首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Allene oxide synthase (AOS; hydroperoxide dehydratase; EC 4.2.1.92) catalyzes the first step in the biosynthesis of jasmonic acid from lipoxygenase-derived hydroperoxides of free fatty acids. Using the AOS cDNA from tomato (Lycopersicon esculentum), in which the role of jasmonic acid in wound-induced defense gene activation has been best described, we examined the kinetics of AOS induction in response to wounding and elicitors, in parallel with that of the wound-inducible PIN II (proteinase inhibitor II) gene. AOS was induced in leaves by wounding, systemin, 12-oxophytodienoic acid, and methyl jasmonate. The levels of AOS mRNA started declining by 4 h after induction, whereas the levels of PIN II mRNA continued to increase up to 20 h after induction. Salicylic acid inhibited AOS and PIN II expression, and the addition of 12-oxophytodienoic acid or methyl jasmonate did not prevent the inhibition of PIN II expression in the presence of salicylic acid. Ethylene induced the expression of AOS, but the presence of ethylene alone did not produce an optimal induction of PIN II. The addition of silver thiosulfate, an ethylene action inhibitor, prevented the wound-induced expression of both AOS and PIN II. Products of hydroperoxide lyase affected neither AOS nor PIN II, but induced expression of prosystemin. Based on these results, we propose an updated model for defense gene activation in tomato.  相似文献   

2.
3.
Lipid transfer proteins (LTPs) are ubiquitous plant lipid-binding proteins that have been associated with multiple developmental and stress responses. Although LTPs typically bind fatty acids and fatty acid derivatives in a non-covalent way, studies on the LTPs of barley seeds have identified an abundantly occurring covalently modified form, LTP1b, the lipid ligand of which has resisted clarification. In the present study, this adduct was identified as the alpha-ketol 9-hydroxy-10-oxo-12(Z)-octadecenoic acid. Further studies on the formation of LTP1b demonstrated that the ligand was introduced by nucleophilic attack of the free carboxylate group of the Asp-7 residue of the protein at carbon-9 of the allene oxide fatty acid 9(S),10-epoxy-10,12(Z)-octadecadienoic acid. This reactive oxylipin was produced in barley seeds by oxygenation of linoleic acid by 9-lipoxygenase followed by dehydration of the resulting hydroperoxide by allene oxide synthase. The generation of protein-oxylipin adducts represents a new function for plant allene oxide synthases, enzymes that have earlier been implicated mainly in the biosynthesis of the jasmonate family of plant hormones. Additionally, the LTP-allene oxide synthase interaction opens new perspectives regarding the roles of LTPs in the signaling of plant defense and development.  相似文献   

4.
Mechanical wounding and jasmonic acid (JA) treatment have been shown to be important factors in controlling laticifer differentiation in Hevea brasiliensis (rubber tree). With the long-term aim of potentially modifying the endogenous levels of JA in H. brasiliensis by gene transfer, we describe in this paper the molecular cloning of a H. brasiliensis allene oxide synthase (AOS) cDNA and biochemical characterisation of the recombinant AOS (His(6)-HbAOS) enzyme. The AOS cDNA encodes a protein with the expected motifs present in CYP74A sub-group of the cytochrome P450 super-family of enzymes that metabolise 13-hydroperoxylinolenic acid (13-HPOT), the intermediate involved in JA synthesis. The recombinant H. brasiliensis AOS enzyme was estimated to have a high binding affinity for 13-HPOT with a K(m) value of 4.02+/-0.64 microM. Consistent with previous studies, mammalian cycloxygenase (COX) and lipoxygenase (LOX) inhibitors were shown to significantly reduce His(6)-HbAOS enzyme activity. Although JA had no effect on His(6)-HbAOS, salicylic acid (SA) was shown to significantly inhibit the recombinant AOS enzyme activity in a dose dependent manner. Moreover, it was demonstrated that SA, and various analogues of SA, acted as competitive inhibitors of His(6)-HbAOS when 13-HPOT was used as substrate. We speculate that this effect of salicylates on AOS activity may be important in cross-talking between the SA and JA signalling pathways in plants during biotic/abiotic stress.  相似文献   

