首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Summary The development of carbonate ramp depositional systems in the Neogene of the Mediterranean Region represents a widespread feature so far analysed in several papers. It is striking to note that the evolution of upper Miocene carbonate ramps, characterized by the presence of coralgal bioherms, highlights the events leading to the Messinian salinity crisis. The coralgal bioherms of preevaporite Messinian age exhibit fossil assemblages indicating marine waters with normal salinity, whereas stromatolitic and microbial encrustations underline the deterioration of the environment during the Messinian salinity crisis. Maiella Mountain is a broad carbonate massif located in Abruzzo (Central Italy). The late lower Oligocene-Messinian part of its stratigraphic succession consists of stacked non-tropical carbonate ramp deposits related to third and higher order sequences. The investigations performed in the southernmost portion of the massif allowed to recognize a complete fourth order carbonate depositional sequence on a homoclinal ramp of pre-evaporite Messinian age. The presence of small coralgal patch reefs and overlaying microbial encrustations is significant. A transect exhibits the stratigraphic framework of the area. The data show how local parameters play a notable role in the development of these deposits.  相似文献   

2.
Stromatolites have been used for inter-basinal biostratigraphic correlation, rock-stratigraphic correlation within individual sedimentary basins and for palaeoecological studies of various kinds. In the northern part of Victoria Island stromatolites are abundant in the uppermost part of the Gelenelg Formation, which is the lowest unit of the upper Proterozoic Shaler Group. Measurable attributes of these stromatolites include elongate mounds, intermound channel fillings, ridges and grooves, elongate collumns and inclined columns. In a widespread stromatolitic bank that forms the upper part of the Glenelg Formation, and also in stromatolites of the overlying Reynolds Point Formation, several of these features show a preferred orientation in a northeasterly direction. Herringbone cross-beds in associated sandy oolitic limestones show a northeast—southwest bimodal-bipolar distribution that is probably related to tidal activity. This similarity of directional features suggests that the stromatolite orientations are also likely to have been tidally influenced. If each stromatolitic bank were deposited diachronously then the northeasterly preferred orientation may be explained as being due to tidal currents active at a migrating shoreline that trended in a northwest-southeast direction. Alternatively, if, in the absence of metazoan competitors, the stromatolite builders contemporaneously occupied a large part of the basin floor, their northeasterly orientation may reflect tidal currents parallel to the length of an elongate embayment of the Precambrian sea, analogous in many ways to the present-day Persian Gulf. Such an interpretation, involving parallelism between coastline and elongate stromatolites, would differ from those of most earlier reports, in which elongate stromatolites have generally been assumed to have been oriented normal to the ancient shoreline.  相似文献   

3.
Summary Liassic sponge mounds of the central High Atlas (Rich area, northern Morocco) have a stratigraphic range from the Lower/Upper Sinemurian boundary interval up to the lower parts of the Lower Pliensbachian (Carixian). The base of Liassic sponge mounds consists of a transgressive discontinuity, i.e., a condensed section of microbioclastic wackestones with firm- and hardgrounds, ferruginous stromatolites, sponge spicules and ammonites. The top of Liassic sponge mounds is an irregular palaeorelief covered by cherty marl-limestone rhythmites, namely hemipelagic spicular wackestones with radiolaria. In the Rich area, section Foum Tillicht, the sponge mound succession has a total thickness of about 250 meters. Within this succession we distinguished between three mound intervals. The lower mound interval shows only small, meter-scale sponge mounds consisting of boundstones with lyssakine sponges, commensalicTerebella and the problematicumRadiomura. This interval forms a shallowing-upward sequence culminating in a bedded facies withTubiphytes, calcareous algae (Palaeodasycladus), sponge lithoclasts, coated grains, and thin rims of marine cement. The middle mound interval is aggradational with decametric mounds and distinct thrombolitic textures and reefal cavities. The mound assemblage here consists of hexactinellid sponges, lithistid demosponges, non-rigid demosponges,Radiomura, Serpula (Dorsoserpula), Terebella, encrusting bryozoa, and minor contributions by calcareous sponges, and excavating sponges (typeAka). Thrombolites are dendrolitic and may reach sizes of several tens of centimeters, similar to the maximum size of siliceous sponges. The upper mound interval appears retrogradational and geometries change upsection from mound shapes to flat lenses and level-bottom, biostromal sponge banks. The biotic assemblage is similar to that of the middle mound interval and there is no difference between mound and bank communities. The demise of sponge mounds is successive from regional spread in the Sinemurian to more localised spots in the Lower Pliensbachian. This reduction correlates with an increasing influence of pelagic conditions. At Foum Tillicht, sponge mounds lack any photic contribution and there is virtually no differentiation into subcommunities between mound surface and cavity dwelling organisms. There is some evidence that the heterotrophic food web of mound communities was sourced by oxygen minimum zone edge effects, namely microbial recycling of essential elements such as N and P. Basin geometry suggests a waterdepth of several 100's of meters, well below the photic zone and possibly only controlled by the depth range of the oxygen minimum zone. Palaeoceanographic conditions of well-stratified deeper water masses diminished gradually during widespread transgression across the Sinemurian to Pliensbachian boundary culminating in the Lower Pliensbachianibex ammonite zone.  相似文献   

