, while the absolute rates of cholesterol synthesis were determined using 3H2O. From these determinations, the absolute rates of dolichyl phosphate synthesis were calculated. The absolute rates of cholesterol synthesis were found to vary 42-fold while the absolute rates of dolichyl phosphate synthesis were unchanged. To determine the basis for this effect, the rates of synthesis of cholesterol and dolichyl phosphate were quantitated as a function of [3H]mevalonolactone concentration. Plots of nanomoles incorporated into the two lipids were nearly parallel, yielding Km values on the order of 1 mM. In addition, increasing concentrations of mevinolin yielded parallel inhibition of incorporation of [3H]acetate into cholesterol and dolichyl phosphate. The specific activity of squalene synthase in liver microsomes from rats having the highest rate of cholesterol synthesis was only 2-fold greater than in microsomes from rats having the lowest rate. Taken together, the results suggest that the maintenance of constant dolichyl phosphate synthesis under conditions of enhanced cholesterogenesis is not due to saturation of the dolichyl phosphate pathway by either farnesyl pyrophosphate or isopentenyl pyrophosphate but coordinate regulation of hydroxymethylglutaryl-CoA reductase and a reaction on the pathway from farnesyl pyrophosphate to cholesterol.  相似文献   

20.
Incubation of liver microsomes from hibernating ground squirrel with GDP-[14C]mannose and exogenous dolichyl phosphate resulted in the synthesis of dolichyl phosphate [14C]mannose. The mannosyltransferase activity was about 3-fold higher in microsomes from hibernating ground squirrels than in those from active animals. Incubation for 30 min of liver microsomes from hibernating animals with dolichyl pyrophosphate N,N'-diacetyl-[14C]chitobiose and GDP-[14C]mannose led to the synthesis of lipid-[14C]trisaccharide. When liver microsomes were incubated with lipid-[14C]trisaccharide and unlabelled GDP-mannose, lipid-tetra- to heptasaccharides were discovered in the chloroform-methanol (2:1) extract. Since, under the experimental conditions, negligible synthesis of dolichyl phosphate mannose was observed, it was assumed that GDP-mannose was a donor of mannose in the conversion of lipid-trisaccharide into lipid-oligosaccharides containing 2-5 mannose residues.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号