共查询到20条相似文献,搜索用时 15 毫秒
1.
Elisabetta Damiani Riccardo Castagna Paola Astolfi Lucedio Greci 《Free radical research》2013,47(3):325-336
Nitroxide radicals are an emerging class of interesting compounds with versatile antioxidant and radioprotective properties. All literature studies have so far concentrated on compounds bearing only one nitroxide function. Here, we now investigate and compare the radical scavenging behaviour and antioxidant activity of aromatic indolinonic and aliphatic piperidine bis-nitroxides, i.e compounds bearing two nitroxide functions. Their corresponding mono-derivatives were also studied for comparison. Radical scavenging activity was investigated using EPR and UV–Vis spectroscopy by following spectral changes in acetonitrile of the nitroxides in the presence of alkyl and peroxyl radicals generated, respectively, under anoxic or aerobic conditions from thermal decomposition of AMVN [2,2′-azobis(2,4-di-methylvaleronitrile)]. Antioxidant activity of the nitroxides was evaluated by monitoring conjugated dienes (CD) formation during methyl linoleate micelles peroxidation and by measuring carbonyl content in oxidized bovine serum albumin (BSA). The results show that: (a) each nitroxide moiety in bis-nitroxides scavenges radicals independent of each other; (b) aliphatic nitroxides do not scavenge peroxyl radicals, at least under the experimental conditions used here, whereas indolinonic aromatic ones do: their stoichiometric number is 1.14 and 2.17, respectively, for mono- and bis-derivatives; (c) bis-nitroxides are roughly twice more efficient at inhibiting lipid peroxidation compared to their corresponding mono-derivatives. Although this study provides only comparative information on the relative radical-scavenging abilities of mono- and bis-nitroxides, it helps in understanding further the interesting reactivity of these compounds especially with regards to peroxyl radicals where many controversies in the literature exist. 相似文献
2.
Captopril (CpSH), an angiotensin converting enzyme (ACE) inhibitor, is reported to provide protection against free-radical mediated damage. The purpose of this study was to investigate, by means of pulse radiolysis technique, the behaviour of CpSH towards radiation-induced radicals in the absence and in the presence of copper(II) ions, which can play a relevant role in the metal catalysed generation of reactive oxygen species. The results indicate that the -SH group is crucial in determining the radical scavenging action of CpSH and the nature of the resulting CpSH transient products in the absence or in the presence of oxygen.In the presence of Cu(II), the -SH group is still involved in the biological action of the molecule participating both in the one-electron reduction of Cu(II) with formation of CpSSCp, and in Cu(I) chelation. This conclusion is supported by the Raman spectroscopic data which allow to identify the CpSH sites involved in the copper complex at different pH.These results suggest that CpSH may potentially inhibit oxidative damage both through free radical scavenging and metal chelation. Considering the low CpSH concentration in vivo, the metal chelation mechanism, more than the direct radical scavenging, could play the major role in moderating the toxicological effects of free radicals. 相似文献
3.
El?bieta Gumienna-Kontecka Marcin Dr?g Pawe? Kafarski 《Inorganica chimica acta》2004,357(5):1632-1636
The formation constants of equimolar and bis-chelate copper(II) and zinc(II) complexes with three aliphatic and four aromatic-substituted β-aminophosphonates have been determined in water solution by potentiometric studies. Spectroscopic parameters clearly indicate involvement of {NH3, PO3 2−} in both metal ions coordination. The comparison of the stability constants reveals slightly higher coordination power of the aliphatic-substituted β-aminophosphonic acids, which may be due to the higher basicity of their amino groups. All studied ligands are more effective in Cu2+ and Zn2+ coordination than phosphonic analogue of simple β-amino acid. 相似文献
4.
