首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
By the early 1970s, the chemiosmotic hypothesis of Peter Mitchell was widely accepted by bioenergetics researchers as the best conceptual scheme to explain how ATP is formed in oxidative and photosynthetic phosphorylation. At about the same time, however, work from a few laboratories suggested that some aspects of that elegant, relatively simple hypothesis required revision - not abandonment, but refinement to accommodate more complex movements of protons in the ATP formation mechanism than originally envisioned by Peter Mitchell. In some situations it appeared that protons were constrained to localized domains rather than always delocalized within an enclosed vesicle as envisioned by chemiosmosis. This minireview tells that story from my perspective, as one of the researchers involved in the experimental approaches that revealed more complex energy coupling proton flux patterns. Ionic conditions during isolated thylakoid storage were found to reversibly switch the [Formula: see text] gradient driving ATP formation between delocalized and localized energy coupling modes. Thylakoid accessible Ca(2+) ions proved to be the switching factor that was responding to the ionic conditions in the storage treatment. The mechanism of Ca(2+) was at least partially demystified when it was shown that the reversible switching between [Formula: see text] energy coupling modes involved Ca(2+) interactions with the 8 kDa CF(0) (the H(+) channel) subunit in a type of H(+) flux gating action. Other experiments showed that the Ca(2+) gating of H(+) flux into the lumen may be a critical regulatory factor in controlling the lumen pH and thereby help regulate the activity of the violaxanthin de-epoxidase enzyme, a key part of the chloroplast photoprotective response to over-energization (excess light) stress.  相似文献   

2.
The 8-kDa subunit c of theE. coli F0 ATP-synthase proton channel was tested for Ca++ binding activity using a45Ca++ ligand blot assay after transferring the protein from SDS-PAGE gels onto polyvinyl difluoride membranes. The purified subunit c binds45Ca++ strongly with Ca++ binding properties very similar to those of the 8-kDa CF0 subunit III of choloroplast thylakoid membranes. The N-terminal f-Met carbonyl group seems necessary for Ca++ binding capacity, shown by loss of Ca++ binding following removal of the formyl group by mild acid treatment. The dicyclohexylcarbodiimide-reactive Asp-61 is not involved in the Ca++ binding, shown by Ca++ binding being retained in twoE. coli mutants, Asp61Asn and Asp61Gly. The Ca++ binding is pH dependent in both theE. coli and thylakoid 8-kDa proteins, being absent at pH 5.0 and rising to a maximum near pH 9.0. A treatment predicted to increase the Ca++ binding affinity to its F0 binding site (chlorpromazine photoaffinity attachment) caused an inhibition of ATP formation driven by a base-to-acid pH jump in whole cells. Inhibition was not observed when the Ca++ chelator EGTA was present with the cells during the chlorpromazine photoaffinity treatment. An apparent Ca++ binding constant on the site responsible for the UV plus chlorpromazine effect of near 80–100 nM was obtained using an EGTA-Ca++ buffer system to control free Ca++ concentration during the UV plus chlorpromazine treatment. The data are consistent with the notion that Ca++ bound to the periplasimic side of theE. coli F0 proton channel can block H+ entry into the channel. A similar effect occurs in thylakoid membranes, but the Ca++ binding site is on the lumen side of the thylakoid, where Ca++ binding can modulate acid-base jump ATP formation. The Ca++ binding to the F0 and CF0 complexes is consistent with a pH-dependent gating mechanism for control of H+ ion flux across the opening of the H+ channel.This work was supported in part by grants from the Department of Energy and the U.S. Department of Agriculture.On leave from the Institute of Soil Science and Photosynthesis, Russian Academy of Science, Pushchino, Russia.  相似文献   

