首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
5.
目前,有关不定芽发生的研究主要集中在单基因的调控方面,缺乏转录组方面的系统研究.利用RNA-seq高通量测序技术在全基因组范围内检测了不定芽发生早期的基因表达谱,共检测到2457个差异表达基因.这些基因参与了激素代谢和信号转导、愈伤组织和侧根的形成、茎顶端分生组织的发育和光合作用等过程.进一步的途径富集分析表明,不定芽发生早期苯丙氨酸代谢和苯丙胺素合成等途径相关的基因显著富集.并且苯丙氨酸可以显著抑制不定芽的发生,暗示了苯丙氨酸代谢和苯丙胺素的合成可能在不定芽发生过程起着重要的作用.  相似文献   

6.
7.
Somatic embryogenesis is an obvious experimental evidence of totipotency, and is used as a model system for studying the mechanisms of de-differentiation and re-differentiation of plant cells. Although Arabidopsis is widely used as a model plant for genetic and molecular biological studies, there is no available tissue culture system for inducing somatic embryogenesis from somatic cells in this plant. We established a new tissue culture system using stress treatment to induce somatic embryogenesis in Arabidopsis. In this system, stress treatment induced formation of somatic embryos from shoot-apical-tip and floral-bud explants. The somatic embryos grew into young plantlets with normal morphology, including cotyledons, hypocotyls, and roots, and some embryo-specific genes (ABI3 and FUS3) were expressed in these embryos. Several stresses (osmotic, heavy metal ion, and dehydration stress) induced somatic embryogenesis, but the optimum stress treatment differed between different stressors. When we used mannitol to cause osmotic stress, the optimal conditions for somatic embryogenesis were 6-9 h of culture on solid B5 medium containing 0.7 m mannitol, after which the explants were transferred to B5 medium containing 2,4-dichlorophenoxyacetic acid (2,4-D, 4.5 microm), but no mannitol. Using this tissue culture system, we induced somatic embryogenesis in three major ecotypes of Arabidopsis thaliana-Ws, Col, and Ler.  相似文献   

8.
We employed a gene trap approach to identify genes expressed in stomatal guard cells of Arabidopsis thaliana . We examined patterns of reporter gene expression in approximately 20 000 gene trap lines, and recovered five lines with exclusive or preferential expression in stomata. The screen yielded two insertions in annotated genes, encoding the CYTOCHROME P450 86A2 (CYP86A2) mono-oxygenase, and the PLEIOTROPIC DRUG RESISTANCE 3 (AtPDR3) transporter. Expression of the trapped genes in guard cells was confirmed by RT-PCR experiments in purified stomata. Examination of homozygous mutant lines revealed that abscisic acid (ABA)-induced stomatal closure was impaired in the atpdr3 mutant. In three lines, insertions occurred outside transcribed units. Expression analysis of the genes surrounding the trapping inserts identified two genes selectively expressed in guard cells, corresponding to a PP2C PROTEIN PHOSPHATASE and an unknown expressed protein gene. Statistical analyses of the chromosomal regions tagged by the gene trap insertions revealed an over-represented [A/T]AAAG motif, previously described as an essential cis -active element for gene expression in stomata. The lines described in this work identify novel genes involved in the modulation of stomatal activity, provide useful markers for the study of developmental pathways in guard cells, and are a valuable source of guard cell-specific promoters.  相似文献   

9.
10.
11.
12.
The psbQ gene encoding a 16-kDa polypeptide of the oxygen-evolving complex of photosystem II has been isolated from Arabidopsis thaliana and characterized. The gene consists of a 28 nucleotide long leader sequence, two introns and three exons encoding a 223-amino-acid precursor polypeptide. The first 75 amino acids act as a transit peptide for the translocation of the polypeptide into the thylakoid lumen. Expression studies show that the gene is light-inducible and expresses only in green tissues with high steady-state mRNA levels in leaves. Using this gene as a probe, restriction fragment length polymorphism between two ecotypes, Columbia and Estland, has also been detected.  相似文献   