4.
The shallow carbonate facies at the top of the Yacoraite Formation (Late Cretaceous–Early Palaeocene) in the Metán sub‐basin, Salta Basin (Cretaceous‐Eocene), northern Argentina, have domal stromatolitic boundstones with peculiar cavities, interpreted here as bioclaustrations. The cavities appear to have been produced by organisms that lived within the microbial mat contemporarily with its growth, producing a distinctive ichnofabric. This is the oldest reported record of bioclaustrations in stromatolites, and the first in shallow marine environments. The interpretation of the facies suggests a stressed shallow, restricted setting with variations in salinity, represented by an intertidal environment with an extensive tidal flat. Bioclaustrations, stromatolites, endobiont Yacoraite Formation (Cretaceous‐Palaeogene), Northwestern Argentina.  相似文献   

5.
This study is focused on the depositional model and paleoenvironmental distribution patterns of orbitolinids-rich microfacies in an Upper Cretaceous carbonate succession in the Kuh-e Mazar anticline in Kerman Province, Central Iran. Twelve microfacies indicating a tidal flat (including intertidal and supratidal) and an inner ramp (consisting of subtidal lagoon and orbitolinid–rudist barrier shoal) belonging to a shallow-water ramp-type carbonate platform were recognised. Generally, the orbitolinid associations in the carbonate ramp are indicative of shallow warm waters with normal salinity. The occurrence and abundance of thick or conical orbitolinids in both shoal and lagoon show that such associations were well adapted to different environmental conditions including different depth, substrate stability and water energy. The slightly discoidal, almost discoidal and discoidal forms were only present in the deeper depths of the environment including the lagoon with muddy and more stable substrates and lower water energy. However, the orbitolinids in the inner part of the carbonate ramp were scarce or almost absent in the deep inner to middle lagoon due to the deep restricted environmental conditions unfavourable for benthic marine life.  相似文献   

6.
The Anisian succession of Nakhlak (in Central Iran) is characterized by a siliciclastic succession with minor carbonate units, with massive carbonate mounds up to 50?m thick in its upper part. The mounds, constrained in age to the late Bithynian (Ismidicus Zone) by ammonoids and conodonts, are characterized by a flat top and a lateral pinch-out marked by clinostratified slopes (about 15° in dip). Stratigraphic and microfacies analyses document an inner part of the mound characterized by massive microbial carbonates with open-space structures (stromatactis) filled with fine-grained internal sediments and marine cements. Isolated sponges (up to 5?cm), serpulids and bryozoans are present, which grew on the calcimicrobial limestone. A narrow bioclastic margin (mainly with crinoids and brachiopods) produces most of the slope facies (consisting of bioclastic grainstone and packstone, with intraclasts from the inner part of the mounds) which interfinger basinward with volcaniclastic sandstones. The demise of carbonate productivity is marked on the top of the carbonate mounds by a condensed surface, rich in ammonoids, glaucony grains, and articulated crinoids, documenting a rapid drowning. Paleolatitude data support deposition in a tropical setting, and sedimentological constraints indicate deposition close to the fair-weather wave base, within the photic zone. The late Bithynian Nakhlak carbonate mounds developed before the appearance (documented since the Pelsonian in different parts of the world) of scleractinians which, despite the favorable environmental conditions, are absent at Nakhlak. The Nakhlak mounds thus represent one of the last occurrences of the microbial factories (which developed after the Permo-Triassic extinction event and persisted for most of the Middle Triassic, but with a gradually increasing role played by scleractinians) before the first appearance of the Mesozoic corals.  相似文献   