3.
In previous work, calcium ions, bound at the lumenal side of the CF0H+ channel, were suggested to keep a H+ flux gating site closed, favoring sequestered domain H+ ions flowing directly into the CF0-CF1 and driving ATP formation by a localized gradient. Treatments expected to displace Ca++ from binding sites had the effect of allowing H+ ions in the sequestered domains to equilibrate with the lumen, and energy coupling showed delocalized characteristics. The existence of such a gating function implies that a closed-gate configuration would block lumenal H+ ions from entering the CF0-CF1 complex. In this work that prediction was tested using as an assay the dark, acid-base jump ATP formation phenomenon driven by H+ ions derived from succinic acid loaded into the lumen.Chlorpromazine, a photoaffinity probe for many proteins having high-affinity Ca++-binding sites, covalently binds to the 8-kDa CF0 subunit in the largest amounts when there is sufficient Ca++ to favor the localized energy coupling mode, i.e., the gate closed configuration. Photoaffinity-bound chlorpromazine blocked 50% or more of the succinate-dependent acid-base jump ATP formation, provided that the ionic conditions during the UV photoaffinity treatment were those which favor a localized energy coupling pattern and a higher level of chlorpromazine labeling of the 8-kDa CF0 subunit. Thylakoids held under conditions favoring a delocalized energy coupling mode and less chlorpromazine labeling of the CF0 subunit did not show any inhibition of acid-base jump ATP formation.Chlorpromazine and calmidazolium, another Ca++-binding site probe, were also shown to block redox-derived H+ initially released into sequestered domains from entering the lumen, at low levels of domain H+ accumulation, but not at higher H+ uptake levels; ie., the closed gate state can be overcome by sufficiently acidic conditions. That is consistent with the observation that the inhibition of lumenal succinate-dependent ATP formation by photoaffinity-attached chlorpromazine can be reversed by lowering the pH of the acid stage from 5.5 to 4.5.The evidence is consistent with the concept that Ca++ bound at the lumenal side of the CF0 H+ channel can block H+ flux from either direction, consistent with the existence of a molecular structure in the CF0 complex having the properties of a gate for H+ flux across the inner boundary of the CF0. Such a gate could control the expression of localized or delocalized energy coupling gradients.  相似文献   

4.
This work tested the hypothesis that thylakoid localized proton-binding domains, suggested to be involved in localized -driven ATP formation, are maintained with the involvement of several membrane proteins, including the LHCII (Laszlo, J. A., Baker, G. M., and Dilley, R. A. (1984) Biochim. Biophys. Acta 764, 160–169), which comprises about 50% of the total thylakoid protein. The concept we have in mind is that several membrane proteins cooperate to shield a localized proton diffusion pathway from direct contact with the lumen, thus providing a physical barrier to H+ equilibration between the sequestered domains and the lumen. A barely mutant,chlorina f 2, that lacks Chl b and does not accumulate some of the LHCII proteins, was tested for its capacity to carry out localized-proton gradient-dependent ATP formation. Two previously developed assays permit clear discrimination between localized and delocalized gradient-driven ATP formation. Those assays include the effect of a permeable buffer, pyridine, on the number of single-turnover flashes needed to reach the energetic threshold for ATP formation and the more recently developed assay for lumen pH using 8-hydroxy-1,3,6-pyrene trisulfonic acid as a lumenally loaded pH-sensitive fluorescent probe. By those two criteria, the wild-type barley thylakoids revealed either a localized or a delocalized energy coupling mode under low- or high-salt storage conditions, respectively. Addition of Ca++ to the high-salt storage medium caused those thylakoids to maintain a localized energy-coupling response, as previously observed for pea thylakoids. In contrast, thechlorina f 2 mutant thylakoids had an active delocalized energy coupling activity but did not show localized energy coupling under any conditions, and added Ca++ to the thylakoid storage medium did not alter the delocalized energy coupling mode. One interpretation of the results is that the absence of the LHCII polypeptides produces a leaky pathway for protons which allows the gradient to equilibrate with the lumen under all conditions. Another interpretation is possible but seems less likely, that being that the absence of the LHCII polypeptides in some way causes the proposed Ca++ -gated H+ flux site on the membrane sector (CF0) of the energy coupling complex to lose its gating function.  相似文献   

