首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Processive DNA replication requires the loading of a multisubunit ring-shaped protein complex, known as a sliding or processivity clamp, onto the primer-template (p/t) DNA. This clamp then binds to the replication polymerase to form a processive polymerase holoenzyme. The processivity of the holoenzyme derives from the topological properties of the clamp, which encircles the DNA without actually binding to it. Multisubunit complexes known as clamp-loaders utilize ATP to drive the placement of this ring around the DNA. To further understand the role of ATP binding and hydrolysis in driving clamp-loading in the DNA replication system of bacteriophage T4, we report the results of a series of presteady-state and steady-state kinetic ATPase experiments involving the various components of the reconstituted system. The results obtained are consistent with a mechanism in which a slow step, which involves the binary ATP-bound clamp-clamp loader complex, activates this complex and permits p/t DNA to bind and stimulate ATP hydrolysis. ATP hydrolysis itself, as well as the subsequent (after clamp-loading) dissociation of the clamp-loader and the slippage of the loaded clamp from the p/t DNA construct, are shown to be fast steps. A second slow step occurs after ATP hydrolysis. This step involves the dissociated clamp loader complex and may reflect ADP release. Only one molecule of ATP is hydrolyzed per clamp-loading event. Rate constants for each step, and an overall reaction mechanism for the T4 clamp-loading system, are derived from these data and from other results in the literature. The principles that emerge fit into a general framework that can apply to many biological processes involving ATP-driven reaction cycles.  相似文献   

2.
Ring-shaped sliding clamps encircle DNA and bind to DNA polymerase, thereby preventing it from falling off during DNA replication. In eukaryotes, sliding clamps are loaded onto DNA by the replication factor C (RFC) complex, which consists of five distinct subunits (A–E), each of which contains an AAA+ module composed of a RecA-like α/β ATPase domain followed by a helical domain. AAA+ ATPases mediate chaperone-like protein remodeling. Despite remarkable progress in our understanding of clamp loaders, it is still unclear how recognition of primed DNA by RFC triggers ATP hydrolysis and how hydrolysis leads to conformational changes that can load the clamp onto DNA. While these questions can, of course, only be resolved experimentally, the design of such experiments is itself non-trivial and requires that one first formulate the right hypotheses based on preliminary observations. The functional constraints imposed on protein sequences during evolution are potential sources of information in this regard, inasmuch as these presumably are due to and thus reflect underlying mechanisms. Here, rigorous statistical procedures are used to measure and compare the constraints imposed on various RFC clamp-loader subunits, each of which performs a related but somewhat different, specialized function. Visualization of these constraints, within the context of the RFC structure, provides clues regarding clamp-loader mechanisms—suggesting, for example, that RFC-A possesses a triggering component for DNA-dependent ATP hydrolysis. It also suggests that, starting with RFC-A, four RFC subunits (A–D) are sequentially activated through a propagated switching mechanism in which a conserved arginine swings away from a position that disrupts the catalytic Walker B region and into contact with DNA thread through the center of the RFC/clamp complex. Strong constraints near regions of interaction between subunits and with the clamp likewise provide clues regarding possible coupling of hydrolysis-driven conformational changes to the clamp's release and loading onto DNA.  相似文献   

3.
Most DNA replication systems include a sliding clamp that encircles the genomic DNA and links the polymerase to the template to control polymerase processivity. A loading complex is required to open the clamp and place it onto the DNA. In phage T4 this complex consists of a trimeric clamp of gp45 subunits and a pentameric loader assembly of four gp44 and one gp62 subunit(s), with clamp loading driven by ATP binding. We measure this binding as a function of input ligand concentration and show that four ATPs bind to the gp44/62 complex with equal affinity. In contrast, the ATPase rate profile of the clamp-clamp loader complex exhibits a marked peak at an input ATP concentration close to the overall Kd (approximately 30 microm), with further increases in bound ATP decreasing the ATPase rate to a much lower level. Thus the progressive binding of the four ATPs triggers a conformational change in the complex that markedly inhibits ATPase activity. This inhibition is related to ring opening by using a clamp that is covalently cross-linked across its subunit interfaces and thus rendered incapable of opening. Binding of this clamp abolishes substrate inhibition of the ATPase but leaves ATP binding unchanged. We show that four ATP ligands must bind to the T4 clamp loader before the loader can be fully "activated" and the clamp opened, and that ATP hydrolysis is required only for release of the loader complex after clamp loading onto the replication fork has been completed.  相似文献   

