首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Alder is a typical species used for forest rehabilitation after disturbances because of its N2-fixing activities through microbes. To investigate forest dynamics of the carbon budget, we determined the aboveground and soil carbon content, carbon input by litterfall to belowground, and soil CO2 efflux over 2 years in 38-year-old alder plantations in central Korea. The estimated aboveground carbon storage and increment were 47.39 Mg C ha−1 and 2.17 Mg C ha−1 year−1. Carbon storage in the organic layer and in mineral soil in the topsoil to 30 cm depth were, respectively, 3.21 and 66.85 Mg C ha−1. Annual carbon input by leaves and total litter in the study stand were, respectively, 1.78 and 2.68 Mg C ha−1 year−1. The aboveground carbon increment at this stand was similar to the annual carbon inputs by total litterfall. The diurnal pattern of soil CO2 efflux was significantly different in May, August, and October, typically varying approximately twofold throughout the course of a day. In the seasonally observed pattern, soil CO2 efflux varied strongly with soil temperature; increasing trends were evident during the early growing season, with sustained high rates from mid May through late October. Soil CO2 efflux was related exponentially to soil temperature (R 2 = 0.85, < 0.0001), but not to soil water content. The Q 10 value for this plantation was 3.8, and annual soil respiration was estimated at 10.2 Mg C ha−1 year−1. An erratum to this article can be found at  相似文献   

2.
The ecosystem carbon budget was estimated in a Japanese Zoysia japonica grassland. The green biomass started to grow in May and peaked from mid-July to September. Seasonal variations in soil CO2 flux and root respiration were mediated by changes in soil temperature. Annual soil CO2 flux was 1,121.4 and 1,213.6 g C m−2 and root respiration was 471.0 and 544.3 g C m−2 in 2007 and 2008, respectively. The root respiration contribution to soil CO2 flux ranged from 33% to 71%. During the growing season, net primary production (NPP) was 747.5 and 770.1 g C m−2 in 2007 and 2008, respectively. The biomass removed by livestock grazing (GL) was 122.1 and 102.7 g C m−2, and the livestock returned 28.2 and 25.6 g C m−2 as fecal input (FI) in 2007 and 2008, respectively. The decomposition of FI (DL, the dry weight loss due to decomposition) was very low, 1.5 and 1.4 g C m−2, in 2007 and 2008. Based on the values of annual NPP, soil CO2 flux, root respiration, GL, FI, and DL, the estimated carbon budget of the grassland was 1.7 and 22.3 g C m−2 in 2007 and 2008, respectively. Thus, the carbon budget of this Z. japonica grassland ecosystem remained in equilibrium with the atmosphere under current grazing conditions over the 2 years of the study.  相似文献   

3.
Arctic-boreal landscapes are experiencing profound warming, along with changes in ecosystem moisture status and disturbance from fire. This region is of global importance in terms of carbon feedbacks to climate, yet the sign (sink or source) and magnitude of the Arctic-boreal carbon budget within recent years remains highly uncertain. Here, we provide new estimates of recent (2003–2015) vegetation gross primary productivity (GPP), ecosystem respiration (Reco), net ecosystem CO2 exchange (NEE; Reco − GPP), and terrestrial methane (CH4) emissions for the Arctic-boreal zone using a satellite data-driven process-model for northern ecosystems (TCFM-Arctic), calibrated and evaluated using measurements from >60 tower eddy covariance (EC) sites. We used TCFM-Arctic to obtain daily 1-km2 flux estimates and annual carbon budgets for the pan-Arctic-boreal region. Across the domain, the model indicated an overall average NEE sink of −850 Tg CO2-C year−1. Eurasian boreal zones, especially those in Siberia, contributed to a majority of the net sink. In contrast, the tundra biome was relatively carbon neutral (ranging from small sink to source). Regional CH4 emissions from tundra and boreal wetlands (not accounting for aquatic CH4) were estimated at 35 Tg CH4-C year−1. Accounting for additional emissions from open water aquatic bodies and from fire, using available estimates from the literature, reduced the total regional NEE sink by 21% and shifted many far northern tundra landscapes, and some boreal forests, to a net carbon source. This assessment, based on in situ observations and models, improves our understanding of the high-latitude carbon status and also indicates a continued need for integrated site-to-regional assessments to monitor the vulnerability of these ecosystems to climate change.  相似文献   