5.
Washing thylakoid membranes with 1 M LiCl causes the release of the beta subunit from the chloroplast energy transducing complex (CF1.CF0) in spinach chloroplasts. This protein purifies by size exclusion chromatography as a 180-kDa aggregate and, thus, is probably composed of a trimer of beta polypeptides. The purified aggregate binds ADP to a high and a low affinity site with dissociation constants of 15 and 202 microM, respectively. Mg2+ is required for ADP to bind to both sites. Manganese binds to the protein in a cooperative manner to at least two sites with high affinity. The beta subunit preparation catalyzes Mg2+-dependent ATP hydrolysis at rates which are comparable to other subunit-deficient CF1 preparations and is increased by treatments known to activate the Mg2+-ATPase activity of CF1. However, Ca2+ is not an effective cofactor for this reaction and treatments which activate the Ca2+-ATPase of CF1 are either ineffective or inhibitory.  相似文献   

6.
We have characterized the subunit composition of the chloroplast ATP synthase from Chlamydomonas reinhardtii by means of a comparison of the polypeptide deficiencies in a mutant defective in photophosphorylation, with the polypeptide content in purified coupling factor (CF)1 and CF1.CF0 complexes. We could distinguish nine subunits in the enzyme, four of which were CF0 subunits. Further characterization of these subunits was undertaken by immunoblotting experiments, [14C]dicyclohexylcarbodiimide binding and analysis of their site of translation. In particular, we were able to show the presence of an as yet unidentified delta subunit in CF1 from C. reinhardtii. We have identified a 70-kDa peripheral membrane protein in the thylakoid membranes of C. reinhardtii, which is immunologically related to the beta subunit of CF1. We discuss its conceivable ATPase function with respect to the Ca2+-dependent ATPase activity previously reported in the thylakoid membranes from C. reinhardtii.  相似文献   

7.
Possible structural and functional similarities between the channel part, CF0, of chloroplast ATPase (CF0CF1) and ion channels permeable to monovalent cations were investigated using high-affinity toxins mainly targeted against voltage-sensitive K+ channels. In particular, the effect of the K(+)-channel blocker alpha-dendrotoxin and the crude scorpion venom of Leiurus quinquestriatus hebraeus (LQ venom) on ATP synthesis in thylakoid membranes and in CF0CF1-containing liposomes was characterised. Alpha-dendrotoxin (K(i) approximately 5.05 microM) and the LQ venom (K(i) approximately 1.55 micrograms/ml) specifically inhibited ATP synthesis in thylakoid membranes and in CF0CF1-containing liposomes. Our results show that alpha-dendrotoxin and peptides of the LQ venom with an apparent molecular mass of about 4.0 kDa, probably isoforms of charybdotoxin, specifically bind to CF0CF1. This binding was reversible and induced a high leak conductance for H+ through CF0. The Ca(2+)-dependent ATPase activity of the isolated soluble part of CF0CF1 (CF1) was completely inhibited by 1 microM alpha-dendrotoxin, while the crude LQ venom, at concentrations up to 10 micrograms/ml, had no affect on ATPase activity. The concentration dependence of the inhibition by alpha-dendrotoxin indicates that approximately 2 mol alpha-dendrotoxin bind/mol CF0CF1 and 1 mol alpha-dendrotoxin/mol CF1. Known inhibitors of H(+)-flow-through CF0 acted in the presence of alpha-dendrotoxin synergistically. Dicyclohexylcarbodiimide and venturicidin, in contrast to their known effect of blocking H(+)-flow-through CF0, increased the leak conductance through CF0 in the presence of alpha-dendrotoxin drastically. This uncoupling effect indicates that their normal mode of blocking is a secondary effect. Binding of the inhibitors to their respective sites apparently does not affect the proton pathway in CF0, but induces a conformation which closes the channel part for H+. Protein sequence comparison between the known binding site of charybdotoxin in the shaker K+ channel from Drosophila [MacKinnon, R. & Heginbotham, L. (1990) Neuron 5, 767-771] and the choroplast ATPase showed that subunit III reveals a significant similarity (64%) in parts of its sequence (Gln28-Leu53) to the helix 5 and helix 6 (S5-S6) linker region (Ala413-Cys462; the charybdotoxin-binding site) of the shaker K+ channel. According to secondary-structure predictions, the homologous sequences in subunit III and the shaker K+ channel represent putative hydrophilic loops connecting two transmembrane alpha-helices. Apparently the shaker K+ channel and subunit III share significant topological features in these hydrophilic loops which may be part of the respective channel entrance.  相似文献   