Tawar U Bansal S Shrimal S Singh M Tandon V 《Molecular and cellular biochemistry》2007,305(1-2):221-233
The complexing of histones with DNA and the resulting condensation of chromatin protects mammalian cell, from radiation-induced
strand breakage. In the present study, benzimidazoles DMA and TBZ showed marked radioprotection through drug-induced compaction
of chromatin and direct quenching of free radicals generated by radiation. The mammalian cells were incubated with 100 μM
concentration of DMA and TBZ and irradiated at 5 Gy; both the ligands showed nuclei condensation suggesting a probable mechanism
to protect DNA from radiation damage. The bisubstituted analogs of Hoechst 33342 are found to be better free radical scavengers
and protect DNA against radiation-induced damage at a lower concentration than the parent molecule. Both the ligands also
quenched free radicals in isolated free radical system suggesting their dual mode of action against radiation-induced damage
to DNA. Molecules binding to the chromatin alter gene expression, whereas in this study both the ligands have not shown any
profound effect on the nucleosome assembly and gene expression in vitro and in vivo. Both ligands afford a 2-fold protection
by altering DNA structure as well as through direct free radical quenching in bulk solution in comparison to the parent ligand,
which acts only through quenching of free radicals.
Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users. 相似文献
5.
Unilamellar liposomes are used as a simple two-compartment model to study the interaction of antioxidants. The vesicle membrane can be loaded with lipophilic compounds such as carotenoids or tocopherols, and the aqueous core space with hydrophilic substances like glutathione (GSH) or ascorbate, mimicking the interphase between an aqueous compartment of a cell and its surrounding membrane.Unilamellar liposomes were used to investigate the interaction of GSH with the carotenoids lutein, β-carotene and lycopene in preventing lipid peroxidation. Lipid peroxidation was initiated with 2,2′-azo-bis-[2,4-dimethylvaleronitrile] (AMVN). Malondialdehyde (MDA) formation was measured as an indicator of oxidation; additionally, the loss of GSH was followed. In liposomes without added antioxidant, MDA levels of 119 ± 6 nmol/mg phospholipid were detected after incubation with AMVN for 2 h at 37°C. Considerably lower levels of 57 ± 8 nmol MDA/mg phospholipid were found when the liposomal vesicles had been loaded with GSH. Upon incorporation of β-carotene, lycopene or lutein, the resistance of unilamellar liposomes towards lipid peroxidation was further modified. An optimal further protection was observed with 0.02 nmol β-carotene/mg phospholipid or 0.06 nmol lycopene/mg phospholipid. At higher levels both these carotenoids exhibited prooxidant effects. Lutein inhibited lipid peroxidation in a dose-dependent manner between 0.02 and 2.6 nmol/mg phospholipid. With increasing levels of lycopene and lutein the consumption of encapsulated GSH decreased moderately, and high levels of β-carotene led to a more pronounced loss of GSH.The data demonstrate that interactions between GSH and carotenoids may improve resistance of biological membranes towards lipid peroxidation. Different carotenoids exhibit specific properties, and the level for optimal protection varies between the carotenoids. 相似文献
6.
Radical scavenging abilities of fish MT-A and mussel MT-10 metallothionein isoforms: An ESR study 总被引:2,自引:0,他引:2
Buico A Cassino C Dondero F Vergani L Osella D 《Journal of inorganic biochemistry》2008,102(4):921-927
Metallothioneins (MTs) are cysteine-rich proteins involved in homeostasis of essential metals, detoxification of toxic metals and scavenging of free radicals. Scavenging of the stable 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical was measured by means of ESR spectroscopy for two recombinant MTs from aquatic species: MT-10 from the sea mussel Mytilus galloprovincialis, and MT-A from the fish Oncorhyncus mykiss. Both the zinc- and the cadmium-loaded forms (Zn(7)-MTs and Cd(7)-MTs) were analysed, using the commercial MT-II (Zn(7)-MT-II and Cd(7)-MT-II, respectively) from rabbit liver as a reference. A decrease in the scavenging ability was observed for all the three MTs passing from the Zn- to the Cd-loaded forms, because of the higher stability of the Cd-mercapto complex. The Zn(7)-MTs from aquatic species were more effective in scavenging DPPH signal than the rabbit Zn(7)-MT-II (2.8 and 4-folds, respectively). Similar results were obtained also for the Cd(7)-MTs, thus confirming the stronger antioxidant power of MTs from aquatic organisms compared with the rabbit MT-II. Moreover, mussel MT-10 was more active in DPPH scavenging than fish MT-A. When the complete release of metals from MTs was obtained by lowering the pH to 3 or, alternatively, by adding the chelating agent diethylenetriaminepentaacetic acid (DTPA), an increase in the scavenging ability of MTs was observed. 相似文献
7.
