首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A variety of definitions involving body temperature (Tb), metabolic rate and behavior have been used to define torpor in mammals and birds. This problem is confounded in some studies of free-ranging animals that employ only skin temperature (Tsk), a measure that approximates but may not precisely reflect Tb. We assess the accuracy of Tsk in the context of a recent definition for torpor called active temperature. We compared the active temperatures of individual big brown bats (Eptesicus fuscus), which aggregate in cavities, with solitary, foliage-roosting hoary bats (Lasiurus cinereus). In captive big brown bats, we compared Tsk and core Tb at a range of ambient temperatures for clustered and solitary roosting animals, compared Tsk and Tb during arousal from torpor, and quantified the effect of flight on warming from torpor. Hoary bats had significantly lower active temperatures than big brown bats despite having the same normothermic Tsk. Tsk was significantly lower than Tb during normothermia but often greater than Tb during torpor. Flight increased the rate of warming from torpor. This effect was more pronounced for Tsk than Tb. This suggests that bats could rely on heat generated by flight muscles to complete the final stages of arousal. Using active temperature to define torpor may underestimate torpor due to ambient cooling of external transmitters or animals leaving roosts while still torpid. Conversely, active temperature may also overestimate shallow torpor use if it is recorded during active arousal when shivering and non-shivering thermogenesis warm external transmitters. Our findings illuminate the need for laboratory studies that quantify the relationship between metabolic rate and Tsk over a range of ambient temperatures.  相似文献   

2.
The influence of membrane physical state on the kinetic and thermodynamic parameters for the active transport systems for two amino acids has been investigated in Escherichia coli K1060, an unsaturated fatty acid auxotrophic mutant. The apparent Michaelis constant (Km) for the uptake of L-[14C]glutamine (0.05 to 0.08 microM) or L-[14C]proline (1 microM approx.) is invariant with temperature for this mutant grown on elaidate (18:1t), palmitelaidate (16:1t), oleate (18:1c), palmitoleate (16:1c) and linoleate (18:2c,c). Arrhenius plots of the maximum velocities (Vmax) for L-glutamine transport in cells grown on 16:1t, 18:1c and 16:1c are biphasic within a limited temperature range peculiar to each UFA supplementation. Above an upper temperature limit also displayed by 18:1t and 18:2c,c-cells, Vmax decreases with temperature. A characteristic temperature (Tb) marks the point of intersection of the biphasic slope of the Arrhenius plots, and activation energy (Ea) is lower above than below Tb. Differential thermal analysis considered with membrane lipid fatty acyl profiles indicates that the upper temperature limit is governed by both membrane lipid acyl chain fluidity and heterogeneity, while Tb is governed by fluidity alone. Data on L-proline transport Vmax are similar, but the upper temperature limit and Tb are each shifted to lower temperatures relative to L-glutamine. We suggest that membrane defects related to energy-coupling and caused by abnormal fluidity and physical state are responsible for the peculiar temperature dependences of Vmax for these active transport processes.  相似文献   

3.
Hibernation is a strategy of reducing energy expenditure, body temperature (T(b)) and activity used by endotherms to escape unpredictable or seasonally reduced food availability. Despite extensive research on thermoregulatory adjustments during hibernation, less is known about transitions in thermoregulatory state, particularly under natural conditions. Laboratory studies on hibernating ground squirrels have demonstrated that thermoregulatory adjustments may occur over short intervals when animals undergo several brief, preliminary torpor bouts prior to entering multiday torpor. These short torpor bouts have been suggested to reflect a resetting of hypothalamic regions that control T(b) or to precondition animals before they undergo deep, multiday torpor. Here, we examined continuous records of T(b) in 240 arctic ground squirrels (Urocitellus parryii) prior to hibernation in the wild and in captivity. In free-living squirrels, T(b) began to decline 45 days prior to hibernation, and average T(b) had decreased 4.28 °C at the onset of torpor. Further, we found that 75 % of free-living squirrels and 35 % of captive squirrels entered bouts of multiday torpor with a single T(b) decline and without previously showing short preliminary bouts. This study provides evidence that adjustments in the thermoregulatory component of hibernation begin far earlier than previously demonstrated. The gradual reduction in T(b) is likely a component of the suite of metabolic and behavioral adjustments, controlled by an endogenous, circannual rhythm, that vary seasonally in hibernating ground squirrels.  相似文献   