8.
Using Ca(2+)-dependent affinity chromatography on a synthetic compound (W-77)-coupled Sepharose 4B column, we purified two different Ca(2+)-binding proteins from rabbit lung extracts. The molecular weights of these proteins were estimated to be 17 kDa (calmodulin) and 10 kDa, respectively. The partial amino acid sequence of the 10-kDa protein revealed that it has two EF-hand structures. In addition, the 10-kDa protein was highly homologous (91%) to the product of growth-regulated gene, 2A9 (calcyclin). The Ca(2+)-binding property of the 10-kDa protein was observed by a change in the uv difference spectrum. Equilibrium dialysis showed that 1 mol of the 10-kDa protein bound to 2.04 +/- 0.05 mol of Ca2+ in the presence of 10(-4) M Ca2+. However, the protein failed to activate calmodulin-dependent enzymes such as Ca2+/CaM kinase II, myosin light chain kinase, and phosphodiesterase. We found that a 50-kDa cytosolic protein of the rabbit lung, intestine, and spleen bound to the 10-kDa protein, in a Ca(2+)-dependent manner. The distribution of calcyclin and calcyclin binding proteins was unique and seems to differ from that of calmodulin and calmodulin-binding proteins. Thus, calcyclin probably plays a physiological role through its binding proteins for the Ca(2+)-dependent cellular response.  相似文献   

9.
The glucocorticoid hormone receptor (92 kDa), purified 9000-fold from rat liver cytosol by steroid affinity chromatography and DEAE-Sephacel chromatography, was assayed for the presence of protein kinase activity by incubations with [gamma-32P]ATP and the photoaffinity label 8-azido-[gamma-32P]ATP. Control preparations isolated by affinity chromatography in the presence of excess steroid to prevent the receptor from binding to the affinity matrix were assayed for kinase activity in parallel. The receptor was not labeled by the photoaffinity label under photoactivation conditions in the presence of Ca2+ or Mg2+. A Mg2+-dependent protein kinase (48 kDa) that could be photoaffinity labeled with 8-azido-ATP copurified with the receptor. This kinase was also present in control preparations. The kinase could phosphorylate several minor contaminants present in the receptor preparation, including a protein (or proteins) of similar molecular weight to the receptor. The phosphorylation of 90-92-kDa proteins was independent of the state of transformation or steroid-binding activity of the receptor. These experiments provide direct evidence that neither the glucocorticoid receptor nor the 90-92-kDa non-steroid-binding protein associated with the molybdate-stabilized glucocorticoid receptor possesses intrinsic Ca2+- or Mg2+-dependent protein kinase activity.  相似文献   

10.
Purified Ca(2+)-stimulated, Mg(2+)-dependent ATPase (Ca(2+)-ATPase) from human erythrocytes was phosphorylated with a stoichiometry of about 1 mol of phosphate/mol of ATPase at both threonine and serine residues by purified rat brain type III protein kinase C. In the presence of calmodulin, the phosphorylation was markedly reduced. Labeled phosphate from [gamma-32P]ATP was retained on an 86-kDa calmodulin-binding tryptic fragment of Ca(2+)-ATPase but not on 82- and 77-kDa non-calmodulin-binding fragments. Similarly, fragmentation of the phosphorylated Ca(2+)-ATPase by calpain I revealed that calmodulin-binding fragments (127 and 125 kDa) retained phosphate label whereas a non-calmodulin-binding fragment (124 kDa) did not. The calmodulin-binding domain, located about 12 kDa from the carboxyl terminus of the Ca(2+)-ATPase, was thus located as a site of protein kinase C phosphorylation. A synthetic peptide corresponding to a segment of the calmodulin-binding domain (H2 N-R-G-L-N-R-I-Q-T-Q-I-K-V-V-N-COOH) was indeed phosphorylated at the single threonine residue within this sequence. The additional serine phosphorylation site was carboxyl terminal to the calmodulin domain. Phosphorylation by purified type III protein kinase C (canine heart) antagonized the calmodulin activation of the Ca(2+)-ATPase, particularly at lower Ca2+ concentrations (0.2-1.0 microM). By contrast, a purified but unresolved protein kinase C isoenzyme mixture from rat brain stimulated the activity of Ca(2+)-ATPase prepared in asolectin, but not glycerol, by more than 2-fold in the presence of the ionophore A23187, without increasing its Ca2+ sensitivity. The results clearly indicate that human erythrocyte Ca(2+)-ATPase is a substrate of protein kinase C, but the effect of phosphorylation on the activity of the enzyme depends on the isoenzyme form of protein kinase C used and on the lipid associated with the Ca(2+)-ATPase.  相似文献   

