首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Genetic and molecular studies show that the Duchenne muscular dystrophy (DMD) locus at Xp21 is large and complex. We have analyzed this region using pulsed field gel electrophoresis (PFGE) and have determined physical distances between Xp21 probes. The sum of the sizes of the Sfil restriction fragments detected by these probes is greater than 4000 kb. The deletion endpoints in two DMD patients were detected by observing changes in these restriction fragments. In addition, the Xp21 breakpoint for the X;1 translocation in an affected female was mapped. These results demonstrate the applicability of PFGE for analysis of Xp21, and should facilitate the mapping of other translocations and deletions in this region, some of which lead to glycerol kinase deficiency and adrenal hypoplasia as well as DMD.  相似文献   

2.
By cloning the endpoints of a DMD-associated deletion, we have "jumped" 1100 kb from pERT87-1 (DSX164) to a new locus designated J66 (DXS268), mapping distally within the Duchenne muscular dystrophy (DMD) gene. Both J66 and JBir are mapped by field-inversion gel electrophoresis and detect abnormal SfiI fragments in DMD patients and distal DMD-associated X; autosome translocations. Our long-range map extends the physical map of the DMD gene from 800 to 2000 kb (2 Mb) and increases the mapped portion of Xp21 to approximately 8 Mb. The position of the glycerol kinase gene and the adrenal hypoplasia locus are further confined to the region between J66 and the nearest distal probe L1-4. This region spans at least 1.5 Mb. The multiallelic J66 polymorphism has immediate application in the diagnosis of DMD and generally appears to be distal to DMD mutations.  相似文献   

3.
Duchenne muscular dystrophy (DMD) is a lethal X-linked muscular disorder. The biochemical defect remains unknown, but the gene responsible has been mapped to band Xp21. The gene has now been cloned in two laboratories solely from knowledge of its map location. L. M. Kunkel and his colleagues isolated genomic sequences (PERT 87) from within a large deletion causing DMD, whereas our group isolated genomic sequences (XJ) spanning the junction of an X-autosome translocation causing the disease. Chromosome walking by both groups has led to the isolation of over 400 kilobases of the PERT 87 and XJ region. Subclones of PERT 87 and XJ reveal restriction fragment length polymorphisms that segregate with the DMD gene in 95% of meioses, and fail to hybridize with DNA from about 8% of male patients. Selected subclones of PERT 87 and XJ contain exons that hybridize to muscle-derived complementary DNA (cDNA) clones. The cDNA clones detect a large (16 kilobase) message. Analysis of deletions, mutations and translocations suggests a DMD gene of between two million and three million base pairs. The clones obtained so far are useful for attempts to generate antibody against the gene product and for carrier identification and prenatal diagnosis.  相似文献   

4.
5.
The X-linked recessive type of retinitis pigmentosa (XLRP) causes progressive night blindness, visual field constriction, and eventual blindness in affected males by the third or fourth decade of life. The biochemical basis of the disease is unknown, and prenatal diagnosis and definitive carrier diagnosis remain elusive. Heterogeneity in XLRP has been suggested by linkage studies of families affected with XLRP and by phenotypic differences observed in female carriers. Localization of XLRP near Xp11.3 has been suggested by close linkage to an RFLP at the locus DXS7 (Xp11.3) detected by probe L1.28. In other studies a locus for XLRP with metallic sheen has been linked to the ornithine transcarbamylase (OTC) locus mapping to the Xp21 region. In this study, by linkage analysis using seven RFLP markers between Xp21 and Xcen, we examined four families with multiple affected individuals. Close linkage was found between XLRP and polymorphic sites OTC (theta = .06 with lod 5.69), DXS84 (theta = .05 with lod 4.08), and DXS206 (theta = .06 with lod 2.56), defined by probes OTC, 754, and XJ, respectively. The close linkage of OTC, 754, and XJ to XLRP localizes the XLRP locus to the Xp21 region. Data from recombinations in three of four families place the locus above L1.28 and below the Duchenne muscular dystrophy (DMD) gene, consistent with an Xp21 localization. In one family, however, one affected male revealed a crossover between XLRP and all DNA markers, except for the more distal DXS28 (C7), while his brother is recombined for this marker (C7) and not other, more proximal markers. This suggests that in this family the XLRP mutation maps near DXS28 and above the DMD locus.  相似文献   