4.
Many small mammals have the ability to enter torpor, characterized by a controlled drop in body temperature (Tb). We hypothesized that ghrelin would modulate torpor bouts, because torpor is induced by fasting in mice coincident with elevated circulating ghrelin. Female National Institutes of Health (NIH) Swiss mice were implanted with a Tb telemeter and housed at an ambient temperature (Ta) of 18 degrees C. On fasting, all mice entered a bout of torpor (minimum Tb: 23.8+/-2.0 degrees C). Peripheral ghrelin administration (100 microg) during fasting significantly deepened the bout of torpor (Tb minimum: 19.4+/-0.5 degrees C). When the arcuate nucleus (ARC) of the hypothalamus, a ghrelin receptor-rich region of the brain, was chemically ablated with monosodium glutamate (MSG), fasted mice failed to enter torpor (minimum Tb=31.6+/-0.6 degrees C). Furthermore, ghrelin administration had no effect on the Tb minimum of ARC-ablated mice (31.8+/-0.8 degrees C). Two major pathways that regulate food intake reside in the ARC, the anorexigenic alpha-melanocyte stimulating hormone (alpha-MSH) pathway and the orexigenic neuropeptide Y (NPY) signaling pathway. Both Ay mice, which have the alpha-MSH pathway blocked, and Npy-/-mice exhibited shallow, aborted torpor bouts in response to fasting (Tb minimum: 29.1+/-0.6 degrees C and 29.9+/-1.2 degrees C, respectively). Ghrelin deepened torpor in Ay mice (Tb minimum: 22.8+/-1.3 degrees C), but had no effect in Npy-/-mice (Tb minimum: 29.5+/-0.8 degrees C). Collectively, these data suggest that ghrelin's actions on torpor are mediated via NPY neurons within the ARC.  相似文献   

5.
The grey mouse lemur (Microcebus murinus) is a small nocturnal primate exhibiting daily torpor. In constant ambient temperature (22-24 degrees C), body temperature (Tb) and locomotor activity were monitored by telemetry in animals exposed to short (SP: 10 h light/day) or long (LP: 14 light/day) photoperiods. They were first fed ad libitum for 8 days and then subjected to 80% restricted feeding for 8 more days. During ad libitum feeding, locomotor activity was significantly lower in SP-exposed animals than in LP-exposed animals. Whatever the photoperiod, animals entered daily hypothermia within the first hours following the light onset. Depth of daily hypothermia increased irregularly under SP exposure, whereas minimal daily Tb was constantly above 35 degrees C under LP exposure. After the transfer from long photoperiod to short photoperiod corresponding to the induction of seasonal fattening, locomotor activity and depth of controlled daily hypothermia did not change significantly. In contrast, food restriction led to a significant increase in locomotor activity and in frequency of daily torpor (Tb<33 degrees C) and body temperature reached minimum values averaging 25 degrees C. However, SP-exposed animals exhibited lower minimal daily Tb and higher torpor duration than LP exposed animals. Therefore, daily torpor appears as a rapid response to food restriction occurring whatever the photoperiod, although enhanced by short photoperiod.  相似文献   

6.
We investigated the thermoregulatory behavior, thermal responses (minimum flight, maximum voluntary tolerance and heat torpor temperatures) and the effect of body temperature (T(b)) on call parameters in the cicada Diceroprocta olympusa (Walker). Regression of T(b) as a function of ambient (T(a)) or perch temperatures (T(p)) suggests thermoregulation is occurring. Thermoregulation occurs through behavioral changes that alter the uptake of solar radiation. T(p) is a better predictor of T(b) than is T(a). Thermal responses (minimum flight temperature 20.4 degrees C, maximum voluntary tolerance temperature 37 degrees C, and heat torpor temperature 46.7 degrees C) may be related to the humid, grassland habitat of the species. In contrast to other acoustic insects, no significant relationship was found between the temporal parameters of the calling song and T(b) within the population of D. olympusa.  相似文献   