4.
To quantify organic matter mineralization at estuarine intertidal flats, we measured in situ sediment respiration rates using an infrared gas analyzer in estuarine sandy intertidal flats located in the northwestern Seto Inland Sea, Japan. In situ sediment respiration rates showed spatial and seasonal variations, and the mean of the rates is 38.8 mg CO2-C m−2 h−1 in summer. In situ sediment respiration rates changed significantly with sediment temperature at the study sites (r 2 = 0.70, p < 0.05), although we did not detect any significant correlations between the rates and sediment characteristics. We prepared a model for estimating the annual sediment respiration based on the in situ sediment respiration rates and their temperature coefficient (Q 10 = 1.8). The annual sediment respiration was estimated to be 92 g CO2-C m−2 year−1. The total amount of organic carbon mineralization for the entire estuarine intertidal flats through sediment respiration (43 t C year−1) is equivalent to approximately 25% of the annual organic carbon load supplied from the river basin of the estuary.  相似文献   

5.
Carbon dioxide is taken up by agricultural crops and released soon after during the consumption of agricultural commodities. The global net impact of this process on carbon flux to the atmosphere is negligible, but impact on the spatial distribution of carbon dioxide uptake and release across regions and continents is significant. To estimate the consumption and release of carbon by humans over the landscape, we developed a carbon budget for humans in the United States. The budget was derived from food commodity intake data for the US and from algorithms representing the metabolic processing of carbon by humans. Data on consumption, respiration, and waste of carbon by humans were distributed over the US using geospatial population data with a resolution of ~450 × 450 m. The average adult in the US contains about 21 kg C and consumes about 67 kg C year−1 which is balanced by the annual release of about 59 kg C as expired CO2, 7 kg C as feces and urine, and less than 1 kg C as flatus, sweat, and aromatic compounds. In 2000, an estimated 17.2 Tg C were consumed by the US population and 15.2 Tg C were expired to the atmosphere as CO2. Historically, carbon stock in the US human population has increased between 1790 and 2006 from 0.06 Tg to 5.37 Tg. Displacement and release of total harvested carbon per capita in the US is nearly 12% of per capita fossil fuel emissions. Humans are using, storing, and transporting carbon about the Earth’s surface. Inclusion of these carbon dynamics in regional carbon budgets can improve our understanding of carbon sources and sinks.  相似文献   

6.
The rate of change in atmospheric CO2 is significantly affected by the terrestrial carbon sink, but the size and spatial distribution of this sink, and the extent to which it can be enhanced to mitigate climate change are highly uncertain. We combined carbon stock (CS) and eddy covariance (EC) flux measurements that were collected over a period of 15 years (2001–2016) in a 55 year old 30 km2 pine forest growing at the semiarid timberline (with no irrigating or fertilization). The objective was to constrain estimates of the carbon (C) storage potential in forest plantations in such semiarid lands, which cover ~18% of the global land area. The forest accumulated 145–160 g C m?2 year?1 over the study period based on the EC and CS approaches, with a mean value of 152.5 ± 30.1 g C m?2 year?1 indicating 20% uncertainty in carbon uptake estimates. Current total stocks are estimated at 7,943 ± 323 g C/m2 and 372 g N/m2. Carbon accumulated mostly in the soil (~71% and 29% for soil and standing biomass carbon, respectively) with long soil carbon turnover time (59 years). Regardless of unexpected disturbances beyond those already observed at the study site, the results support a considerable carbon sink potential in semiarid soils and forest plantations, and imply that afforestation of even 10% of semiarid land area under conditions similar to that of the study site, could sequester ~0.4 Pg C/year over several decades.  相似文献   