4.
The beta sliding clamp encircles DNA and enables processive replication of the Escherichia coli genome by DNA polymerase III holoenzyme. The clamp loader, gamma complex, assembles beta around DNA in an ATP-fueled reaction. Previous studies have shown that gamma complex opens the beta ring and also interacts with DNA on binding ATP. Here, a rapid kinetic analysis demonstrates that gamma complex hydrolyzes two ATP molecules sequentially when placing beta around DNA. The first ATP is hydrolyzed fast, at 25-30 s(-1), while the second ATP hydrolysis is limited to the steady-state rate of 2 s(-1). This step-wise reaction depends on both primed DNA and beta. DNA alone promotes rapid hydrolysis of two ATP molecules, while beta alone permits hydrolysis of only one ATP. These results suggest that beta inserts a slow step between the two ATP hydrolysis events in clamp assembly, during which the clamp loader may perform work on the clamp. Moreover, one ATP hydrolysis is sufficient for release of beta from the gamma complex. This implies that DNA-dependent hydrolysis of the other ATP is coupled to a separate function, perhaps involving work on DNA. A model is presented in which sequential ATP hydrolysis drives distinct events in the clamp-assembly pathway. We also discuss underlying principles of this step-wise mechanism that may apply to the workings of other ATP-fueled biological machines.  相似文献   

5.
In Escherichia coli, a complex consisting of Hda and the DNA-loaded clamp-subunit of the DNA polymerase III holoenzyme promotes hydrolysis of DnaA-ATP. The resultant ADP-DnaA is inactive for initiation of chromosomal DNA replication, thereby repressing excessive initiations. As the cellular content of the clamp is 10-100 times higher than that of Hda, most Hda molecules might be complexed with the clamp in vivo. Although Hda predominantly forms irregular aggregates when overexpressed, in the present study we found that co-overexpression of the clamp with Hda enhances Hda solubility dramatically and we efficiently isolated the Hda-clamp complex. A single molecule of the complex appears to consist of two Hda molecules and a single clamp. The complex is competent in DnaA-ATP hydrolysis and DNA replication in the presence of DNA and the clamp deficient subassembly of the DNA polymerase III holoenzyme (pol III*). These findings indicate that the clamp contained in the complex is loaded onto DNA through an interaction with the pol III* and that the Hda activity is preserved in these processes. The complex consisting of Hda and the DNA-unloaded clamp may play a specific role in a process proceeding to the DnaA-ATP hydrolysis in vivo.  相似文献   

6.
Zhuang Z  Berdis AJ  Benkovic SJ 《Biochemistry》2006,45(26):7976-7989
In bacteriophage T4, a clamp loading pathway that utilizes the T4 clamp loader (gp44/62) and ATP hydrolysis initially to form a complex with the clamp (gp45) has been demonstrated, followed by interaction with DNA and closing of the clamp. However, the recent observation that gp45 exists as an opened form in solution raises the possibility of other pathways for clamp loading. In this study, an alternative clamp loading sequence is evaluated in which gp44/62 first recognizes the DNA substrate and then sequesters the clamp from solution and loads it onto DNA. This pathway differs in terms of the initial formation of a gp44/62-DNA complex that is capable of loading gp45. In this work, we demonstrate ATP-dependent DNA binding by gp44/62. Among various DNA structures that were tested, gp44/62 binds specifically to primer-template DNA but not to single-stranded DNA or blunt-end duplex DNA. By tracing the dynamic clamp closing with pre-steady-state FRET measurements, we show that the clamp loader-DNA complex is functional in clamp loading. Furthermore, pre-steady-state ATP hydrolysis experiments suggest that 1 equiv of ATP is hydrolyzed when gp44/62 binds to DNA, and additional ATP hydrolysis is associated with the completion of the clamp loading process. We also investigated the detailed kinetics of binding of MANT-nucleotide to gp44/62 through stopped-flow FRET and demonstrated a conformational change as the result of ATP, but not ADP binding. The collective kinetic data allowed us to propose and evaluate a sequence of steps describing this alternative pathway for clamp loading and holoenzyme formation.  相似文献   