7.
Several small caprimulgiform birds (<80 g) are known to enter torpor, apparently to cope with a fluctuating supply of insect prey. Since the large Australian tawny frogmouth (Podargus strigoides; 381-556 g) is also insectivorous, we investigated its thermoregulatory behaviour and thermal biology to determine whether this species is also heterothermic. In an open woodland at approximately 1,000 m altitude, we equipped eight free-ranging birds with external temperature-sensitive radio transmitters attached to an elastic harness to measure skin temperature (T(skin)). Core body temperature (T(b)) was measured in three of these birds fitted with an additional intraperitoneal transmitter. T(skin) was closely correlated with T(b), although T(skin) was usually several degrees below T(b). During the three coldest months of the year (June-August), shallow torpor with T(b) as low as 29.1 degrees C occurred frequently, whereas during spring and summer, torpor was not recorded. Torpor occurred either during the night and/or during the first half of the day. Night torpor bouts were initiated after a short activity period around dusk and lasted on average for about 7 h. Torpid birds always aroused before sunrise to either commence a second short foraging period or to fly directly to a day roost tree. After birds roosted, T(b) fell again around sunrise, and birds occasionally entered a second dawn torpor bout; however, in most cases, T(b) increased rapidly not long after entry, most likely due to passive heating by the sun. We conclude that despite their large body size and energetically conservative hunting strategy, tawny frogmouths, like several related caprimulgiform species, frequently enter shallow torpor when low T(a) demands high energetic costs for normothermic thermoregulation and likely reduces insect availability.  相似文献   

8.
We investigated normothermic thermoregulation and heterothermic responses to restricted food in the speckled mousebird Colius striatus, in the context of the widely accepted distinction between normothermia, rest-phase hypothermia, and torpor. Normothermic thermoregulation differed from typical endothermic patterns in that rest-phase body temperature (Tb) was not maintained with respect to a constant setpoint. Instead, Tb decreased during the course of the rest-phase, with the highest cooling rates observed at moderate ambient temperatures (Ta). Restricted food was associated with significant reductions in rest-phase Tb and metabolic rate. The lowest Tb recorded in a bird which was able to arouse spontaneously, was 18.2 degrees C. However, we were unable to clearly discern between normothermic, hypothermic and torpor Tb ranges. Furthermore, heterothermic responses did not accord with the patterns typically observed in birds and mammals. Metabolic suppression normally associated with entry into torpor and the defence of a torpor Tb setpoint was largely absent. The mousebirds significantly reduced their energy expenditure when heterothermic at moderate TaS only. We suggest that the observed patterns of thermoregulation in C. striatus, as well those previously reported in Colius colius, are associated with plesiomorphic clustering behaviour in the Coliiformes, and the tandem evolution of behavioural and metabolic thermoregulation.  相似文献   