5.
A heme domain of coral allene oxide synthase (cAOS) catalyzes the formation of allene oxide from fatty acid hydroperoxide. Although cAOS has a similar heme active site to that of catalase, cAOS is completely lacking in catalase activity. A close look at the hydrogen-bonding possibilities around the distal His in cAOS suggested that the imidazole ring is rotated by 180 degrees relative to that of catalase because of the hydrogen bond between Thr-66 and the distal His-67. This could contribute to the functional differences between cAOS and catalase, and to examine this possibility, we mutated Thr-66 in cAOS to Val, the corresponding residue in catalase. In contrast to the complete absence of catalase activity in wild type (WT) cAOS, T66V had a modest catalase activity. On the other hand, the mutation suppressed the native enzymatic activity of the formation of allene oxide to 14% of that of WT cAOS. In the resonance Raman spectrum, whereas WT cAOS has only a 6-coordinate/high spin heme, T66V has a 5-coordinate/high spin heme as a minor species. Because catalase adopts a 5-coordinate/high spin structure, probably the 5-coordinate/high spin portion of T66V showed the catalase activity. Furthermore, in accord with the fact that the CN affinity of catalase is higher than that of WT cAOS, the CN affinity of T66V was 8-fold higher than that of WT cAOS, indicating that the mutation could mimic the heme active site in catalase. We, therefore, propose that the hydrogen bond between Thr-66 and distal His-67 could modulate the orientation of distal His, thereby regulating the enzymatic activity in cAOS.  相似文献   

6.
Allene oxide synthase (AOS) is encoded by a single intronless gene in Arabidopsis thaliana (L.) Heynh. The promoter region of the AOS gene exhibits, in addition to the elements of a minimal promoter and the presence of general enhancers, cis-elements that, in other promoters, are responsible for stress- and ethylene-responsiveness. Arabidopsis thaliana and Nicotiana tabacum L. were transformed with a chimaeric gene consisting of a 1.9-kb 5′-upstream sequence and the first 95 nucleotides of the AOS coding sequence translationally fused to uid A encoding β-glucuronidase (GUS). Using histochemistry, GUS activity was seen in older leaves, in the bases of petioles and in stipules, during the early stages of carpel development, in maturing pollen grains and at the base of elongated filaments, as well as in abscission-zone scars. A role for jasmonates in floral organ abscission is suggested by these findings. Furthermore, the AOS promoter was activated both locally as well as systemically upon wounding. Jasmonic acid, 12-oxophytodienoic acid and coronatine strongly induced GUS activity. This induction remained confined to the treated leaf when agonists were applied locally to a leaf, suggesting that neither jasmonic acid nor 12-oxophytodienoic acid are physiologically relevant components of the systemic wound signal complex. Rather, the data show that jasmonates behave as local response regulators produced at or around the sites of action in response to appropriate triggers of their synthesis. Received: 21 September 1998 / Accepted: 30 December 1998  相似文献   

7.
Laudert D  Schaller F  Weiler EW 《Planta》2000,211(1):163-165
 Allene oxide synthase (AOS), encoded by a single gene in Arabidopsis thaliana (L.) Heynh., catalyzes the first step specific to the octadecanoid pathway. Enzyme activity is very low in control plants, but is upregulated by wounding, octadecanoids, ethylene, salicylate and coronatine (D. Laudert and E.W. Weiler, 1998, Plant J 15: 675–684). In order to study the consequences of constitutive expression of AOS on the level of jasmonates, a complete cDNA encoding the enzyme from A. thaliana was constitutively expressed in both  A. thaliana and tobacco (Nicotiana tabacum L.). Overexpression of AOS did not alter the basal level of jasmonic acid; thus, output of the jasmonate pathway in the unchallenged plant appears to be strictly limited by substrate availability. In wounded plants overexpressing AOS, peak jasmonate levels were 2- to 3-fold higher compared to untransformed plants. More importantly, the transgenic plants reached the maximum jasmonate levels significantly earlier than wounded untransformed control plants. These findings suggest that overexpression of AOS might be a way of controlling defense dynamics in higher plants. Received: 10 February 2000 / Accepted: 11 March 2000  相似文献   

8.
9.
10.
Wu F  Katsir LJ  Seavy M  Gaffney BJ 《Biochemistry》2003,42(22):6871-6880
Coral allene oxide synthase (cAOS), a fusion protein with 8R-lipoxygenase in Plexaura homomalla, is a hemoprotein with sequence similarity to catalases. cAOS reacts rapidly with the oxidant peracetic acid to form heme compound I and intermediate II. Concomitantly, an electron paramagnetic resonance (EPR) signal with tyrosyl radical-like features, centered at a g-value of 2.004-2.005, is formed. The radical is identified as tyrosyl by changes in EPR spectra when deuterated tyrosine is incorporated in cAOS. The radical location in cAOS is determined by mutagenesis of Y193 and Y209. Upon oxidation, native cAOS and mutant Y209F exhibit the same radical spectrum, but no significant tyrosine radical forms in mutant Y193H, implicating Y193 as the radical site in native cAOS. Estimates of the side chain torsion angles for the radical at Y193, based on the beta-proton isotropic EPR hyperfine splitting, A(iso), are theta(1) = 21 to 30 degrees and theta(2) = -99 to -90 degrees. The results show that cAOS can cleave nonsubstrate hydroperoxides by a heterolytic path, although a homolytic course is likely taken in converting the normal substrate, 8R-hydroperoxyeicosatetraenoic acid (8R-HpETE), to product. Coral AOS achieves specificity for the allene oxide formed by selection of the homolytic pathway normally, while it inactivates by the heterolytic path with nonoptimal substrates. Accordingly, with the nonoptimal substrate, 13R-hydroperoxyoctadecadienoic acid (13R-HpODE), mutant Y193H is inactivated after turning over significantly fewer substrate molecules than required to inactivate native cAOS or the Y209F mutant because it cannot absorb oxidizing equivalents by forming a radical at Y193.  相似文献   