7.
The effects of environmental factors on seasonal and annual variations in soil respiration were examined in the cool temperate Zoysia japonica grassland of Japan. Field measurements of soil respiration were conducted using a closed chamber method with an infrared gas analyzer at monthly intervals in the snow-free seasons from May 2007 to December 2009. There was an exponential relationship between soil respiration and soil temperature, and the soil temperature accounted for 85–86% of seasonal soil respiration variability. Moreover, a positive linear relationship between soil respiration and soil water content was detected in summer (R 2 = 0.55, p < 0.001), but not in spring or autumn. Annual soil respiration was estimated at 755, 719, and 1,037 g C m−2 year−1 in 2007, 2008, and 2009, respectively. These interannual variations in soil respiration might be influenced by the strength of precipitation during rainy seasons and the timing of each snow-melt. Our results suggest that the effects of rainfall and snow-melt events on soil respiration might be important factors to understand carbon dynamics in grassland ecosystem in Japan.  相似文献   

8.
Forests soils should be neither sinks nor sources of carbon in a long-term perspective. From a Swedish perspective the time since the last glaciation has probably not been long enough to reach a steady state, although changes are currently very slow. In a shorter perspective, climatic and management changes over the past 100 years have probably created imbalances between litter input to soils and organic carbon mineralisation. Using extant data on forest inventories, we applied models to analyse possible changes in the carbon stocks of Swedish forest soils. The models use tree stocks to provide estimates of tree litter production, which are fed to models of litter decomposition and from which carbon stocks are calculated. National soil carbon stocks were estimated to have increased by 3 Tg yr−1 or 12–13 g m−2 yr−1 in the period 1926–2000 and this increase will continue because soil stocks are far from equilibrium with current litter inputs. The figure obtained is likely to be an underestimation because wet sites store more carbon than predicted here and the inhibitory effect of nitrogen deposition on soil carbon mineralisation was neglected. Knowledge about site history prior to the calculation period determines the accuracy of current soil carbon stocks estimates, although changes can be more accurately estimated. This article has previously been published in issue 82/3, under DOI .  相似文献   

9.
This study evaluated the effects of forest fertilization on the forest carbon (C) dynamics in a 36-year-old larch (Larix leptolepis) plantation in Korea. Above- and below-ground C storage, litterfall, root decomposition and soil CO2 efflux rates after fertilization were measured for 2 years. Fertilizers were applied to the forest floor at rates of 112 kg N ha−1 year−1, 75 kg P ha−1 year−1 and 37 kg K ha−1 year−1 for 2 years (May 2002, 2003). There was no significant difference in the above-ground C storage between fertilized (41.20 Mg C ha−1) and unfertilized (42.25 Mg C ha−1) plots, and the C increment was similar between the fertilized (1.65 Mg C ha−1 year−1) and unfertilized (1.52 Mg C ha−1 year−1) plots. There was no significant difference in the soil C storage between the fertilized and unfertilized plots at each soil depth (0–15, 15–30 and 30–50 cm). The organic C inputs due to litterfall ranged from 1.57 Mg C ha−1 year−1 for fertilized to 1.68 Mg C ha−1 year−1 for unfertilized plots. There was no significant difference in the needle litter decomposition rates between the fertilized and unfertilized plots, while the decomposition of roots with 1–2 mm diameters increased significantly with the fertilization relative to the unfertilized plots. The mean annual soil CO2 efflux rates for the 2 years were similar between the fertilized (0.38 g CO2 m−2 h−1) and unfertilized (0.40 g CO2 m−2 h−1) plots, which corresponded with the similar fluctuation in the organic carbon (litterfall, needle and root decomposition) and soil environmental parameters (soil temperature and soil water content). These results indicate that little effect on the C dynamics of the larch plantation could be attributed to the 2-year short-term fertilization trials and/or the soil fertility in the mature coniferous plantation used in this study.  相似文献   