9.
The (Na+ +K+)-activated, Mg2+-dependent ATPase from rabbit kidney outer medulla was prepared in a partially inactivated, soluble form depleted of endogenous phospholipids, using deoxycholate. This preparation was reactivated 10 to 50-fold by sonicated liposomes of phosphatidylserine, but not by non-sonicated phosphatidylserine liposomes or sonicated phosphatidylcholine liposomes. The reconstituted enzyme resembled native membrane preparations of (Na+ +K+)-ATPase in its pH optimum being around 7.0, showing optimal activity at Mg2+:ATP mol ratios of approximately 1 and a Km value for ATP of 0.4 mM. Arrhenius plots of this reactivated activity at a constant pH of 7.0 and an Mg2+: ATP mol ratio of 1:1 showed a discontinuity (sharp change of slope) at 17 degrees C, with activation energy (Ea) values of 13-15 kcal/mol above this temperature and 30-35 kcal below it. A further discontinuity was also found at 8.0 degrees C and the Ea below this was very high (greater than 100 kcal/mol). Increased Mg2+ concentrations at Mg2+:ATP ratios in excess of 1:1 inhibited the (Na+ +K+)-ATPase activity and also abolished the discontinuities in the Arrhenius plots. The addition of cholesterol to phosphatidylserine at a 1:1 mol ratio partially inhibited (Na+ +K+)-ATPase reactivation. Arrhenius plots under these conditions showed a single discontinuity at 20 degrees C and Ea values of 22 and 68 kcal/mol above and below this temperature respectively. The ouabain-insensitive Mg2+-ATPase normally showed a linear Arrhenius plot with an Ea of 8 kcal/mol. The cholesterol-phosphatidylserine mixed liposomes stimulated the Mg2+-ATPase activity, which now also showed a discontinuity at 20 degrees C with, however, an increased value of 14 kcal/mol above this temperature and 6 kcal/mol below. Kinetic studies showed that cholesterol had no significant effect on the Km values for ATP. Since both cholesterol and Mg2+ are known to alter the effects of temperature on the fluidity of phospholipids, the above results are discussed in this context.  相似文献   

10.
The effects of storage at low temperature on the transition in enzyme function, Tf*, and the Arrhenius activation energy, Ea, were determined for several enzymes associated with the inner membrane of rat liver mitochondria. The enzymes studied were succinate:cytochrome c reductase, cytochrome c oxidase, beta-hydroxybutyrate dehydrogenase, and oligomycin-sensitive, Mg2+-activated ATPase. For freshly isolated mitochondria the Tf*, for succinate:cytochrome c reductase and cytochrome c oxidase, occurred at approximately 23 degrees C and was coincident with a transition in structure, Ts*, determined as the change in temperature coefficient of motion for a spin label intercalated with the membrane lipids. This suggest that the change in thermal response of the membrane-associated enzymes is related to a change in molecular ordering of the membrane lipids. When mitochondria were stored at -12 degrees C, the specific activities of succinate:cytochrome c reductase and cytochrome c oxidase decreased. Concomitant with these changes the Ea, above Tf*, increased. After 100 days storage at -12 degrees C, Ea above Tf* approached the value for Ea below Tf* such that the transition in thermal response could no longer be detected. In contrast, for mitochondria stored at -196 degrees C, although the specific activity declined over the 100 days storage, no changes in either Ea or Tf* were evident. The results indicate a need for caution in evaluating comparative studies of Tf and Ea, for membrane-associated enzymes, using mitochondria which have been frozen and stored.  相似文献   

11.
We compared the thermoregulatory abilities of two insectivorous bat species, Tadarida teniotis (mean body mass 32 g) and Otonycteris hemprichii (mean body mass 25 g), that are of different phylogenetic origins and zoogeographic distributions but are sympatric in the Negev Desert. At night, both were normothermic. By day, both were torpid when exposed to ambient temperatures (T(a)) below 25 degrees Celsius, with concomitant adjustments in metabolic rate (MR). Otonycteris hemprichii entered torpor at higher T(a) than T. teniotis, and, when torpid, their body temperatures (T(b)) were 1 degrees -2 degrees Celsius and 5 degrees -8 degrees Celsius above T(a), respectively; MR was correspondingly reduced. At night, the lower critical temperature of T. teniotis was 31.5 degrees Celsius, and that of O. hemprichii was 33 degrees Celsius. Mean nocturnal thermoneutral MR of T. teniotis was 37% greater than that of O. hemprichii. At high T(a), evaporative water loss (EWL) increased markedly in both species, but it was significantly higher in T. teniotis above 38 degrees Celsius. In both species, the dry heat transfer coefficient (thermal conductance) followed the expected pattern for small mammals, by day and by night. Total EWL was notably low in normothermic and torpid animals of both species, much lower than values reported for other bats, indicating efficient water conservation mechanisms in the study species. Comparing thermoregulatory abilities suggests that O. hemprichii is better adapted to hot, arid environments than T. teniotis, which may explain its wider desert distribution. By both standard and phylogenetically informed ANCOVA, we found no differences in basal metabolic rate (BMR) between desert and nondesert species of insectivorous bats, substantiating previous studies suggesting that low BMR is a characteristic common to insectivorous bats in general.  相似文献   