11.
To assess the availability of Ca2+ in the lumen of the thylakoid membrane that is required to support the assembly of the oxygen-evolving complex of photosystem II, we have investigated the mechanism of 45Ca2+ transport into the lumen of pea (Pisum sativum) thylakoid membranes using silicone-oil centrifugation. Trans-thylakoid Ca2+ transport is dependent on light or, in the dark, on exogenously added ATP. Both light and ATP hydrolysis are coupled to Ca2+ transport through the formation of a transthylakoid pH gradient. The H+-transporting ionophores nigericin/K+ and carbonyl cyanide 3-chlorophenylhydrazone inhibit the transport of Ca2+. Thylakoid membranes are capable of accumulating up to 30 nmol Ca2+ mg-1 chlorophyll from external concentrations of 15 μM over the course of a 15-min reaction. These results are consistent with the presence of an active Ca2+/H+ antiport in the thylakoid membrane. Ca2+ transport across the thylakoid membrane has significant implications for chloroplast and plant Ca2+ homeostasis. We propose a model of chloroplast Ca2+ regulation whereby the activity of the Ca2+/H+ antiporter facilitates the light-dependent uptake of Ca2+ by chloroplasts and reduces stromal Ca2+ levels.  相似文献   

12.
Calreticulin is a 60-kDa Ca(2+)-binding protein of the endo(sarco)plasmic reticulum membranes of a variety of cellular systems. The protein binds approximately 25 mol of Ca2+ with low affinity and approximately 1 mol of Ca2+ with high affinity and is believed to be a site for Ca2+ binding/storage in the lumen of the endo(sarco)plasmic reticulum. In the present study, we describe purification procedures for the isolation of recombinant and native calreticulin. Recombinant calreticulin was expressed in Escherichia coli, using the glutathione S-transferase fusion protein system, and was purified to homogeneity on glutathione-Sepharose followed by Mono Q FPLC chromatography. A selective ammonium sulfate precipitation method was developed for the purification of native calreticulin. The protein was purified from ammonium sulfate precipitates by diethylaminoethyl-Sephadex and hydroxylapatite chromatography procedures, which eliminates the need to prepare membrane fractions. The purification procedures reported here for recombinant and native calreticulin yield homogeneous preparations of the proteins, as judged by the HPLC reverse-phase chromatography and by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Purified native and recombinant calreticulin were identified by their NH2-terminal amino acid sequences, by their Ca2+ binding properties, and by their reactivity with anticalreticulin antibodies.  相似文献   

13.
In order to understand the dynamics of the endoplasmic reticulum (ER) luminal environment, we investigated the role of Ca(2+), Zn(2+), and ATP on conformational changes of calreticulin. Purified calreticulin was digested with trypsin in the presence or absence of Ca(2+), Zn(2+), and ATP. At low Ca(2+) concentration (<100 micrometer), calreticulin is rapidly and fully degraded by trypsin, indicating that under these conditions the protein is in a highly trypsin-susceptible conformation. Increasing Ca(2+) concentration up to 500 micrometer or 1 mm resulted in protection of the full-length calreticulin and in generation of the 27-kDa fragment highly resistant to trypsin digestion. The 27-kDa protease-resistant core of the protein represented the NH(2)-terminal half of calreticulin and was identified by its reactivity with specific antibodies and by NH(2)-terminal amino acid sequence analysis. Ca(2+)-dependent changes in calreticulin's sensitivity to proteolysis indicate that agonist-induced fluctuation in the free ER luminal Ca(2+) concentration may affect the protein conformation and function. Trypsin digestion of calreticulin in the presence of Zn(2+) resulted in the formation of a 17-kDa central protease-resistant core in the protein corresponding to the central region of the protein, indicating that under these conditions the N- and C-domains of the protein are in an extended conformation. Here we also show that calreticulin is an ATP-binding protein but that it does not contain detectable ATPase activity. Digestion of the protein with trypsin in the presence of Mg(2+)-ATP protects the full-length protein. These results indicate that calreticulin may undergo frequent, ion-induced conformation changes, which may affect its function and its ability to interact with other proteins in the lumen of the ER.  相似文献   