6.
Number and order of HindⅢ exon-containing fragments (Hd) at 3' region of DMD gene were studied systematically using 16 partly-overlapping cDNA subprobes which were produced from dystrophin cDNA 9- 14 with each of 9 restriction endonudeases. There are 25 Hd fragments corresponding to cDNA 9 -14 in DMD gene. Since then, the exact length and the new order of Hd fragments are established. A new 2.1 kb fragment (Hd 55) is revealed, a 5.2 kb fragment (formely designated as Hd 59) is excluded and the existence of a controversial 3.2 kb fragment (Hd 64) is confirmed. Besides, three new exons were revealed by comparing the PvuⅡ and the XbaⅠ hybridization patterns with the Hindlll hybridization patterns for these cDNA subprobes. It is concluded that there are at least 66 Hd fragments, or 79 exons in DMD gene basing on the discovery of three additional exons. The corresponding relationship between the 66 Hd fragments and the SfiⅠ large scale physical map has been studied, and at least 17 Hd fragments or 19 exo  相似文献   

7.
Bivariate flow karyotyping was used to estimate the deletion sizes for a series of patients with Xp21 contiguous gene syndromes. The deletion estimates were used to develop an approximate scale for the genomic map in Xp21. The bivariate flow karyotype results were compared with clinical and molecular genetic information on the extent of the patients' deletions, and these various types of data were consistent. The resulting map spans > 15 Mb, from the telomeric interval between DXS41 (99-6) and DXS68 (L1-4) to a position centromeric to the ornithine transcarbamylase locus. The deletion sizing was considered to be accurate to +/- 1 Mb. The map provides information on the relative localization of genes and markers within this region. For example, the map suggests that the adrenal hypoplasia congenita and glycerol kinase genes are physically close to each other, are within 1-2 Mb of the telomeric end of the Duchenne muscular dystrophy (DMD) gene, and are nearer to the DMD locus than to the more distal marker DXS28 (C7). Information of this type is useful in developing genomic strategies for positional cloning in Xp21. These investigations demonstrate that the DNA from patients with Xp21 contiguous gene syndromes can be valuable reagents, not only for ordering loci and markers but also for providing an approximate scale to the map of the Xp21 region surrounding DMD.  相似文献   

8.
The present study was focused on the resolution of "chromosome stretching". In order to determine if this method can be used for the detection of microdeletions, the p-arms of 13 normal X chromosomes were stretched as well as of those with three different deletions of known size within the DMD/BMD region in Xp21 (case A: 0.42-0.45 Mb, case B: 2.3-2.9 Mb and case C: 3.0-3.5 Mb). The process of band splitting was recorded on a video-tape and the resulting banding pattern analyzed. Stretching of the normal Xp-arms led to a splitting on a maximum band level of 1400 and showed in all cases an identical banding pattern with 13 Giemsa-dark subbands. All new Giemsa-dark and -light subbands were derived from the three initial Giemsa-dark bands at the 400 band level according to ISCN (1995): five subbands from Xp21, four subbands from Xp11.3 and Xp22.2, respectively. The origin of these subbands is partly in contrast to the high resolution ISCN (1995) ideograms: subband Xp11.22 does not originate from the Giemsa-light band Xp11.2, but from the Giemsa-dark band Xp11.3; Xp22.12 originates from Xp21; Xp22.32 from Xp22.2. Stretching of the chromosomes containing deletions showed in cases A and B no differences in banding patterns and splitting order compared to normal X chromosomes. Only in patient C was a significant difference with the normal pattern visible due to the absence of one dark subband. In this case only four Giemsa-dark subbands derived from band Xp21. Thus, at least in the DMD/BMD region, the minimal size of a deletion detected by chromosome-stretching-generated high-resolution ideograms is about 3.0-3.5 Mb.  相似文献   

9.
A genetic locus (RP3) for X-linked retinitis pigmentosa (XLRP) has been assigned to Xp21 by genetic linkage studies and has been supported by two Xp21 male deletion patients with XLRP. RP3 appears to be the most centromeric of several positioned loci, including chronic granulomatous disease (CGD), McLeod phenotype (XK), and Duchenne muscular dystrophy (DMD). In one patient, BB, the X-chromosome deletion includes RP3 and extends to within the DMD locus. Using a DMD cDNA, the centromeric endpoint of this patient was cloned and used as a starting point for chromosome walking along a normal X chromosome. A single-copy probe, XH1.4, positioned near the centromeric junction but deleted in BB, was used along with a CGD cDNA probe to establish a refined long-range physical map. Both probes recognized a common SfiI fragment of 205 kb. As the CGD gene covers approximately 30-60 kb, the RP3 locus has been restricted to approximately 150-170 kb. A CpG island, potentially marking a new gene, was identified within the SfiI fragment at a position approximately 35 kb from the deletion endpoint in BB.  相似文献   