12.
Woolly dormice, Dryomys laniger Felten and Storch (Senckenbergiana Biol 49(6):429–435, 1968), are a small (20–30 g), omnivorous (mainly insectivorous), nocturnal glirid species endemic to Turkey. Although woolly dormice have been assumed to hibernate during winter, no information exists on body temperature patterns and use of torpor in the species. In the present study, we aimed to determine body temperature patterns and use of torpor in woolly dormice under controlled laboratory conditions. Accordingly, body temperature (Tb) of woolly dormice was recorded using surgically implanted Thermochron iButtons, small and inexpensive temperature-sensitive data loggers. Woolly dormice exhibited robust, unimodal daily Tb rhythmicity during the euthermic stage before the beginning of hibernation. They displayed short torpor before they began hibernation, although the tendency to enter short torpor was different among individuals. Woolly dormice began hibernation within 1–3 days after exposure to cold and darkness, i.e., on October 22–24, and ended hibernation in the first half of April. Hibernation consisted of a sequence of multiday torpor bouts, interrupted by euthermic intervals. Thus, the patterns of hibernation in woolly dormice were similar to those observed in classical hibernating mammals.  相似文献   

13.
The patterns of heterothermy were measured in Lesser Hedgehog Tenrecs, Echinops telfairi, under semi-natural conditions in an outdoor enclosure during the austral mid-winter in southwestern Madagascar. The animals were implanted with miniaturized body temperature (Tb) loggers (iButtons) that measured body temperature every 42 min for 2 months (May and June). The tenrecs entered daily torpor on all 60 consecutive days of measurement, that is, on 100% of animal days, with body temperature closely tracking ambient temperature (Ta) during the ambient heating phase. The mean minimum daily Tb of the tenrecs was 18.44 +/- 0.50 degrees C (n = 174, N = 3), and never exceeded 25 degrees C whereas, apart from a few hibernation bouts in one animal, the mean maximum daily Tb was 30.73 +/- 0.15 degrees C (n = 167, N = 3). Thus during winter, tenrecs display the lowest normothermic Tb of all placental mammals. E. telfairi showed afternoon and early evening arousals, but entered torpor before midnight and remained in torpor for 12-18 h each day. One animal hibernated on two occasions for periods of 2-4 days. We consider E. telfairi to be a protoendotherm, and discuss the relevance and potential of these data for testing models on the evolution of endothermy.  相似文献   

14.
We report on the seasonal metabolic adjustments of a small-sized member of the phylogenetically ancient Afrotheria, the Western rock elephant shrew (Elephantulus rupestris). We recorded body temperature (T (b)) patterns and compared the capacity for adrenergically induced nonshivering thermogenesis (NST) in E. rupestris captured in the wild in summer and winter. Noradrenaline (NA) treatment (0.4-0.5?mg/kg, s.c.) induced a pronounced elevation in oxygen consumption compared to controls (saline), and the increase in oxygen consumption following injection of NA was 1.8-fold higher in winter compared to summer. This suggests that the smaller members of Afrotheria possess functional brown adipose tissue, which changes in thermogenic capacity depending on the season. Torpor was recorded in both seasons, but in winter the incidence of torpor was higher (n?=?205 out of 448 observations) and minimal T (b) during torpor was lower (T (b)min: 11.9°C) than in summer (n?=?24 out of 674 observations; T (b)min: 26°C). In addition to cold, high air humidity emerged as a likely predictor for torpor entry. Overall, E. rupestris showed a high degree of thermoregulatory plasticity, which was mainly reflected in a variable timing of torpor entry and arousal. We conclude that E. rupestris exhibits seasonal metabolic adjustments comparable to what has been long known for many Holarctic rodents.  相似文献   