11.
12.
Oxygenation of linoleic acid by Aspergillus terreus was studied with LC-MS/MS. 9(R)-Hydroperoxy-10(E),12(Z)-octadecadienoic acid (9R-HpODE) was identified along with 10(R)-hydroxy-8(E),12(Z)-octadecadienoic acid and variable amounts of 8(R)-hydroxy-9(Z),12(Z)-octadecadienoic acid. 9R-HpODE was formed from [11S-2H]18:2n − 6 with loss of the deuterium label, suggesting antarafacial hydrogen abstraction and oxygenation. Two polar metabolites were identified as 9-hydroxy-10-oxo-12(Z)-octadecenoic acid (α-ketol) and 13-hydroxy-10-oxo-11(E)-octadecenoic acid (γ-ketol), likely formed by spontaneous hydrolysis of an unstable allene oxide, 9(R),10-epoxy-10,12(Z)-octadecadienoic acid. α-Linolenic acid and 20:2n − 6 were oxidized to hydroperoxy fatty acids at C-9 and C-11, respectively, but α- and γ-ketols of these fatty acids could not be detected. The genome of A. terreus lacks lipoxygenases, but contains genes homologous to 5,8-linoleate diol synthases and linoleate 10R-dioxygenases of aspergilli. Our results demonstrate that linoleate 9R-dioxygenase linked to allene oxide synthase activities can be expressed in fungi.  相似文献   

13.
The ability of hemoproteins to catalyze epoxidation or hydroxylation reactions is usually associated with a cysteine as the proximal ligand to the heme, as in cytochrome P450 or nitric oxide synthase. Catalase-related allene oxide synthase (cAOS) from the coral Plexaura homomalla, like catalase itself, has tyrosine as the proximal heme ligand. Its natural reaction is to convert 8R-hydroperoxy-eicosatetraenoic acid (8R-HPETE) to an allene epoxide, a reaction activated by the ferric heme, forming product via the Fe(IV)-OH intermediate, Compound II. Here we oxidized cAOS to Compound I (Fe(V)=O) using the oxygen donor iodosylbenzene and investigated the catalytic competence of the enzyme. 8R-hydroxyeicosatetraenoic acid (8R-HETE), the hydroxy analog of the natural substrate, normally unreactive with cAOS, was thereby epoxidized stereospecifically on the 9,10 double bond to form 8R-hydroxy-9R,10R-trans-epoxy-eicosa-5Z,11Z,14Z-trienoic acid as the predominant product; the turnover was 1/s using 100 μm iodosylbenzene. The enantiomer, 8S-HETE, was epoxidized stereospecifically, although with less regiospecificity, and was hydroxylated on the 13- and 16-carbons. Arachidonic acid was converted to two major products, 8R-HETE and 8R,9S-eicosatrienoic acid (8R,9S-EET), plus other chiral monoepoxides and bis-allylic 10S-HETE. Linoleic acid was epoxidized, whereas stearic acid was not metabolized. We conclude that when cAOS is charged with an oxygen donor, it can act as a stereospecific monooxygenase. Our results indicate that in the tyrosine-liganded cAOS, a catalase-related hemoprotein in which a polyunsaturated fatty acid can enter the active site, the enzyme has the potential to mimic the activities of typical P450 epoxygenases and some capabilities of P450 hydroxylases.  相似文献   

14.
Rhomboids are intra‐membrane serine proteases whose sequences are found in nearly all organisms. They are involved in a variety of biological functions in both eukaryotes and prokaryotes. Localization assays revealed that two Arabidopsis thaliana rhomboid‐like proteases (AtRBL), AtRBL8 and AtRBL9, are targeted to the chloroplast. Using transgenic plants expressing epitope‐tagged AtRBL9, we localized AtRBL9 to the chloroplast inner envelope membrane, with both its N‐ and C‐termini facing the stroma. Mass spectrometry analyses confirmed this localization, and suggested that this is also the case for AtRBL8. Both are proteins of very low abundance. The results of size‐exclusion chromatography implied that AtRBL9 forms homo‐oligomers. In search of a putative function, a comparative proteomic analysis was performed on wild‐type and double‐knockout plants, lacking both AtRBL8 and AtRBL9, using the iTRAQ method. Of 180 envelope proteins, the level of only a few was either increased or decreased in the mutant line. One of the latter, allene oxide synthase, is involved in jasmonic acid biosynthesis. This observation provides an explanation for the recently reported aberration in flower morphology that is associated with the loss of AtRBL8.  相似文献   