13.
Somatic embryogenesis requires auxin and establishment of the shoot apical meristem (SAM). WUSCHEL ( WUS ) is critical for stem cell fate determination in the SAM of higher plants. However, regulation of WUS expression by auxin during somatic embryogenesis is poorly understood. Here, we show that expression of several regulatory genes important in zygotic embryogenesis were up-regulated during somatic embryogenesis of Arabidopsis. Interestingly, WUS expression was induced within the embryonic callus at a time when somatic embryos could not be identified morphologically or molecularly. Correct WUS expression, regulated by a defined critical level of exogenous auxin, is essential for somatic embryo induction. Furthermore, it was found that auxin gradients were established in specific regions that could then give rise to somatic embryos. The establishment of auxin gradients was correlated with the induced WUS expression. Moreover, the auxin gradients appear to activate PIN1 polar localization within the embryonic callus. Polarized PIN1 is probably responsible for the observed polar auxin transport and auxin accumulation in the SAM and somatic embryo. Suppression of WUS and PIN1 indicated that both genes are necessary for embryo induction through their regulation of downstream gene expression. Our results reveal that establishment of auxin gradients and PIN1-mediated polar auxin transport are essential for WUS induction and somatic embryogenesis. This study sheds new light on how auxin regulates stem cell formation during somatic embryogenesis.  相似文献   

14.
Gene expression is controlled and regulated by interactions between cis-regulatory DNA elements (CREs) and regulatory proteins. Enhancers are one of the most important classes of CREs in eukaryotes. Eukaryotic genes, especially those related to development or responses to environmental cues, are often regulated by multiple enhancers in different tissues and/or at different developmental stages. Remarkably, little is known about the molecular mechanisms by which enhancers regulate gene expression in plants. We identified a distal enhancer, CREβ, which regulates the expression of AtDGK7, which encodes a diacylglycerol kinase in Arabidopsis. We developed a transgenic line containing the luciferase reporter gene (LUC) driven by CREβ fused with a minimal cauliflower mosaic virus (CaMV) 35S promoter. The CREβ enhancer was shown to play a role in the response to osmotic pressure of the LUC reporter gene. A forward genetic screen pipeline based on the transgenic line was established to generate mutations associated with altered expression of the LUC reporter gene. We identified a suite of mutants with variable LUC expression levels as well as different segregation patterns of the mutations in populations. We demonstrate that this pipeline will allow us to identify trans-regulatory factors associated with CREβ function as well as those acting in the regulation of the endogenous AtDGK7 gene.  相似文献   

15.
16.
17.
18.
We have developed a single-embryo RT-PCR protocol for studying gene expression during plant embryogenesis. Four genes,glyceraldhyde-3-phosphate dehydrogenase (GAPC), shoot-meristemless (STM), monopteros (MP), andshaggy-like kinase etha (ASKη), fromArabidopsis thaliana were used to test the sensitivity and reliability of this method by analyzing the differential signal intensities of their RT-PCR products. The method could detect genes expressed during embryogenesis at a single-embryo level and, therefore, can be used to identify phenotypes. When in vitro, embryogenesis also is used to control the time course of zygote development exactly. The single-embryo RT-PCR protocol becomes a powerful method to survey the dynamics of specific gene expression.  相似文献   

19.
报道了细菌Xanthobacter autotrophicus编码卤代烷烃脱卤酶基因在拟南芥菜中的高效表达。以土壤农杆菌介导将该基因整合到拟南芥菜基因组中,经数代筛选得到了转基因纯合种子,Northern印迹和气相色谱检测表明,转基因的表达程度很高,酶量占细胞总可溶性蛋白的8%,酶活力达7.8mU·ml-1提取物。转基因植株在含二氯乙烷的培养基上不能生长。  相似文献   

20.
Cullin (CUL)-dependent ubiquitin ligases form a class of structurally related multisubunit enzymes that control the rapid and selective degradation of important regulatory proteins involved in cell cycle progression and development, among others. The CUL3-BTB ligases belong to this class of enzymes and despite recent findings on their molecular composition, our knowledge on their functions and substrates remains still very limited. In contrast to budding and fission yeast, CUL3 is an essential gene in metazoans. The model plant Arabidopsis thaliana encodes two related CUL3 genes, called CUL3A and CUL3B. We recently reported that cul3a loss-of-function mutants are viable but exhibit a mild flowering and light sensitivity phenotype. We investigated the spatial and temporal expression of the two CUL3 genes in reproductive tissues and found that their expression patterns are largely overlapping suggesting possible functional redundancy. Thus, we investigated the consequences on plant development of combined Arabidopsis cul3a cul3b loss-of-function mutations. Homozygous cul3b mutant plants developed normally and were fully fertile. However, the disruption of both the CUL3A and CUL3B genes reduced gametophytic transmission and caused embryo lethality. The observed embryo abortion was found to be under maternal control. Arrest of embryogenesis occurred at multiple stages of embryo development, but predominantly at the heart stage. At the cytological level, CUL3 loss-of-function mutations affected both embryo pattern formation and endosperm development.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号