Haiying Fu Mingzhang Lin Yusa Muroya Kuniki Hata Yosuke Katsumura Akinari Yokoya 《Free radical research》2013,47(9):887-897
Silybin (extracted from Silybum marianum) is the major active constituent of silymarin which possesses a wide range of medicinal properties. These properties may be, in part, due to the potent scavenging capacity of oxidizing free radicals. In this context, scavenging radicals (hydroxyl, azide, dibromide anion radicals, nitrite, carbonate, etc.) of silybin have been studied to understand the mechanistic aspects of its action against free radicals. The transients produced in these reactions have been assigned and the rate constants have been measured by pulse radiolysis techniques. Reduction potential determined both by cyclic voltammetry gave a value 0.62±0.02 V vs NHE at pH 9. Quantum chemical calculations have been performed to further confirm the different activities of individual hydroxyl groups with the difference of heat of formation. Moreover, silybin also protected plasmid pUC18 DNA from soft X-ray radiation which induced strand breaks. These results are expected to be helpful for a better understanding of the anti-oxidative properties of silybin. 相似文献
8.
Elisabetta Damiani Chokri Belaid Patricia Carloni Lucedio Greci 《Free radical research》2013,47(7):731-741
In view of the possible employment of nitroxide compounds in various fields, it is important to know how they compare with other synthetic antioxidant compounds currently used in several industries and with naturally occurring antioxidants. To address this issue, the antioxidant activity of two aromatic indolinonic nitroxides synthesized by us was compared with both commercial phenolic antioxidants (BHT and BHA) and with natural phenolic antioxidants (α-hydroxytyrosol, tyrosol, caffeic acid, α-tocopherol). DPPH radical scavenging ability and the inhibition of both lipid and protein oxidation induced by the peroxyl-radical generator, AAPH, were evaluated. The results obtained show that overall: (i) the reduced forms of the nitroxide compounds are better scavengers of DPPH radical than butylated hydroxyanisole (BHA) and butylated hydroxytoluene (BHT) but less efficient than the natural compounds; (ii) the nitroxides inhibit both linolenic acid micelles and bovine serum albumin (BSA) oxidation to similar extents as most of the other compounds in a concentration-dependent fashion. Since the aromatic nitroxides tested in this study are less toxic than BHT, these compounds may be regarded as potential, alternative sources for several applications. The mechanisms underlying the antioxidant activity of nitroxides were further confirmed by UV–Vis absorption spectroscopy experiments and macroscale reactions in the presence of radicals generated by thermolabile azo-compounds. Distribution coefficients in octanol/buffer of the nitroxides and the other compounds were also determined as a measure of lipophilicity. 相似文献
9.
Dhimitruka I Velayutham M Bobko AA Khramtsov VV Villamena FA Hadad CM Zweier JL 《Bioorganic & medicinal chemistry letters》2007,17(24):6801-6805
Tetrathiatriarylmethyl radicals are ideal spin probes for biological electron paramagnetic resonance (EPR) spectroscopy and imaging. The wide application of trityl radicals as biosensors of oxygen or other biological radicals was hampered by the lack of affordable large-scale syntheses. We report the large-scale synthesis of the Finland trityl radical using an improved addition protocol of the aryl lithium monomer to methylchloroformate. A new reaction for the formal one-electron reduction of trityl alcohols to trityl radicals using neat trifluoroacetic acid is reported as well. Initial applications show that the compound is very sensitive to molecular oxygen. It has already provided high-resolution EPR images on large aqueous samples and should be suitable for a broad range of in vivo applications. 相似文献
10.
Reactions of sulfasalazine (SAZ) and its metabolites, 5-aminosalicylic acid (5-ASA) and sulfapyridine (SP), with various oxidizing and reducing free radicals (hydroxyl, haloperoxyl, one-electron oxidizing, lipid peroxyl, glutathiyl, superoxide, tryptophanyl, etc.) have been studied to understand the mechanistic aspects of its action against free radicals produced during inflammation. Nanosecond pulse radiolysis technique coupled with transient spectrophotometry has been used for in situ generation of free radicals and to follow their reaction pathways. The transients produced in these reactions have been assigned and radical scavenging rate constants have been measured. In addition to scavenging of various primary and secondary free radicals by SAZ, 5-ASA and SP, 5-ASA has also been observed to efficiently scavenge radicals of biomolecules. 5-ASA has been found to be the active moiety of SAZ involved in the scavenging of oxidizing free radicals whereas reduction of SAZ produced molecular radical anion. The study suggests that free radical scavenging activity of 5-ASA may be a major path of pharmacological action of SAZ against inflammatory bowel diseases (IBD). 相似文献
11.