7.
The Escherichia coli DNA polymerase III gamma complex clamp loader assembles the ring-shaped beta sliding clamp onto DNA. The core polymerase is tethered to the template by beta, enabling processive replication of the genome. Here we investigate the DNA substrate specificity of the clamp-loading reaction by measuring the pre-steady-state kinetics of DNA binding and ATP hydrolysis using elongation-proficient and deficient primer/template DNA. The ATP-bound clamp loader binds both elongation-proficient and deficient DNA substrates either in the presence or absence of beta. However, elongation-proficient DNA preferentially triggers gamma complex to release beta onto DNA with concomitant hydrolysis of ATP. Binding to elongation-proficient DNA converts the gamma complex from a high affinity ATP-bound state to an ADP-bound state having a 10(5)-fold lower affinity for DNA. Steady-state binding assays are misleading, suggesting that gamma complex binds much more avidly to non-extendable primer/template DNA because recycling to the high affinity binding state is rate-limiting. Pre-steady-state rotational anisotropy data reveal a dynamic association-dissociation of gamma complex with extendable primer/templates leading to the diametrically opposite conclusion. The strongly favored dynamic recognition of extendable DNA does not require the presence of beta. Thus, the gamma complex uses ATP binding and hydrolysis as a mechanism for modulating its interaction with DNA in which the ATP-bound form binds with high affinity to DNA but elongation-proficient DNA substrates preferentially trigger hydrolysis of ATP and conversion to a low affinity state.  相似文献   

8.
The Escherichia coli DNA polymerase III gamma complex loads the beta clamp onto DNA, and the clamp tethers the core polymerase to DNA to increase the processivity of synthesis. ATP binding and hydrolysis promote conformational changes within the gamma complex that modulate its affinity for the clamp and DNA, allowing it to accomplish the mechanical task of assembling clamps on DNA. This is the first of two reports (Snyder, A. K., Williams, C. R., Johnson, A., O'Donnell, M., and Bloom, L. B. (2004) J. Biol. Chem. 279, 4386-4393) addressing the question of how ATP binding and hydrolysis modulate specific interactions with DNA and beta. Pre-steady-state rates of ATP hydrolysis were slower when reactions were initiated by addition of ATP than when the gamma complex was equilibrated with ATP and were limited by the rate of an intramolecular reaction, possibly ATP-induced conformational changes. Kinetic modeling of assays in which the gamma complex was incubated with ATP for different periods of time prior to adding DNA to trigger hydrolysis suggests a mechanism in which a relatively slow conformational change step (kforward = 6.5 s(-1)) produces a species of the gamma complex that is activated for DNA (and beta) binding. In the absence of beta, 2 of the 3 molecules of ATP are hydrolyzed rapidly prior to releasing DNA, and the 3rd molecule is hydrolyzed slowly. In the presence of beta, all 3 molecules of ATP are hydrolyzed rapidly. These results suggest that hydrolysis of 2 molecules of ATP may be coupled to conformational changes that reduce interactions with DNA, whereas hydrolysis of the 3rd is coupled to changes that result in release of beta.  相似文献   