14.
15.
We determined the H+ and Ca(2+) uptake by fission yeast membranes separated on sucrose gradient and found that (i) Ca(2+) sequestering is due to Ca(2+)/H+ antiporter(s) localized to secretory pathway organelles while Ca(2+)-ATPase activity is not detectable in their membranes; (ii) immunochemically distinct V-H+-ATPases acidify the lumen of the secretory pathway organelles. The data indicate that the endoplasmic reticulum, Golgi and vacuole form a network of Ca(2+) and H+ stores in the single cell, providing favorable conditions for such key processes as protein folding/sorting, membrane fusion, ion homeostasis and Ca(2+) signaling in a differential and local manner.  相似文献   

16.
In vitro protein binding assays identified two distinct calmodulin (CaM) binding sites within the NH(2)-terminal 30-kDa domain of erythrocyte protein 4.1 (4.1R): a Ca(2+)-independent binding site (A(264)KKLWKVCVEHHTFFRL) and a Ca(2+)-dependent binding site (A(181)KKLSMYGVDLHKAKDL). Synthetic peptides corresponding to these sequences bound CaM in vitro; conversely, deletion of these peptides from a 30-kDa construct reduced binding to CaM. Thus, 4.1R is a unique CaM-binding protein in that it has distinct Ca(2+)-dependent and Ca(2+)-independent high affinity CaM binding sites. CaM bound to 4.1R at a stoichiometry of 1:1 both in the presence and absence of Ca(2+), implying that one CaM molecule binds to two distinct sites in the same molecule of 4.1R. Interactions of 4.1R with membrane proteins such as band 3 is regulated by Ca(2+) and CaM. While the intrinsic affinity of the 30-kDa domain for the cytoplasmic tail of erythrocyte membrane band 3 was not altered by elimination of one or both CaM binding sites, the ability of Ca(2+)/CaM to down-regulate 4. 1R-band 3 interaction was abrogated by such deletions. Thus, regulation of protein 4.1 binding to membrane proteins by Ca(2+) and CaM requires binding of CaM to both Ca(2+)-independent and Ca(2+)-dependent sites in protein 4.1.  相似文献   

17.
The effect of 2'(3')-O-(2,4,6-trinitrophenyl)-adenosine 5'-diphosphate (TNP-ADP) on photophosphorylation and on the proton conductivity of the thylakoid membrane has been investigated. The results show that TNP-ADP is a potent competitive inhibitor of photophosphorylation (Ki = 1-2 microM). Moreover, in the absence of ADP and Pi, TNP-ADP accelerates basal electron transport of chloroplasts. Addition of ADP, which promotes release of the analogue from CF1, completely reverses this effect of TNP-ADP; likewise Pi alone reverses stimulation of electron transport by TNP-ADP. Dicyclohexylcarbodiimide treatment, which is known to close CF0 to H+, completely abolishes the effect of TNP-ADP. The measurements of the alkalization of the medium and the acidification of the thylakoid lumen following single turnover flashes showed that binding of TNP-ADP to CF1 increased membrane permeability for H+. Further results suggest that binding of TNP-ADP to the catalytic site of CF1 opens the CF0-CF1 complex for H+. Since ADP, as well as Pi alone, reverses the effect, it is concluded that TNP-ADP induces a conformation of the CF0-CF1 complex similar to the one triggered by simultaneous binding of ADP plus Pi. This may be achieved by interaction of the TNP residue with the Pi binding site. Thus it seems that the status of the catalytic site(s) in CF1 can be transmitted to the CF0 part to control proton flux through the ATPase complex in an economically reasonable way.  相似文献   