Maria Łabanowska Maria Filek Magdalena Kurdziel Ewa Bidzińska Zbigniew Miszalski Hélina Hartikainen 《Journal of plant physiology》2013
Two kinds of wheat genotypes with different tolerance to osmotic stress (NaCl and PEG-treatment) were investigated with biochemical analyses, including the measurements of total antioxidant capacity, 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical-scavenging activity, reducing power and starch content. The results were compared with electron paramagnetic resonance (EPR) data concerning the nature and amounts of stable long lived radicals present in the control and stressed plants. In addition, the changes in manganese content upon stress conditions were monitored. Different mechanisms of protection against PEG stress in sensitive and tolerant wheat genotypes were postulated. In sensitive genotypes, electrons were created in excess in stress conditions, and were stabilized by polysaccharide molecules, whereas in tolerant genotypes, protection by antioxidants dominated. Moreover, the quinone–semiquinone balance shifted towards semiquinone, which became the place of electron trapping. NaCl-treatment yielded significant effects mainly in sensitive genotypes and was connected with the changes of water structure, leading to inactivation of reactive oxygen species by water molecules. 相似文献
12.
Embelin (from Embelia ribes) is a component of herbal drugs and possess wide range of medicinal properties. These properties may be, in part, due to scavenging of oxidizing free radicals. In this context, free radical scavenging reactions and antioxidant activity of embelin (2,5-dihydroxy-3-undecyl-1,4-benzoquinone) have been studied. It has been found to scavenge DPPH radical and inhibit hydroxyl radical induced deoxyribose degradation. It has been also found to inhibit lipid peroxidation and restore impaired Mn-superoxide dismutase in rat liver mitochondria. Further, kinetics and mechanism of the reactions of embelin with hydroxyl, one-electron oxidizing, organo-haloperoxyl and thiyl radicals have been studied using nanosecond pulse radiolysis technique. Its redox potential has been also evaluated with cyclic voltammetry. These studies suggest that embelin can act as a competitive antioxidant in physiological conditions. 相似文献
13.
In recent years, the antioxidant and other pharmacological properties of resveratrol, a natural product present in grapes and wine, have attracted considerable interest from the biomedical research community. In an examination of the potential neuroprotective properties of the compound, we have investigated the ability of resveratrol to protect rat embryonic mesencephalic tissue, rich in dopaminergic neurones, from the prooxidant tert-butyl hydroperoxide. Using the electron paramagnetic resonance (EPR) spin-trapping technique, the main radicals detected in cell suspensions were the tert-butoxyl radical and the methyl radical, indicating the one-electron reduction of the peroxide followed by a beta-scission reaction. The appearance of EPR signals from the trapped radicals preceded the onset of cytotoxicity, which was almost exclusively necrotic in nature. The inclusion of resveratrol in incubations resulted in the marked protection of cells from tert-butyl hydroperoxide. In parallel spin-trapping experiments, we were able to demonstrate the scavenging of radicals by resveratrol, which involved direct competition between resveratrol and the spin trap for reaction with the radicals. To our knowledge, this is the first example in which cytoprotection by resveratrol has been demonstrated by EPR spin-trapping competition kinetics to be due to its scavenging of the radicals responsible for the toxicity of a prooxidant. 相似文献
14.
Generation of hydrogen peroxide and hydroxyl radicals in L-amino acid solutions in phosphate buffer, pH 7.4, under X-ray irradiation was determined by enhanced chemiluminescence in the luminol-p-iodophenol-peroxidase system and using the fluorescent probe coumarin-3-carboxylic acid, respectively. Amino acids are divided into three groups according to their effect on the hydrogen peroxide formation under irradiation: those decreasing yield of H2O2, having no effect, and increasing its yield. All studied amino acids at 1 mM concentration decrease the yield of hydroxyl radicals in solution under X-ray irradiation. However, the highest effect is observed in the order: Cys > His > Phe = Met = Trp > Tyr. At Cys, Tyr, and His concentrations close to physiological, the yield of hydroxyl radicals decreases significantly. Immunoenzyme analysis using monoclonal antibodies to 8-oxoguanine (8-oxo-7,8-dihydroguanine) was applied to study the effect of amino acids with the most pronounced antioxidant properties (Cys, Met, Tyr, Trp, Phe, His, Lys, Arg, Pro) on 8-oxoguanine formation in vitro under X-ray irradiation. It is shown that amino acids decrease the content of 8-oxoguanine in DNA. These amino acids within DNA-binding proteins may protect intracellular DNA against oxidative damage caused by formation of reactive oxygen species in conditions of moderate oxidative stress. 相似文献
15.