10.
There are over 20 females with Duchenne or Becker muscular dystrophy (DMD or BMD) who have X-autosome translocations that break the X chromosome within band Xp21. Several of these translocations have been mapped with genomic probes to regions throughout the large (approximately 2000 kb) DMD gene. In this report, a cDNA clone from the 5' end of the gene was used to further map the breakpoints in four X-autosome translocations. A t(X;21) translocation in a patient with BMD and a t(X;1) translocation in a patient with DMD were found to break within a large 110-kb intron between exons 7 and 8. Two other DMD translocations, t(X;5) and t(X;11), were found to break between the first and the second exon of the gene within a presumably large intron (greater than 100 kb). These results demonstrate that all four translocations have disrupted the DMD gene and make it possible to clone and sequence the breakpoints. This will in turn determine whether these translocations occur by chance in these large introns or whether there are sequences that predispose to translocations.  相似文献   

11.
Physical mapping distal to the DMD locus   总被引:3,自引:0,他引:3  
We report a new locus, designated JC-1, which maps between the gene responsible for adrenal hypoplasia (AHC) and the gene that encodes glycerol kinase (GK) in Xp21.2-21.3. The probe identifying this locus was obtained by cloning the distal sequence of a junction fragment from a Duchenne muscular dystrophy (DMD) patient with a large deletion. Pulsed-field gel electrophoresis analysis shows that a region of at least 4 Mb separates the 3' end of the dystrophin gene and the closest distal marker to AHC, DXS28. This region of the human genome contains few genes whose deletion results in a clinical phenotype. JC-1 is a useful probe from which to initiate strategies directed at cloning the AHC and GK loci.  相似文献   

12.
Familial deletion in Becker type muscular dystrophy within the pXJ region   总被引:2,自引:0,他引:2  
Summary A family of an isolated patient with Becker muscular dystrophy has been investigated by DNA analysis. Southern blotting and hybridization were performed with six probes (C7, pERT87.15, pERT87.1, pXJ1.1, pXJ2.3, 754) mapping in the Xp21 region. A deletion within the pXJ region was demonstrated in the proband, his mother and all three sisters. The segregation pattern for the restriction fragment length polymorphisms (RFLPs) observed with the pXJ probes as well as with pERT87.15, pERT87.1 and 754 probes indicates that the deletion is of grandpaternal origin.  相似文献   

13.
14.
Aland Island Eye Disease (AIED) is an X-linked form of ocular hypopigmentation--also known as Forsius-Eriksson, or type 2, ocular albinism--in which affected males demonstrate subnormal visual acuity, protanomalous red-green colorblindness, axial myopia, astigmatism, hypoplasia of the fovea, and hypopigmentation of the fundus. A patient has previously been described who, in addition to AIED, manifested a contiguous gene syndrome which included congenital adrenal hypoplasia (AHC), glycerol kinase deficiency (GKD), and Duchenne muscular dystrophy (DMD). In the present paper report we report the molecular genetic analysis of his deletion. Initially, multiplex polymerase-chain-reaction amplification was used to screen for a DMD-locus deletion which was then further characterized, using DMD cDNA and genomic probes, via Southern blot analysis. The deletion includes the region encompassed by probes C7 (DXS28) and DMD cDNA 8. Probes B24 (DXS67) and DMD cDNA 5b-7 show normal hybridization patterns and appear to flank the deletion, while the DMD cDNA 8 detects a junction fragment. Molecular genetic techniques have mapped the deletion in this patient to the subbands Xp21.3-21.2, between DXS67 and DMD.  相似文献   

15.
Summary We report two male cousins with Duchenne muscular dystrophy (DMD) in whom cytogenetic studies have shown a small interstitial deletion at Xp21. The lesion is readily detectable in patients and carriers by flow cytometry which indicates that approximately 6000 kb of DNA are deleted in each case. The DNA markers OTC, C7, and B24 are present in the deleted X chromosome but 87-8, 87-1, and 754 are absent. Despite apparently identical deletions one affected boy has profound mental handicap while the other is only mildly retarded. The results confirm the assignment of familial DMD to Xp21 and illustrate the value of flow cytometry in improving the precision of chromosome analysis. We have also undertaken flow cytometry in a cell line from a previously reported DMD patient with a de novo Xp21 deletion who had, in addition, chronic granulomatous disease, retinitis pigmentosa, and the McLeod syndrome. The results indicate that the amount of DNA deleted from the X is similar in both families despite the striking differences in phenotype.  相似文献   