10.
We measured net ecosystem CO2 flux (F n) and ecosystem respiration (R E), and estimated gross ecosystem photosynthesis (P g) by difference, for two years in a temperate heath ecosystem using a chamber method. The exchange rates of carbon were high and of similar magnitude as for productive forest ecosystems with a net ecosystem carbon gain during the second year of 293 ± 11 g C m−2 year−1 showing that the carbon sink strength of heather-dominated ecosystems may be considerable when C. vulgaris is in the building phase of its life cycle. The estimated gross ecosystem photosynthesis and ecosystem respiration from October to March was 22% and 30% of annual flux, respectively, suggesting that both cold-season carbon gain and loss were important in the annual carbon cycle of the ecosystem. Model fit of R E of a classic, first-order exponential equation related to temperature (second year; R 2 = 0.65) was improved when the P g rate was incorporated into the model (second year; R 2 = 0.79), suggesting that daytime R E increased with increasing photosynthesis. Furthermore, the temperature sensitivity of R E decreased from apparent Q 10 values of 3.3 to 3.9 by the classic equation to a more realistic Q 10 of 2.5 by the modified model. The model introduces R photo, which describes the part of respiration being tightly coupled to the photosynthetic rate. It makes up 5% of the assimilated carbon dioxide flux at 0°C and 35% at 20°C implying a high sensitivity of respiration to photosynthesis during summer. The simple model provides an easily applied, non-intrusive tool for investigating seasonal trends in the relationship between ecosystem carbon sequestration and respiration.  相似文献   

11.
Although soil carbon dioxide (CO2) efflux from tropical forests may play an important role in global carbon (C) balance, our knowledge of the fluctuations and factors controlling soil CO2 efflux in the Asian tropics is still poor. This study characterizes the temporal and spatial variability in soil CO2 efflux in relation to temperature/moisture content and estimates annual efflux from the forest floor in an aseasonal intact tropical rainforest in Sarawak, Malaysia. Soil CO2 efflux varied widely in space; the range of variation averaged 17.4 μmol m−2 s−1 in total. While most CO2 flux rates were under 10 μmol m−2 s−1, exceptionally high fluxes were observed sporadically at several sampling points. Semivariogram analysis revealed little spatial dependence in soil CO2 efflux. Temperature explained nearly half of the spatial heterogeneity, but the effect varied with time. Seasonal variation in CO2 efflux had no fixed pattern, but was significantly correlated with soil moisture content. The correlation coefficient with soil moisture content (SMC) at 30 and 60 cm depth was higher than at 10 cm depths. The annual soil CO2 efflux, estimated from the relationship between CO2 efflux and SMC at 30 cm depth, was 165 mol m−2 year−1 (1,986 g C m−2 year−1). As this area is known to suffer severe drought every 4–5 years caused by the El Nino-Southern Oscillation, the results suggest that an unpredictable dry period might affect soil CO2 efflux, leading an annual variation in soil C balance.  相似文献   

12.
Soil respiration of forest ecosystems in Japan and global implications   总被引:3,自引:0,他引:3  
Within terrestrial ecosystems, soil respiration is one of the largest carbon flux components. We discuss the factors controlling soil respiration, while focusing on research conducted at the Takayama Experimental Site. Soil respiration was affected by soil temperature, soil moisture, rainfall events, typhoons, and root respiration. We consider the temporal and spatial variability of soil respiration at the Takayama Experimental Site and review the variability of annual soil respiration in Japanese forests. In the 26 compiled studies, the values of annual soil respiration ranged from 203 to 1,290 g C m−2 year−1, with a mean value of 669 g C m−2 year−1 (SD=264, CV=40). We note the need for more studies and data synthesis for the accurate prediction of soil respiration and soil carbon dynamics in Japanese forests. Finally, several methods for measuring soil respiration rates are compared and the implications of soil respiration rates for global climate change are discussed.  相似文献   

13.
Forest soil is a major component of terrestrial ecosystems for carbon sequestration and plays an important role in the global carbon cycle. Soil carbon flux and soil carbon pools were investigated in a poplar plantation chronosequence over a rotation in northwest China. Based on continuous field observation in 2007, the results showed that mean soil CO2 efflux rate was 5.54, 4.81, and 3.93 μmol CO2 m−2 s−1 for stands of 2-, 8-, and 15-year-old, respectively, during the growing season. Significant differences in soil respiration of three age classes were mainly because soil temperature, carbon allocation, and fine root growth changed greatly with stand age. Multiple regression analysis suggested that soil temperature and fine root biomass in the upper layer could explain 78–85% of the variation in soil respiration. Mineral soil C stock at 0–40 cm depth was 55.77, 55.09, and 58.14 t ha−1 in the 2-, 8-, and 15-year-old stands, respectively. The average rate of soil C sequestration was 0.13 t ha−1 year−1 following afforestation on former crop lands. Although the plantations had similar management practices and soil types since their establishment, many biotic and abiotic factors such as root biomass and turnover rate, soil condition of the plantations had undergone marked changes at different development stages, which could result in the remarkable differences in soil carbon flux and storage over a rotation. Our results highlight the importance of the development stage within a rotation of poplar plantation in assessment of soil carbon budget.  相似文献   