Liu J Qian SY Guo Q Jiang J Waalkes MP Mason RP Kadiiska MB 《Free radical biology & medicine》2008,45(4):475-481
Cadmium (Cd) is a known industrial and environmental pollutant. In the present work, an in vivo spin-trapping technique was used in conjunction with electron spin resonance (ESR) spectroscopy to investigate free radical generation in rats following administration of cadmium chloride (CdCl2, 40 micromol/kg) and the spin trapping agent alpha-(4-pyridyl-1-oxide)-N-tert-butylnitrone (POBN, 1 g/kg). In Cd-treated rats, POBN radical adducts were formed in the liver, were excreted into the bile, and exhibited an ESR spectrum consistent with a carbon-centered radical species probably derived from endogenous lipids. Isotope substitution of dimethyl sulfoxide [(CH3)2SO] with 13C demonstrated methyl radical formation (POBN/*13CH3). This adduct indicated the production of hydroxyl radical, which reacted with [(13CH3)2SO] to form *13CH3, which then reacted with POBN to form POBN/*13CH3. Depletion of hepatic glutathione by diethyl maleate significantly increased free radical production, whereas inactivation of Kupffer cells by gadolinium chloride and chelation of iron by desferal inhibited it. Treatment with the xanthine oxidase inhibitor allopurinol, the catalase inhibitor aminobenzotriazole, or the cytochrome P450 inhibitor 3-amino-1,2,4-triazole had no effect. This is the first study to show Cd generation of reactive oxygen- and carbon-centered radical species by involvement of both iron mediation through iron-catalyzed reactions and activation of Kupffer cells, the resident liver macrophages. 相似文献
16.
17.
Manganese complexes of curcumin and its derivatives: evaluation for the radical scavenging ability and neuroprotective activity 总被引:1,自引:0,他引:1
Vajragupta O Boonchoong P Watanabe H Tohda M Kummasud N Sumanont Y 《Free radical biology & medicine》2003,35(12):1632-1644
In this study, three manganese complexes of curcumin (Cp) and related compounds, diacetylcurcumin (AcylCp) and ethylenediamine derivative (CpED), were synthesized and evaluated in vitro for antilipid peroxidation and superoxide dismutase activity. The manganese complexes exhibited a great capacity to protect brain lipids against peroxidation with IC50 of 6.3–26.3 μM. All manganese complexes showed much greater SOD activity than their corresponding antioxidant ligands as well as trolox with IC50 values of 8.9–29.9 μM. AcylCp and curcumin manganese complexes (AcylCpCpx and CpCpx) also gave the highest inhibitory activity to H2O2-induced cell damage (oxidative stress) at 0.1 μg/ml (< 0.2 μM) in NG108-15 cells, which were more potent than curcumin and related compounds. The neuropharmacological tests in mice supported the idea that the SOD mimicking complexes were able to penetrate to the brain as well as their role in the modulation of brain neurotransmitters under the aberrant conditions. The complexes significantly improved the learning and memory impairment induced by transient ischemic/reperfusion. AcylCpCpx, CpCpx, and CpEDCpx showed significant protection at 6.25, 25, and 50 mg/kg (i.p.), respectively, whereas manganese acetate and curcumin had no effect at doses of 50 mg/kg. In addition, treatment of AcylCpCpx and curcumin significantly attenuated MPTP-induced striatal dopamine depletion in mice, which was in accordance with the increase in the density of dopaminergic neurons when compared with MPTP-treated mice. These results support the important role of manganese in importing SOD activity and consequently, the enhancement of radical scavenging activity. AcylCpCpx and CpCpx seem to be the most promising neuroprotective agents for vascular dementia. 相似文献
18.