7.
The timing of recovery after the end‐Permian mass extinction has been a matter of debate, with some authors favouring a more rapid faunal recovery during the Early Triassic and others considering a more protracted biotic reestablishment spanning until the Middle Triassic. In this work, we investigated the lowermost Middle Triassic (Ladinian) carbonate deposits in the Catalan Basin to evaluate the potential environmental mechanisms and evolutionary constrains involved in the kilometre‐scale predominance of microbialites and the low‐diversity and high‐density Planolites association in a low‐latitude epicontinental setting. The studied sedimentary succession records the development from a low‐gradient, homoclinal microbial‐dominated carbonate ramp evolving towards a slightly inclined swell‐dominated type. Sedimentological analysis suggests that facies heterogeneity was controlled by pulses of syn‐rift tectonic activity, which compromised Peri‐Tethyan basin connectivity, reducing palaeobathymetry gradients. Although the monospecific nature of the studied trace‐fossil association may reflect the delayed recovery after the end‐Permian mass extinction, this is inconsistent with widespread, relatively high‐diversity ichnofaunas in carbonates elsewhere in the region. Since other Ladinian basins were characterized by the recurrence of microbial carbonates, low‐diversity ichnoassemblages and limited skeletal production, we hypothesize that shallow and restricted carbonate ramp settings harboured limited ecological complexity and widespread opportunistic colonization of the sediment when compared to coeval open marine locations.  相似文献   

8.
Marine stromatolites are generated through the interactions of environmental parameters and specific microbial processes. The activities of endolithic bacteria, that bore canals through calcium carbonate (CaCO(3)) sand grains (ooids) and reprecipitate the CaCO(3) as a single layer (i.e. micritic laminae) are especially important in the longer term stability of the stromatolite macrostructure. Image analysis and classification approaches have been used previously, but only seldom as a quantitative microscopic tool. Here, we develop a new approach that enables the quantification of microscale (i.e. micrometers to millimeters) spatial structure within marine stromatolites. To demonstrate our approach, images were acquired from two different layers of a stromatolite: "orange layers", where microboring of canals within ooids was relatively abundant, and "white layers" where microboring was greatly reduced or lacking. Images were then transformed into spatial maps. Computation of canal and ooid grain areas within each image was conducted and statistically compared between replicate samples from the two stromatolite layers. This allowed quantification of the areas of ooid grains that were microbored. Based on our results, we suggest that our method could be widely applicable to sedimentary environments, and other areas of fundamental research.  相似文献   

9.
Microbialites (stromatolites and thrombolites) are mineralized mat structures formed via the complex interactions of diverse microbial‐mat communities. At Highborne Cay, in the Bahamas, the carbonate component of these features is mostly comprised of ooids. These are small, spherical to ellipsoidal grains characterized by concentric layers of calcium carbonate and organic matter and these sand‐sized particles are incorporated with the aid of extra‐cellular polymeric substances (EPS), into the matrix of laminated stromatolites and clotted thrombolite mats. Here, we present a comparison of the bacterial diversity within oolitic sand samples and bacterial diversity previously reported in thrombolitic and stromatolitic mats of Highborne Cay based on analysis of clone libraries of small subunit ribosomal RNA gene fragments and lipid biomarkers. The 16S‐rRNA data indicate that the overall bacterial diversity within ooids is comparable to that found within thrombolites and stromatolites of Highborne Cay, and this significant overlap in taxonomic groups suggests that ooid sands may be a source for much of the bacterial diversity found in the local microbialites. Cyanobacteria were the most diverse taxonomic group detected, followed by Alphaproteobacteria, Gammaproteobacteria, Planctomyces, Deltaproteobacteria, and several other groups also found in mat structures. The distributions of intact polar lipids, the fatty acids derived from them, and bacteriohopanepolyols provide broad general support for the bacterial diversity identified through analysis of nucleic acid clone libraries.  相似文献   