9.
The gamma complex (gamma delta delta' chi psi) subassembly of DNA polymerase III holoenzyme transfers the beta subunit onto primed DNA in a reaction which requires ATP hydrolysis. Once on DNA, beta is a "sliding clamp" which tethers the polymerase to DNA for highly processive synthesis. We have examined beta and the gamma complex to identify which subunit(s) hydrolyzes ATP. We find the gamma complex is a DNA dependent ATPase. The beta subunit, which lacks ATPase activity, enhances the gamma complex ATPase when primed DNA is used as an effector. Hence, the gamma complex recognizes DNA and couples ATP hydrolysis to clamp beta onto primed DNA. Study of gamma complex subunits showed no single subunit contained significant ATPase activity. However, the heterodimers, gamma delta and gamma delta', were both DNA-dependent ATPases. Only the gamma delta ATPase was stimulated by beta and was functional in transferring the beta from solution to primed DNA. Similarity in ATPase activity of DNA polymerase III holoenzyme accessory proteins to accessory proteins of phage T4 DNA polymerase and mammalian DNA polymerase delta suggests the basic strategy of chromosome duplication has been conserved throughout evolution.  相似文献   

10.
The gamma complex couples ATP hydrolysis to the loading of beta sliding clamps onto DNA for processive replication. The gamma complex structure shows that the clamp loader subunits are arranged as a circular heteropentamer. The three gamma motor subunits bind ATP, the delta wrench opens the beta ring, and the delta' stator modulates the delta-beta interaction. Neither delta nor delta' bind ATP. This report demonstrates that the delta' stator contributes a catalytic arginine for hydrolysis of ATP bound to the adjacent gamma(1) subunit. Thus, the delta' stator contributes to the motor function of the gamma trimer. Mutation of arginine 169 of gamma, which removes the catalytic arginines from only the gamma(2) and gamma(3) ATP sites, abolishes ATPase activity even though ATP site 1 is intact and all three sites are filled. This result implies that hydrolysis of the three ATP molecules occurs in a particular order, the reverse of ATP binding, where ATP in site 1 is not hydrolyzed until ATP in sites 2 and/or 3 is hydrolyzed. Implications of these results to clamp loaders of other systems are discussed.  相似文献   

11.
Escherichia coli DNA polymerase III holoenzyme is a multisubunit composite containing the beta sliding clamp and clamp loading gamma complex. The gamma complex requires ATP to load beta onto DNA. A two-color fluorescence spectroscopic approach was utilized to study this system, wherein both assembly (red fluorescence; X-rhodamine labeled DNA anisotropy assay) and ATP hydrolysis (green fluorescence; phosphate binding protein assay) were simultaneously measured with millisecond timing resolution. The two temporally correlated stopped-flow signals revealed that a preassembled beta. gamma complex composite rapidly binds primer/template DNA in an ATP hydrolysis independent step. Once bound, two molecules of ATP are rapidly hydrolyzed (approximately 34 s(-1)). Following hydrolysis, gamma complex dissociates from the DNA ( approximately 22 s(-1)). Once dissociated, the next cycle of loading is severely compromised, resulting in steady-state ATP hydrolysis rates with a maximum of only approximately 3 s(-1). Two single-site beta dimer interface mutants were examined which had impaired steady-state rates of ATP hydrolysis. The pre-steady-state correlated kinetics of these mutants revealed a pattern essentially identical to wild type. The anisotropy data showed that these mutants decrease the steady-state rates of ATP hydrolysis by causing a buildup of "stuck" binary-ternary complexes on the primer/template DNA.  相似文献   

12.
13.
A great many carefully designed experiments will be required to fully understand biological mechanisms in atomic detail. A complementary approach is to use powerful statistical procedures to rapidly test numerous scientific hypotheses using vast numbers of protein sequences--the cell's own blueprints for specifying biological mechanisms. Bayesian inference of the evolutionary constraints imposed on functionally divergent proteins can reveal key components of the molecular machinery and thereby suggest likely mechanisms to test experimentally. This approach is demonstrated by considering how DNA polymerase clamp-loader AAA+ ATPases couple DNA recognition to ATP hydrolysis and clamp loading.  相似文献   