15.
Extents of adsorption of bovine serum albumin from aqueous solution to the surface of alumina, silica, carbon and chromium powder have been studied as function of time for various values of bulk protein concentration, pH, ionic strength and temperature. The rates of adsorption in all cases have been observed to fit in the first order rate equation with two different rate constants Ka1 and Ka2. Effects of addition of SDS, CTAB and neutral salts on values of Ka1 and Ka2 have also been studied. Using Arrhenius equation the activation energy values Ea1 and Ea2 have been evaluated from the values of Ka1 and Ka2 at three different temperatures, respectively. The corresponding values of enthalpy of activation (delta H*), entropy of activation (delta S*), and free energy of activation (delta G*) have been evaluated using Eyring's equation of absolute reaction rate. The mechanism of protein adsorption has been discussed in the light of basic principles of absolute reaction rate. It has been found that for Ka1 the delta H*1 greater than T delta S*1 and for Ka2 T delta S*2 greater than H*2, i.e. the anchorage and binding of protein to the surface are enthalpy controlled processes whereas the surface denaturation as well as rearrangement and folding is an entropy controlled process. The role of diffusion on rate of adsorption has also been discussed.  相似文献   

16.
In the natural environment, hibernating sciurids generally remain dormant during winter and enter numerous deep torpor bouts from the time of first immergence in fall until emergence in spring. In contrast, black-tailed prairie dogs (Cynomys ludovicianus) remain active throughout winter but periodically enter short and shallow bouts of torpor. While investigating body temperature (T(b)) patterns of black-tailed prairie dogs from six separate colonies in northern Colorado, we observed one population that displayed torpor patterns resembling those commonly seen in hibernators. Five individuals in this population experienced multiple torpor bouts in immediate succession that increased in length and depth as winter progressed, whereas 16 prairie dogs in five neighboring colonies remained euthermic for the majority of winter and entered shallow bouts of torpor infrequently. Our results suggest that these differences in torpor patterns did not result from differences in the physiological indicators that we measured because the prairie dogs monitored had similar body masses and concentrations of stored lipids across seasons. Likewise, our results did not support the idea that differences in overwinter T(b) patterns between prairie dogs in colonies with differing torpor patterns resulted from genetic differences between populations; genetic analyses of prairie dog colonies revealed high genetic similarity between the populations and implied that individuals regularly disperse between colonies. Local environmental conditions probably played a role in the unusual T(b) patterns experienced by prairie dogs in the colony where hibernation-like patterns were observed; this population received significantly less rainfall than neighboring colonies during the summer growing seasons before, during, and after the year of the winter in which they hibernated. Our study provides a rare example of extreme plasticity in thermoregulatory behaviors of free-ranging prairie dogs and provides evidence contrary to models that propose a clear delineation between homeothermy, facultative torpor, and hibernation.  相似文献   

17.
We investigated thermoregulation and facultative hypothermic responses to food deprivation in the red-headed finch (Amadina erythrocephala), a 22-g passerine endemic to the arid regions of southern Africa. We predicted that, like most other passerines investigated, A. erythrocephala exhibits shallow rest-phase hypothermia, but not torpor. We observed significant reductions in rest-phase energy expenditure and body temperature (Tb) in response to restricted feeding. The maximum extent of Tb reduction (ca. 5 degrees C) and energy savings (ca. 10%) were consistent with those reported for a number of other passerine species. The lowest Tb we observed in a bird able to arouse spontaneously was 34.8 degrees C. The parameters of facultative hypothermic responses in A. erythrocephala were indicative of shallow rest-phase hypothermia, but not torpor. The limited available data on hypothermic responses in passerines suggest that many species do not possess the capacity for torpor. In passerines, torpor appears to be restricted to a few nectarivores and aerial insectarivores, and may have evolved independently of the torpor observed in non-passerine taxa such as the Trochiliformes and Caprimulgidae. The basal metabolic rate (BMR) of A. erythrocephala was 30-46% lower than predicted by various allometric equations, but was similar to the predicted BMR for a 22-g desert bird.  相似文献   