10.
Summary The Middle Ordovician Duwibong Formation (about 100 m thick), Korea, comprises various lithotypes deposited across a carbonate ramp. Their stacking patterns constitute several kinds of meter-scale, shallowing-upward carbonate cycles. Lithofacies associations are grouped into four depositional facies: deep- to mid-ramp, shoal-complex, lagoonal, and tidal-flat facies. These facies are composed of distinctive depositional cycles: deep subtidal, shallow subtidal, restricted marine, and peritidal cycles, respectively. The subtidal cycles are capped by subtidal lithofacies and indicate incomplete shallowing to the peritidal zone. The restricted marine and peritidal cycles are capped by tidal flat lithofacies and show evidence of subaerial exposure. These cycles were formed by higher frequency sea-level fluctuations with durations of 120 ky (fifth order), which were superimposed on the longer term sea-level events, and by sediment redistribution by storm-induced currents and waves. The stratigraphic succession of the Duwibong Formation represents a general regressive trend. The vertical facies change records the transition from a deep- to mid-ramp to shoal, to lagoon, into a peritidal zone. The depositional system of the Duwibong Formation was influenced by frequent storms, especially on the deep ramp to mid-ramp seaward of ooid shoals. The storm deposits comprise about 20% of the Duwibong sequence.  相似文献   

11.
12.
Cretaceous shallow-marine carbonate rocks of SW Slovenia were deposited in the northern part of the Adriatic Carbonate Platform. A 560-m-thick continuous Upper Cenomanian to Santonian carbonate succession has been studied near Hru?ica Village in Matarsko Podolje. With regard to lithological, sedimentological, and stratigraphical characteristics, the succession has been divided into nine lithostratigraphic units, mainly reflecting regressive and transgressive intervals of larger scale. During the latest Cenomanian and Early Turonian, hemipelagic limestones were deposited on top of shallow-marine lagoon and peritidal Upper Cenomanian deposits indicating relative sea-level rise. Subsequently, the deeper marine depositional setting was gradually filled by clinoform bioclastic sand bodies overlain by peritidal and shallow-marine low-energy mainly lagoonal lithofacies. Similar lithofacies of predominately inner ramp/shelf depositional settings prevail over the upper part (i.e., Coniacian to Santonian) of the succession. In the area, the Upper Cetaceous carbonate rocks are separated from the overlying Lower Eocene (Upper Paleocene?) carbonate sequence by regional unconformity denoted by distinct paleokarstic features. On the Adriatic Carbonate Platform the deeper marine carbonate setting, developed at the Cenomanian/Turonian boundary, is usually correlated with OAE2 and related eustatic sea-level rise. Similarly, subsequent reestablished shallow-marine conditions are related to Late Turonian long- and short-term sea-level fall. However, we are suggesting that deeper marine deposits were deposited in a tectonically induced intraplatform basin formed simultaneously with the uplift of the northern and northeastern marginal parts of the Adriatic Carbonate Platform.  相似文献   

13.
Summary  This paper is focused on the facies associations of an Early-Middle Norian stratigraphic succession cropping outin the Northern Calabria (Buonvicino, Cosenza). These carbonate deposits, pertaining to the Verbicaro Unit, represent a dolomitized platform characterized by a clear dominance of automicrites over skeletal metazoans. On the basis of the chronostatigraphic data and sedimentary evolution, two stratigraphic units have been distinguished: the Lower Unit (object of the present paper) and the Upper Unit. The Lower Unit consists of an Early-Middle Norian high-relief prograding carbonate platform. The Upper Unit is represented by Middle p.p.-Upper Norian basinal deposits. Three main facies associations, indicative of different depositional settings, have been identified. The inner platform facies association is characterized by automicrite (cauliflower-columnar subordinate planar stromatolites) associated with detrital carbonates (intraclastic breccia, bioclastic grainstone and packstone). Apeculiar facies is represented by megalodontid-bearing beds. Mud-cracked horizons and low-developed teepees occur quite frequently. The margin facies association is dominated by automicrite (planar to low relief stromatolites associated with thrombolitic fenestral boundstone) and detrital carbonates with subaerial exposure features. The slope facies association includes detrital carbonates (breccia/megabreccia) associated with serpulid/sphinctozoan bioconstructions and automicrite (planar stromatolites/thrombolitic boundstone). The whole carbonate body is completely dolomitized; nevertheless the morphology and microarchitecture of carbonate components (cements, grains and automicrite) is still clearly recognizable. The dolomite Mg content ranges from 40 to 48 mole%, sometimes reaching the stoichiometric value. Cements, primary and late, represent a minor component of the rock volume; they occur more frequently on the margin and upper slope setting. Quantitative tacies analyses lead to the following conclusions:
–  ⊙ the entire platform is largely led by automicrite (50% in the inner platform, 70% in the margin, and 30% in the slope), with planar to columnar stromatolitic or thrombolitic fabrics;
–  ⊙ primary skeletal framework is usually missing, although small bioconstructions of sphinctozoans and, subordinately, serpulids, occur on the slope;
–  ⊙ automicrite has been affected by early cementation, as witnessed by non-gravitative microfabric, early fracturing and boring.
The sedimentary facies and the low-diversity fossil associations seem to indicate a stressed marine environment; the platform margin probably flanked an intra-platform basin, not an open marine basin.  相似文献   