14.
Sliding clamps are ring-shaped proteins that tether DNA polymerases to their templates during processive DNA replication. The action of ATP-dependent clamp loader complexes is required to open the circular clamps and to load them onto DNA. The crystal structure of the pentameric clamp loader complex from Escherichia coli (the gamma complex), determined in the absence of nucleotides, revealed a highly asymmetric and extended form of the clamp loader. Consideration of this structure suggested that a compact and more symmetrical inactive form may predominate in solution in the absence of crystal packing forces. This model has the N-terminal domains of the delta and delta' subunits of the clamp loader close to each other in the inactive state, with the clamp loader opening in a crab-claw-like fashion upon ATP-binding. We have used fluorescence resonance energy transfer (FRET) to investigate the structural changes in the E.coli clamp loader complex that result from ATP-binding and interactions between the clamp loader and the beta clamp. FRET measurements using fluorophores placed in the N-terminal domains of the delta and delta' subunits indicate that the distances between these subunits in solution are consistent with the previously crystallized extended form of the clamp loader. Furthermore, the addition of nucleotide and clamp to the labeled clamp loader does not appreciably alter these FRET distances. Our results suggest that the changes that occur in the relative positioning of the delta and delta' subunits when ATP binds to and activates the complex are subtle, and that crab-claw-like movements are not a significant component of the clamp loader mechanism.  相似文献   

15.
The internal workings of a DNA polymerase clamp-loading machine.   总被引:14,自引:2,他引:12       下载免费PDF全文
Replicative DNA polymerases are multiprotein machines that are tethered to DNA during chain extension by sliding clamp proteins. The clamps are designed to encircle DNA completely, and they are manipulated rapidly onto DNA by the ATP-dependent activity of a clamp loader. We outline the detailed mechanism of gamma complex, a five-protein clamp loader that is part of the Escherichia coli replicase, DNA polymerase III holoenzyme. The gamma complex uses ATP to open the beta clamp and assemble it onto DNA. Surprisingly, ATP is not needed for gamma complex to crack open the beta clamp. The function of ATP is to regulate the activity of one subunit, delta, which opens the clamp simply by binding to it. The delta' subunit acts as a modulator of the interaction between delta and beta. On binding ATP, the gamma complex is activated such that the delta' subunit permits delta to bind beta and crack open the ring at one interface. The clamp loader-open clamp protein complex is now ready for an encounter with primed DNA to complete assembly of the clamp around DNA. Interaction with DNA stimulates ATP hydrolysis which ejects the gamma complex from DNA, leaving the ring to close around the duplex.  相似文献   

16.
Linda B. Bloom 《DNA Repair》2009,8(5):570-578
Sliding clamps and clamp loaders were initially identified as DNA polymerase processivity factors. Sliding clamps are ring-shaped protein complexes that encircle and slide along duplex DNA, and clamp loaders are enzymes that load these clamps onto DNA. When bound to a sliding clamp, DNA polymerases remain tightly associated with the template being copied, but are able to translocate along DNA at rates limited by rates of nucleotide incorporation. Many different enzymes required for DNA replication and repair use sliding clamps. Clamps not only increase the processivity of these enzymes, but may also serve as an attachment point to coordinate the activities of enzymes required for a given process. Clamp loaders are members of the AAA+ family of ATPases and use energy from ATP binding and hydrolysis to catalyze the mechanical reaction of loading clamps onto DNA. Many structural and functional features of clamps and clamp loaders are conserved across all domains of life. Here, the mechanism of clamp loading is reviewed by comparing features of prokaryotic and eukaryotic clamps and clamp loaders.  相似文献   

17.
Cellular replicases include three subassemblies: a DNA polymerase, a sliding clamp processivity factor, and a clamp loader complex. The Escherichia coli clamp loader is the DnaX complex (DnaX3δδ′χψ), where DnaX occurs either as τ or as the shorter γ that arises by translational frameshifting. Complexes composed of either form of DnaX are fully active clamp loaders, but τ confers important replicase functions including chaperoning the polymerase to the newly loaded clamp to form an initiation complex for processive replication. The kinetics of initiation complex formation were explored for DnaX complexes reconstituted with varying τ and γ stoichiometries, revealing that τ-mediated polymerase chaperoning accelerates initiation complex formation by 100-fold. Analyzing DnaX complexes containing one or more K51E variant DnaX subunits demonstrated that only one active ATP binding site is required to form initiation complexes, but the two additional sites increase the rate by ca 1000-fold. For τ-containing complexes, the ATP analogue ATPγS was found to support initiation complex formation at 1/1000th the rate with ATP. In contrast to previous models that proposed ATPγS drives hydrolysis-independent initiation complex formation by τ-containing complexes, the rate and stoichiometry of ATPγS hydrolysis coincide with those for initiation complex formation. These results show that although one ATPase site is sufficient for initiation complex formation, the combination of polymerase chaperoning and the binding and hydrolysis of three ATPs dramatically accelerates initiation complex formation to a rate constant (25-50 s− 1 ) compatible with double-stranded DNA replication.  相似文献   