18.
Isolated mammalian cytochrome oxidase gave an Arrhenius plot with a break (Tb) at about 20 degrees C when assayed in a medium containing Emasol. The activation energies above and below 20 degrees C were 9.3 (EH) and 18.9 kcal/mol (EL), respectively. Isolated cytochrome oxidase was also incorporated into vesicles of dipalmitoyl phosphatidylcholine (DPPC, phase transition temperature Tt = 40 degrees C), dimyristoyl phosphatidylcholine (DMPC, Tt = 23 degrees C) and dioleoyl phosphatidylcholine (DOPC, Tt = -22 degrees C). The DPPC system showed a nearly linear Arrhenius plot between 9 and 36 degrees C with E = 22.8 kcal/mol. When cytochrome oxidase was resolubilized from the DPPC vesicles and assayed in solution a biphasic plot was obtained again. Cytochrome oxidase-DOPC was more active than the solubilized enzyme and exhibited a biphasic Arrhenius plot with Tb = 23 degrees C. EH and EL were 6.6 and 15.8 kcal/mol, respectively. The plot for the oxidase-DMPC also showed a break (Tb = 26 degrees C) with EH = 6.6 and EL = 26.6 kcal/mol. These results indicate that the break in the Arrhenius plot reflects primarily a structural transition in the cytochrome oxidase molecule between the "hot" and "cold" conformations, as proposed previously. This transition, as well as the molecular state of cytochrome oxidase, is affected by the physical state of the membrane lipids as reflected by changes in the kinetic properties.  相似文献   

19.
Several energy-saving strategies have evolved in animals, one example being the short-term reduction of metabolism and body temperature (torpor) in endotherms. For bats, pronounced torpor behaviour has been described. The aim of this study was to assess individual variation in torpor expression of male Myotis daubentonii, and to analyse whether this variation is related to habitat characteristics. For that we measured skin temperatures of bats from different habitats using radio transmitters and also recorded ambient temperature. Skin temperature was corrected for ambient temperature and individual body mass. Cluster analysis of residuals revealed two different thermoregulatory strategies. Males in cluster 1 were more often encountered torpid and reached lower minimum skin temperatures than males in cluster 2. The differences in behaviour were related to environmental variables (water surface area near the roost, roost altitude, precipitation, ambient temperature in the warmest quarter of the year). Males from cluster 1 occupied less favourable habitats (less water surface, higher altitudes, wetter and colder climate) than males from cluster 2. Our data suggest a linkage between torpor behaviour and habitat characteristics. These characteristics could be used to identify favourable and marginal habitats for M. daubentonii.  相似文献   

20.
The effects of exercise intensity on thermoregulatory responses in cold (-10 degrees C) in a 0.2 (still air, NoWi), 1.0 (Wi1), and 5.0 (Wi5) m x s(-1) wind were studied. Eight young and healthy men, preconditioned in thermoneutral (+20 degrees C) environment for 60 min, walked for 60 min on the treadmill at 2.8 km/h with different combinations of wind and exercise intensity. Exercise level was adjusted by changing the inclination of the treadmill between 0 degrees (lower exercise intensity, metabolic rate 124 W x m(-2), LE) and 6 degrees (higher exercise intensity, metabolic rate 195 W x m(-2), HE). Due to exercise increased heat production and circulatory adjustments, the rectal temperature (T(re)), mean skin temperature (Tsk) and mean body temperature (Tb) were significantly higher at the end of HE in comparison to LE in NoWi and Wi1, and T(re) and Tb also in Wi5. Tsk and Tb were significantly decreased by 5.0 m x s(-1) wind in comparison to NoWi and Wi1. The higher exercise intensity was intense enough to diminish peripheral vasoconstriction and consequently the finger skin temperature was significantly higher at the end of HE in comparison to LE in NoWi and Wi1. Mean heat flux from the skin was unaffected by the exercise intensity. At LE oxygen consumption (VO2) was significantly higher in Wi5 than NoWi and Wi1. Heart rate was unaffected by the wind speed. The results suggest that, with studied exercise intensities, produced without changes in walking speed, the metabolic rate is not so important that it should be taken into consideration in the calculation of wind chill index.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号