14.
Summary During the Late Albian, Early and Middle Cenomanian in the NW part of the Adriatic Carbonate Platform (presentday Istria) specific depositional systems characterised by frequent lateral and vertical facies variations were established within a formerly homogeneous area, ranging from peritidal and barrier bars to the offshore-transition zone. In southern Istria this period is represented by the following succession: thin-bedded peritidal peloidal and stromatolitic limestones (Upper Albian); well-bedded foreshore to shoreface packstones/grainstones with synsedimentary dliding and slumping (Vraconian-lowermost Cenomanian); shoreface to off-shore storm-generated limestones (Lower Cenomanian); massive off-shore to shoreface carbonate sand bodies (Lower Cenomanian); prograding rudist bioclastic subaqueous dunes (Lower to Middle Cenomanian); rudist biostromes (Lower to Middle Cenomanian), and high-energy rudist and ostreid coquina beds within skeletal wackestones/packstones (Middle Cenomanian). Rapid changes of depositional systems near the Albian/Cenomanian transition in Istria are mainly the result of synsedimentary tectonics and the establishment of extensive rudist colonies producing enormous quantities of bioclastic material rather than the influence of eustatic changes. Tectonism is evidenced by the occurrence of sliding scars, slumps, small-scale synsedimentary faults and conspicuous bathymetric changes in formerly corresponding environments. Consequently, during the Early Cenomanian in the region of southern Istria, a deepening of the sedimentary environments occurred towards the SE, resulting in the establishment of a carbonate ramp system. Deeper parts of the ramp were below fair-weather wave base (FWWB), while the shallower parts were characterised by high-energy environments with extensive rudist colonies, and high organic production leading to the progradation of bioclastic subaqueous dunes. This resulted in numerous shallowing- and coarsening-upwards clinostratified sequences completely infilling formerly deeper environments, and the final re-establishment of the shallow-water environments over the entire area during the Middle Cenomanian.  相似文献   

15.
Summary In the castern Anti-Atlas (SE Morocco), a small sedimentary basin (Mader Basin) evolved during the late Palacozoic. The Middle Devonian deposits consist of shales and limestones with a thickness up to 700 m in the depocentre. Sedimentary structures and sole marks of Middle Devonian limestones indicate transport from the northwest and the south towards the basin centre, located in the central Mader area. Lithostratigraphic, biostratigraphic, and dynamic stratigraphic approaches were applied to correlate stratigraphic sections. Five correlatable large-scale base-level hemicycles were recognized in the Middle Devonian succession. Thickness trends of Middle Devonian deposits, regional correlations, and facies-trends reveal the geometry of a carbonate ramp. The carbonate ramp was slightly inclined (<1°) to the NE. A sedimentary wedge, consisting of limestones and limestone/marl alternations, was deposited during the Eifelian and marks the transition from the ramp to the adjacent basin. Middle Devonian water depths are estimated as close to and within the storm wave-base at the southern area of the ramp and far below storm wave-base in the northeastern part of the ramp. Shallowest conditions (inner-ramp environment), close or within the fairweather wave-base, existed during the early Givetian as documented by the abundance of recfal fauna (stromatoporoids, corals) and calcimicrobes (lumps, micritic envelopes) in the eastern and southeastern area of the ramp.  相似文献   