18.
Lag times in DNA synthesis by DNA polymerase delta holoenzyme were due to ATP-mediated formation of an initiation complex on the primed DNA by the polymerase with the proliferating cell nuclear antigen (PCNA) and replication factor C (RF-C). Lag time analysis showed that high affinity binding of RF-C to the primer terminus required PCNA and that this complex was recognized by the polymerase. The formation of stable complexes was investigated through their isolation by Bio-Gel A-5m filtration. A stable complex of RF-C and PCNA on primed single-stranded mp18 DNA was isolated when these factors were preincubated with the DNA and with ATP, or, less efficiently with ATP gamma S. These and additional experiments suggest that ATP binding promotes the formation of a labile complex of RF-C with PCNA at the primer terminus, whereas its hydrolysis is required to form a stable complex. Subsequently, DNA polymerase delta binds to either complex in a replication competent fashion without further energy requirement. DNA polymerase epsilon did not associate stably with RF-C and PCNA onto the DNA, but its transient participation with these cofactors into a holoenzyme-like initiation complex was inferred from its kinetic properties and replication product analysis. The kinetics of the elongation phase at 30 degrees, 110 nucleotides/s by DNA polymerase delta holoenzyme and 50 nucleotides/s by DNA polymerase epsilon holoenzyme, are in agreement with in vivo rates of replication fork movement in yeast. A model for the eukaryotic replication fork involving both DNA polymerase delta and epsilon is proposed.  相似文献   

19.
Clamp protein or clamp, initially identified as the processivity factor of the replicative DNA polymerase, is indispensable for the timely and faithful replication of DNA genome. Clamp encircles duplex DNA and physically interacts with DNA polymerase. Clamps from different organisms share remarkable similarities in both structure and function. Loading of clamp onto DNA requires the activity of clamp loader. Although all clamp loaders act by converting the chemical energy derived from ATP hydrolysis to mechanical force, intriguing differences exist in the mechanistic details of clamp loading. The structure and function of clamp in normal and translesion DNA synthesis has been subjected to extensive investigations. This review summarizes the current understanding of clamps from three kingdoms of life and the mechanism of loading by their cognate clamp loaders. We also discuss the recent findings on the interactions between clamp and DNA, as well as between clamp and DNA polymerase (both the replicative and specialized DNA polymerases). Lastly the role of clamp in modulating polymerase exchange is discussed in the context of translesion DNA synthesis.  相似文献   

20.
The DnaA protein, which initiates chromosomal replication in Escherichia coli, is negatively regulated by both the sliding clamp of DNA polymerase III holoenzyme and the IdaB protein. We have found that, when the amount of minichromosome is limited in an in vitro replication system, minichromosomal replication-stimulated hydrolysis of DnaA-bound ATP yields the ADP-bound inactive form. The number of sliding clamps formed during replication was at least five per minichromosome, which is 2.7-fold higher than the number formed during incubation without replication. These results support the notion that coupling of DnaA-ATP hydrolysis to DNA replication is the outcome of enhanced clamp formation. We have also found that the amino acid substitution R334H in DnaA severely inhibits the hydrolysis of bound ATP in vitro. Whereas ATP bound to wild-type DnaA is hydrolysed in a DNA-dependent intrinsic manner or in a sliding clamp-dependent manner, ATP bound to DnaA R334H protein was resistant to hydrolysis under the same conditions. This arginine residue may be located in the vicinity where ATP binds, and therefore may play an essential role in ATP hydrolysis. This residue is highly conserved among DnaA homologues and also in the Box VIII motif of the AAA+ protein family.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号