14.
Terrestrial ecosystems are an important sink for atmospheric carbon dioxide (CO2), sequestering ~30% of annual anthropogenic emissions and slowing the rise of atmospheric CO2. However, the future direction and magnitude of the land sink is highly uncertain. We examined how historical and projected changes in climate, land use, and ecosystem disturbances affect the carbon balance of terrestrial ecosystems in California over the period 2001–2100. We modeled 32 unique scenarios, spanning 4 land use and 2 radiative forcing scenarios as simulated by four global climate models. Between 2001 and 2015, carbon storage in California's terrestrial ecosystems declined by ?188.4 Tg C, with a mean annual flux ranging from a source of ?89.8 Tg C/year to a sink of 60.1 Tg C/year. The large variability in the magnitude of the state's carbon source/sink was primarily attributable to interannual variability in weather and climate, which affected the rate of carbon uptake in vegetation and the rate of ecosystem respiration. Under nearly all future scenarios, carbon storage in terrestrial ecosystems was projected to decline, with an average loss of ?9.4% (?432.3 Tg C) by the year 2100 from current stocks. However, uncertainty in the magnitude of carbon loss was high, with individual scenario projections ranging from ?916.2 to 121.2 Tg C and was largely driven by differences in future climate conditions projected by climate models. Moving from a high to a low radiative forcing scenario reduced net ecosystem carbon loss by 21% and when combined with reductions in land‐use change (i.e., moving from a high to a low land‐use scenario), net carbon losses were reduced by 55% on average. However, reconciling large uncertainties associated with the effect of increasing atmospheric CO2 is needed to better constrain models used to establish baseline conditions from which ecosystem‐based climate mitigation strategies can be evaluated.  相似文献   

15.
Quantification of carbon budgets and cycling in Japanese cedar (Cryptomeria japonica D. Don) plantations is essential for understanding forest functions in Japan because these plantations occupy about 20% of the total forested area. We conducted a biometric estimate of net ecosystem production (NEP) in a mature Japanese cedar plantation beneath a flux tower over a 4-year period. Net primary production (NPP) was 7.9 Mg C ha−1 year−1 and consisted mainly of tree biomass increment and aboveground litter production. Respiration was calculated as 6.8 (soil) and 3.3 (root) Mg C ha−1 year−1. Thus, NEP in the plantation was 4.3 Mg C ha−1 year−1. In agreement with the tower-based flux findings, this result suggests that the Japanese cedar plantation was a strong carbon sink. The biometric-based NEP was higher among most other types of Japanese forests studied. Carbon sequestration in the mature plantation was characterized by a larger increment in tree biomass and lower mortality than in natural forests. Land-use change from natural forest to Japanese cedar plantation might, therefore, stimulate carbon sequestration and change the carbon allocation of NPP from an increment in coarse woody debris to an increase in tree biomass.  相似文献   