16.
This study describes a previously undocumented dolomitic stromatolite–thrombolite reef complex deposited within the upper part (Kazput Formation) of the c. 2.4–2.3 Ga Turee Creek Group, Western Australia, across the rise of atmospheric oxygen. Confused by some as representing a faulted slice of the younger c. 1.8 Ga Duck Creek Dolomite, this study describes the setting and lithostratigraphy of the 350‐m‐thick complex and shows how it differs from its near neighbour. The Kazput reef complex is preserved along 15 km of continuous exposure on the east limb of a faulted, north‐west‐plunging syncline and consists of 5 recognisable facies associations (A–E), which form two part regressions and one transgression. The oldest facies association (A) is characterised by thinly bedded dololutite–dolarenite, with local domical stromatolites. Association B consists of interbedded columnar and stratiform stromatolites deposited under relatively shallow‐water conditions. Association C comprises tightly packed columnar and club‐shaped stromatolites deposited under continuously deepening conditions. Clotted (thrombolite‐like) microbialite, in units up to 40 m thick, dominates Association D, whereas Association E contains bedded dololutite and dolarenite, and some thinly bedded ironstone, shale and black chert units. Carbon and oxygen isotope stratigraphy reveals a narrow range in both δ13Ccarb values, from ?0.22 to 0.97‰ (VPDB: average = 0.68‰), and δ18O values, from ?14.8 to ?10.3‰ (VPDB), within the range of elevated fluid temperatures, likely reflecting some isotopic exchange. The Kazput Formation stromatolite–thrombolite reef complex contains features of younger Paleoproterozoic carbonate reefs, yet is 300–500 Ma older than previously described Proterozoic examples worldwide. Significantly, the microbial fabrics are clearly distinct from Archean stromatolitic marine carbonate reefs by way of containing the first appearance of clotted microbialite and large columnar stromatolites with complex branching arrangements. Such structures denote a more complex morphological expression of growth than previously recorded in the geological record and may link to the rise of atmospheric oxygen.  相似文献   

17.
《Palaeoworld》2023,32(1):1-13
We report morphology and microstructure of the stromatolites of the Ganjingzi Formation in southern Liaoning. Sedimentologic and morphologic analyses indicate that the lower stromatolite mounds formed in a transgressive succession, while the stromatolite columns in the more complex upper biostrome changed vertically from dispersed growth to dense clumping. Biostratigraphic analysis shows that the stromatolites in the Ganjingzi Formation are similar to those from coeval strata in the Xuzhou-Huainan Region and in southern Jilin. Comparisons of the morphotype genera of stromatolites and the sedimentary setting between different areas, imply that sea-level was fluctuating in the east of the North China Craton (NCC) during the Ganjingzi interval and that the transgressions were beneficial to stromatolite growth, as indicated by the increased number of stromatolites in the study area.  相似文献   

18.
The Upper Ordovician (Sandbian; late Whiterockian to Mohawkian) Bromide Formation of south-central Oklahoma was deposited along a distally steepened ramp that descended into the Southern Oklahoma Aulacogen (SOA). It provides an unparalleled opportunity to examine a spectrum of marine facies that extended from back ramp peritidal settings to the center of the basin. The depositional history and environmental context of the unit are reconsidered using lithofacies analysis and the characterization of sequence stratigraphic patterns at a variety of hierarchical scales. Inner-ramp (above fair weather wavebase; FWWB) lithofacies suggest deposition in a range of environments: tidal flat, lagoon, shoreface, semi-restricted shallow subtidal, and bioclastic shoal. Middle-ramp environments between FWWB and storm wavebase (SWB) are thick and faunally diverse, and consist of rhythmically bedded marls, wackestone, packstone, and shales. Outer-ramp environments (below SWB) are represented by either fissile tan-green shale or thin-bedded carbonate mudstone and shale. Ramp stratigraphy, facies associations, and bounding surfaces suggest that three third-order depositional sequences are present in the Bromide. They demonstrate the transition from a clastic-dominated ramp in the late Whiterockian to a carbonate-dominated ramp in the Mohawkian, and show that the deposition of the Bromide was considerably more complex than the simple transgressive–regressive cycle traditionally used to describe accommodation dynamics in the basin. Meter and decameter-scale cycles (high-frequency sequences) are a common motif within the depositional sequences, and the Corbin Ranch Submember records an important peritidal succession prior to a major sequence boundary with the overlying Viola Springs Formation. New correlations based on measured sections, outcrop gamma-ray profiles, and subsurface well-logs document a novel pattern where the middle Bromide depositional sequence 2 (Mountain Lake Member) expanded down-ramp, whereas the succeeding carbonate-dominated sequence 3 (Pooleville Member) was progressively removed down-ramp. This demonstrates the existence of a major, regionally angular unconformity at the base of the Viola Springs Formation that has implications for basin evolution. Other implications include the validation of high-frequency sequences as a model for elementary cycles in mixed carbonate-siliciclastic systems and, more regionally, documentation of a new depositional sequence at the Turinian–Chatfieldian stage boundary.  相似文献   