15.
16.
Role of nitric oxide in adaptation to hypoxia and adaptive defense   总被引:12,自引:0,他引:12  
Adaptation to hypoxia is beneficial in cardiovascular pathology related to NO shortage or overproduction. However, the question about the influence of adaptation to hypoxia on NO metabolism has remained open. The present work was aimed at the relationship between processes of NO production and storage during adaptation to hypoxia and the possible protective significance of these processes. Rats were adapted to intermittent hypobaric hypoxia in an altitude chamber. NO production was determined by plasma nitrite/nitrate level. Vascular NO stores were evaluated by relaxation of the isolated aorta to diethyldithiocarbamate. Experimental myocardial infarction was used as a model of NO overproduction; stroke-prone spontaneously hypertensive rats (SHR-SP) were used as a model of NO shortage. During adaptation to hypoxia, the plasma nitrite/nitrate level progressively increased and was correlated with the increase in NO stores. Adaptation to hypoxia prevented the excessive endothelium-dependent relaxation and hypotension characteristic for myocardial infarction. At the same time, the adaptation attenuated the increase in blood pressure and prevented the impairment of endothelium-dependent relaxation in SHR-SP. The data suggest that NO stores induced by adaptation to hypoxia can either bind excessive NO to protect the organism against NO overproduction or provide a NO reserve to be used in NO deficiency.  相似文献   

17.
Fusarium oxysporum is a devastating plant pathogen that oxidizes C18 fatty acids sequentially to jasmonates. The genome codes for putative dioxygenase (DOX)-cytochrome P450 (CYP) fusion proteins homologous to linoleate diol synthases (LDSs) and the allene oxide synthase (AOS) of Aspergillus terreus, e.g., FOXB_01332. Recombinant FOXB_01332 oxidized 18:2n-6 to 9S-hydroperoxy-10(E),12(Z)-octadecadienoic acid by hydrogen abstraction and antarafacial insertion of molecular oxygen and sequentially to an allene oxide, 9S(10)-epoxy-10,12(Z)-octadecadienoic acid, as judged from nonenzymatic hydrolysis products (α- and γ-ketols). The enzyme was therefore designated 9S-DOX-AOS. The 9S-DOX activity oxidized C18 and C20 fatty acids of the n-6 and n-3 series to hydroperoxides at the n-9 and n-7 positions, and the n-9 hydroperoxides could be sequentially transformed to allene oxides with only a few exceptions. The AOS activity was stereospecific for 9- and 11-hydroperoxides with S configurations. FOXB_01332 has acidic and alcoholic residues, Glu946-Val-Leu-Ser949, at positions of crucial Asn and Gln residues (Asn-Xaa-Xaa-Gln) of the AOS and LDS. Site-directed mutagenesis studies revealed that FOXB_01332 and AOS of A. terreus differ in catalytically important residues suggesting that AOS of A. terreus and F. oxysporum belong to different subfamilies. FOXB_01332 is the first linoleate 9-DOX with homology to animal heme peroxidases and the first 9-DOX-AOS fusion protein.  相似文献   

18.
19.
The isoenzyme composition and some properties of lipoxygenase isolated from the seeds and 10-day old sprouts of pea plant were studied. The enzyme activity assay, using gel- and ion-exchange chromatography, disc-electrophoresis in polyacrylamide gel, etc. revealed that the plant contains two lipoxygenase systems of unsaturated long-chain fatty acids oxidation. The existence of four lipoxygenase isoenzymes whose combination determines the type of lipoxygenase-catalyzed reactions of linoleic acid oxidation, has been confirmed.  相似文献   

20.
Oh K  Asami T  Matsui K  Howe GA  Murofushi N 《FEBS letters》2006,580(24):5791-5796
The inhibitory properties of a first synthetic jasmonic acid biosynthesis inhibitor, JM-8686, were investigated. Steady-state kinetic analysis indicates that the compound is a competitive inhibitor of allene oxide synthase (AOS) with a K(i) value of approximate 0.62+/-0.15 microM. Dialysis experiment indicates that AOS inactivation by JM-8686 is reversible. The optical difference spectroscopy analysis of JM-8686 and AOS interaction indicates that JM-8686 induced type II binding spectra with a K(d) value of approximate 1.6+/-0.2 microM, suggesting that JM-8686 binds to the prosthetic heme iron of AOS. Comparison of the inhibitory potency of the compound against HPL (CYP74B) from tomato revealed that JM-8686 was a highly selective inhibitor for AOS.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号