18.
T Ono  S Izawa  Y Inoue 《Biochemistry》1992,31(33):7648-7655
Depletion of functional Ca2+ from photosystem (PS) II membranes impairs O2 evolution. Redox properties of the Mn cluster as probed by thermoluminescence were modified differently in Ca(2+)-depleted PSII depending on the procedure for Ca2+ extraction. Ca2+ depletion by low-pH treatment gave rise to an abnormally modified S2 state exhibiting a thermoluminescence band with elevated peak temperature accompanied by a marked upshift in threshold temperature for its formation, whereas Ca2+ depletion by NaCl washing in the light followed by the addition of EDTA could generate a similarly modified S2 state only when the Ca(2+)-depleted PSII was reconstituted with the 24-kDa extrinsic proteins. These results indicated that manifestation of the abnormal properties of the Ca(2+)-depleted S2 state is significantly contributed by the association of the 24-kDa extrinsic protein to PSII. It was inferred that the 24-kDa extrinsic protein regulates the structure and function of the Mn cluster in the absence of functional Ca2+ through a conformational modulation of the intrinsic protein(s) that bind(s) both Mn and Ca. Features of the extrinsic protein-dependent modulation of the Mn cluster were discussed in relation to the function of Ca2+ in O2 evolution.  相似文献   

19.
Part of the chloroplast photoprotection response to excess light absorption involves formation of zeaxanthin (and antheraxanthin) via the violaxanthin deepoxidase enzyme, the activity of which requires lumen acidity near or below pH 6.0. Clearly, the violaxanthin de-epoxidase activity is strongly regulated because at equivalent energization levels (including the parameters of H+ accumulation and ATP formation rates), there can be either low or high violaxanthin de-epoxidase enzyme activity. This work shows that the factor or factors responsible for regulating the violaxanthin deepoxidase correlate directly with those which regulate the expression of membrane-localized or delocalized proton gradient (Δ~μH+) energy coupling. The most clearly identified factor regulating switching between localized and delocalized energy coupling modes is Ca2+ binding to the lumen side of the thylakoid membrane; in particular, Ca2+ binding to the 8 kDA subunit III of the CFo H+ channel. The activity of violaxanthin deepoxidase in pea (Pisum sativa) and spinach (Spinacea oleracea) thylakoids is shown here to be strongly correlated with conditions known from previous work to displace Ca2+ from the CFo H+ channel and thus to modulate the extent of lumenal acidification while maintaining a fairly constant rate of ATP formation. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

20.
Serum amyloid P component (SAP) is a decamer of 10 identical 25.5-kDa subunits. Limited proteolysis of SAP with alpha-chymotrypsin cleaves the subunit into two fragments of 18 and 7.5 kDa, although the fragments stay together in the decamer under nondenaturing conditions. Proteolysis does not occur in the presence of Ca2+ (10 mM). Cleavage with alpha-chymotrypsin prevents the Ca(2+)-dependent binding of SAP to zymosan extract, nucleosomes, and DNA. The alpha-chymotrypsin cleavage site identified is in a region of SAP that is highly conserved in members of the human C-reactive protein (CRP) family of proteins (pentraxins) to which SAP belongs and is similar to the Ca(2+)-binding site in calmodulin and related Ca(2+)-binding proteins (Nguyen, N.Y., Suzuki, A., Boykins, R.A., & Liu, T.-Y., 1986, J. Biol. Chem. 261, 10456-10465). Treatment of SAP with other proteases (trypsin, Pronase, and Nagarse protease) yields fragmentation patterns upon sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) that are similar to those obtained with alpha-chymotrypsin. Two other members of the pentraxin family of proteins, hamster female protein and rabbit CRP, also exhibit similar fragmentation patterns on SDS-PAGE when treated with the various proteases. Recently, it has been shown that the homologous protein, human CRP, is cleaved in the same homologous position as cleavage of SAP by alpha-chymotrypsin, resulting in the loss of Ca(2+)-binding (as shown by equilibrium dialysis) and Ca(2+)-dependent binding reactivities (Kinoshita, C.M., Ying, S.-C., Hugli, T.E., Siegel, J.N., Potempa, L.A., Jiang, H.J., Houghten, R.A., & Gewurz, H., 1989, Biochemistry 28, 9840-9848).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号