19.
Summary Microbial reefs, together with stromatolitic mounds and ooid shoals, constitute massive limestones in Famennian platform marginal strata in Guilin, in sharp contrast to the well-known coral-stromatoporoid reefs in the Givetian and Frasnian. Microbes played a significant and important role as stabilizers in the Famennian carbonate deposits of Guilin. A reef at Zhaijiang was constructed byEpiphyton andRenalcis, and is representative of such carbonate buildups. The reef is situated 10 km west of Guilin and corresponds to a microbe-dominated platform margin carbonate complex. Organisms in the Zhaijiang microbial reef are low diversity and dominated by ostracods and two genera of microbes,Epiphyton andRenalcis. Other microbial genera such asSphaerocodium andWetheredella occur in most of reef facies in Guilin, but their role as reef builder is doubtful because they occur only in minor amounts. The same four genera occur in volumetrically significant amounts in the upper Devonian carbonate complexes of Alberta. Canada and Western Australia. However.Epiphyton is more abundant in the Guilin reefs. The Zhaijiang microbial reef developed above Famennian proximal slope faices, as suggested by reef architecture and paleogeographic setting. The facies sequence of the microbial reef can be divided into three parts. The lower part is composed of medium-bedded bioclastic grainstones with a few microbial framestone lithoclasts, representing a proximal slope facies. The middle part consists of thin-bedded mudstone and shale with limestone lenses that are thought to be low stand deposits. In some cross sections, mudstone and shale infilled tidal channels that developed in the bioclastic grainstones.Renalcis-Epiphyton framestone constitutes the upper part with massive stacking patterns. The reef is 35 m thick and over 50 m in width. Nine litho- and biofacies are recognized. Zhaijiang reef provides an example of a binder guild-dominated buildup in the almost vacant reef ecosystem of the Famennian and represents a characteristic kind of reef after the Frasnian/Famennian extinction.  相似文献   

20.
Summary Quasi modern non-skeletal carbonates and stromatolites occur from the Red Sea shelf, proximal to the reef systems and continuous into the axial basin (512 to 2704 metres below present sea level). The lithified carbonates are intermixed with carbonate ooze forming a hard layer of 50 to 90 cm thickness. Decimetric platey fragments of lithified carbonate exhibit planar to columnar stromatolitic growth forms, lumpy microbial fabrics and internal brecciation features. The ultrastructures of lithified carbonates are formed by cryptocrystalline carbonate, mainly as aragonite spherulites, Mg-calcite peloids, anhedral mosaics of Mg-calcite and aragonite. Biogenic overgrowth, intercalations of calciturbidites and the type of interlocking relationships in the crystalline fabrics all indicate precipitation at the sea floor or close by. Morphological and mineralogical similarity with previously published microfabrics indicate microbial mediation of carbonate precipitation. The hard layer was formed during the last glacial maximum (LGM, approx. 23ka to 13ka), when pelagic sedimentation rates droped to a minimum due to high surface water salinities. Precipitation of the excess calcium carbonate in the deep ocean was strongly enhanced because the Hanish sill at the southern end of the Red Sea blocked input of cold bottom waters which in turn caused bottom water with high temperatures and salinities (>50 ‰), and low oxygen content. The scenario of a starved greenhouse-type ocean for the Red Sea during the LGM compliments models for the origin of ancient (Mesozoic and Palaeozoic) deepwater stromatolites.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号