16.
用Alu-PCR指纹图谱法分析了人Xp21.1-p21.3上一系列的酵母人工染色体(yeastartificialchromosome,YAC)克隆,发现其中的两个YAC克隆构成包含DXS166位点的重叠群,而且这一重叠群与以前构建的包含DMD基因全序列的YAC重叠群相连接,YAC克隆末端探针交叉杂交证实了这一重叠,使这一YAC重叠群至少延伸至DXS166位点,形成一个跨度为3.5Mb的YAC重叠群。基于这些重叠的YAC克隆绘制了这一区域的大尺度限制酶切图谱,并在这一图谱上定位了DXS166位点,从而确定了DXS166位点与DMD基因的物理关系。这一工作为DMD基因的5'远端调控作用研究及该区域未知基因的克隆奠定了基础。  相似文献   

17.
We report here on the order of three DNA markers, C7, B24, and L1, based on the arrangement of their fluorescently labeled hybridization sites in interphase cell nuclei. The three markers map distal to the Duchenne muscular dystrophy (DMD), glycerol kinase deficiency (GKD), and adrenal hypoplasia (AHC) loci on human chromosome Xp21.3. Their order has been a matter of controversy. In interphase chromatin, B24 maps between C7 and L1. We estimate from interphase distance that C7 and L1 are 300-500 kb apart. When the three markers are hybridized to interphase cells of Nijmegen1, a patient with DMD, GKD, and AHC, only C7 appears to be deleted, rather than both C7 and L1, as had been reported elsewhere. C7 is also the only one of the three markers deleted in several other DMD patients studied by others. The deletion results indicate that C7 is the most proximal of the three markers and allow the trio of ordered probes to be oriented on the chromosome: cen-C7(DXS28)-B24(DXS67)-L1(DXS68)-tel.  相似文献   

18.
Two polymorphic loci and two additional probes that map close to CMM65, which is tightly linked to the polycystic kidney disease 1 (PKD1) locus in chromosome band 16p13.3, are described. These new probes were isolated from a library that was enriched by preparative pulsed-field gel electrophoresis (PFGE) for sequences from a 320-kb NotI fragment that includes CMM65. Through the use of a panel of somatic cell hybrids and PFGE, the new polymorphic loci, PNL56S and NKISP1, were localized within 60 kb and approximately 250 kb distal to CMM65, respectively. A long-range restriction map linking these new probes and the distal markers EKMDA2, CMM103, and alpha-globin was constructed. These latter probes have been localized to regions approximately 900 kb, 1.2 Mb, and 1.9 Mb distal to CMM65, respectively. The entire region was found to be unusually rich in CpG dinucleotides. The new polymorphic probes and the long-range map will aid both the search for the PKD1 locus and the detailed characterization of this distal region of 16p.  相似文献   

19.
Molecular deletion patterns in Duchenne and Becker type muscular dystrophy   总被引:5,自引:2,他引:3  
Summary DNA from 80 Duchenne (DMD) and 15 Becker (BMD) index patients was analyzed with 12 genomic probes and the total cDNA. Deletions were detected in 24 DMD (30%) and 10 BMD patients (67%) by genomic probes alone, mostly p20, pXJ, and/or pERT87. All deletions were confirmed by cDNA probes, and an additional 29 DMD deletions were detected, resulting in a total of 63/95 deletions (66%). The majority of the deletions are localized between kb 6.7 and 9.7 of the cDNA; a smaller group, between kb 0.5 and 3.5. Of the deletions, 90% are detected by the three cDNA probes 1–2a, 7, and 8. This can be applied to strategies for carrier detection and prenatal diagnosis. The order of 13 exon-containing HindIII fragments in the region between probes 7 and 9–10, where most of the deletions are found, could be defined. The deletion patterns in DMD and BMD patients are different and well in accordance with the “reading frame theory” of Monaco and coworkers. Thus our findings indicate that a DMD or BMD phenotype may be predicted according to the breakpoint position and the number of deleted exons.  相似文献   

20.
为了鉴定鼠mPC-1基因表达的调控元件,克隆并分析了该基因的启动子.构建了一系列mPC-1基因启动子的截短序列.通过荧光素酶报道基因,分析了它们在前列腺癌细胞和其它细胞中的表达.结果表明,在AR阳性细胞系中,mPC-1基因启动子活性远远高于SV40和p61-PSA 启动子,mPC-1基因启动子 599 bp 至449bp 可能含有一个负调控元件; mPC-1 1.1 kb 启动子控制的表达主要在前列腺癌细胞系中; 雄激素可调控mPC-1 1.1kb 启动子表达.mPC-1 1.1kb 序列是一个有前列腺癌细胞特异性和较强的启动子,经过进一步的修饰有可能作为一种有用的前列腺癌基因治疗元件.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号