Lidocaine, a local anaesthetic, has been shown to reduce ventricular arrhythmias associated with myocardial infarction and ischemic myocardial injury and its protective effects has been attributed to its membrane stabilizing properties. Since oxygen radicals are known to be produced during ischemia induced tissue damage, we have investigated the possible antioxidant properties of lidocaine and found that lidocaine does not scavenge 02
–· radicals at 1 to 20 mM concentrations. However, lidocaine was found to be a potent scavenger of hydroxyl radicals and singlet oxygen. Hydroxyl radicals were produced in a Fenton type reaction and detected as DMPO-OH adducts by electron paramagnetic resonance spectroscopic techniques. Lidocaine inhibited DMPO-OH adduct formation in a dose dependent manner. The amount of lidocaine needed to cause 50% inhibition of that rate was found to be approximately 80 M and at 300 M concentration it virtually eliminated the DMPO-OH adduct formation. The production of OH-dependent TBA reactive products of deoxyribose was also inhibited by lidocaine in a dose dependent manner. Lidocaine was also found to inhibit the 1O2-dependent 2,2,6,6-tetramethylpiperidine N-oxyl (TEMPO) formation in a dose dependent manner. 1O2 was produced in a photosensitizing system using Rose Bengal or Methylene Blue as photosensitizers and was detected as TEMP-1O2 adduct by EPR spectroscopy. The amount of lidocaine required to cause 50% inhibition of TEMP-1O2 adduct formation was found to be 500 M. These results suggest that the protective effect of lidocaine on myocardial injury may, in part, be due to its reactive oxygen scavenging properties. These results may also explain the membrane stabilizing actions of lidocaine by scavenging OH · and 1O2 that are implicated in membrane lipid peroxidation. 相似文献
19.
Diabetes mellitus is the most common serious metabolic disorder and it is considered to be one of the five leading causes of death in the world. Hyperglycemia-mediated oxidative stress plays a crucial role in diabetic complications. Hence, this study was undertaken to evaluate the protective effect of esculetin on the plasma glucose, insulin levels, tissue antioxidant defense system and lipid peroxidative status in streptozotocin-induced diabetic rats. Diabetic rats exhibited increased blood glucose with significant decrease in plasma insulin levels. Extent of oxidative stress was assessed by the elevation in the levels of lipid peroxidation markers such as thiobarbituric acid reactive substances (TBARS), lipid hydroperoxides (HP) and conjugated dienes (CD); reduction in the enzymic antioxidant enzymes like superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx), glutathione-S-transferase (GST); nonenzymic antioxidants Vitamin C, E and reduced glutathione (GSH) were observed in the liver and kidney tissues of diabetic control rats as compared to control rats. Oral supplementation of esculetin to diabetic rats for 45 days significantly brought back lipid peroxidation markers, enzymic and nonenzymic antioxidants to near normalcy. Moreover, the histological observations evidenced that esculetin effectively rescues the hepatocytes and kidney from hyperglycemia mediated oxidative damage without affecting its cellular function and structural integrity. These findings suggest that esculetin (40 mg/kg BW) treatment exerts a protective effect in diabetes by attenuating hyperglycemia-mediated oxidative stress and antioxidant competence in hepatic and renal tissues. Further, detailed studies are in progress to elucidate the molecular mechanism by which esculetin elicits its modulatory effects in insulin signaling pathway. 相似文献
20.
Nitrite-induced transformation of 3-amino-4-monomethylamino-2′,7′-difluorofluorecein (DAF-FM) to the triazol form (DAF-FMT) was studied using bacterial fraction of mixed whole saliva. The transformation at pH 7 was inhibited by SCN?, suggesting that nitrosative stresses were small in the oral cavity at the pH value as SCN? was a normal component of saliva. DAF-FMT formation was much faster at pH 5.2 than 7 and ONSCN generated by the reaction of HNO2 with SCN? mainly contributed to its formation at pH 5.2. Coffee and phenolic antioxidants inhibited the DAF-FMT formation less effectively at pH 5.2 than pH 7. The less effectiveness was discussed to be due to slow scavenging of ONSCN, which contributed mainly to the formation of DAF-FMT at pH 5.2, by coffee and phenolics. Since nitrite-induced formation of ONSCN should become faster as the pH decreases, it was suggested that nitrosative stresses to oral tissues became serious under acidic conditions. 相似文献