16.
Denitrification efficiency [DE; (N2 − N/(DIN + N2 − N) × 100%)] as an indicator of change associated with nutrient over-enrichment was evaluated for 22 shallow coastal ecosystems in Australia. The rate of carbon decomposition (which can be considered a proxy for carbon loading) is an important control on the efficiency with which coastal sediments in depositional mud basins with low water column nitrate concentrations recycle nitrogen as N2. The relationship between DE and carbon loading is due to changes in carbon and nitrate (NO3) supply associated with sediment biocomplexity. At the DE optimum (500–1,000 μmol m−2 h−1), there is an overlap of aerobic and anaerobic respiration zones (caused primarily by the existence of anaerobic micro-niches within the oxic zone, and oxidized burrow structures penetrating into the anaerobic zone), which enhances denitrification by improving both the organic carbon and nitrate supply to denitrifiers. On either side of the DE optimum zone, there is a reduction in denitrification sites as the sediment loses its three-dimensional complexity. At low organic carbon loadings, a thick oxic zone with low macrofauna biomass exists, resulting in limited anoxic sites for denitrification, and at high carbon loadings, there is a thick anoxic zone and a resultant lack of oxygen for nitrification and associated NO3 production. We propose a trophic scheme for defining critical (sustainable) carbon loading rates and possible thresholds for shallow coastal ecosystems based on the relationship between denitrification efficiency and carbon loading for 17 of the 22 Australian coastal ecosystems. The denitrification efficiency “optimum” occurs between carbon loadings of about 50 and 100 g C m−2 year−1. Coastal managers can use this simple trophic scheme to classify the current state of their shallow coastal ecosystems and for determining what carbon loading rate is necessary to achieve any future state. Guest editors: J. H. Andersen & D. J. Conley Eutrophication in Coastal Ecosystems: Selected papers from the Second International Symposium on Research and Management of Eutrophication in Coastal Ecosystems, 20–23 June 2006, Nyborg, Denmark  相似文献   

17.
Gross production and carbon cycling in aPhyllostachys bambusoides stand in Kyoto Prefecture, central Japan, were determined, and then a compartment model showing the carbon stock and cycling within the ecosystem was developed. Aboveground carbon stock was 52.3 tC ha−1, increasing at a rate of 3.6 tC ha−1 year−1. Belowground carbon stock was 20.8 tC ha−1 in the root system and 92.0 tC ha−1 in the soil. Aboveground net production was 11.2 tC ha−1 year−1. Belowground net production was crudely estimated at 4.5 tC ha−1 year−1. The gross production was estimated at 41.8 tC ha−1 year−1 by summing the amount of outflow to the environment and the increment in biomass. Leaves consumed 13.7 tC ha−1 year−1 by respiration; the rest (41.8−13.7=28.1 tC ha−1 year−1) was surplus production of the leaves and flowed into the other compartments. The amounts of construction and maintenance respiration of the aboveground compartments were 3.4 and 18.5 tC ha−1 year−1, respectively. The annual amount of soil respiration was 11.2 tC ha−1 year−1. Soil respiration levels of 4.3 and 3.1 tC ha−1 year−1 were estimated for the flow of root respiration and root detritus. The proportion of net to gross production was 37%, which fell within the range of young and mature forests. A shorter life span of culms, compared to tree trunks, resulted in smaller biomass accumulation ratio (biomass/net production) in the ecosystem, of 4.66.  相似文献   

18.
Soil microbial respiration is a critical component of the global carbon cycle, but it is uncertain how properties of microbes affect this process. Previous studies have noted a thermodynamic trade-off between the rate and efficiency of growth in heterotrophic organisms. Growth rate and yield determine the biomass-specific respiration rate of growing microbial populations, but these traits have not previously been used to scale from microbial communities to ecosystems. Here we report seasonal variation in microbial growth kinetics and temperature responses (Q10) in a coniferous forest soil, relate these properties to cultured and uncultured soil microbes, and model the effects of shifting growth kinetics on soil heterotrophic respiration (Rh). Soil microbial communities from under-snow had higher growth rates and lower growth yields than the summer and fall communities from exposed soils, causing higher biomass-specific respiration rates. Growth rate and yield were strongly negatively correlated. Based on experiments using specific growth inhibitors, bacteria had higher growth rates and lower yields than fungi, overall, suggesting a more important role for bacteria in determining Rh. The dominant bacteria from laboratory-incubated soil differed seasonally: faster-growing, cold-adapted Janthinobacterium species dominated in winter and slower-growing, mesophilic Burkholderia and Variovorax species dominated in summer. Modeled Rh was sensitive to microbial kinetics and Q10: a sixfold lower annual Rh resulted from using kinetic parameters from summer versus winter communities. Under the most realistic scenario using seasonally changing communities, the model estimated Rh at 22.67 mol m−2 year−1, or 47.0% of annual total ecosystem respiration (Re) for this forest.  相似文献   

19.
This paper presents an integrated analysis of organic carbon (C) pools in soils and vegetation, within-ecosystem fluxes and net ecosystem exchange (NEE) in three 40-year old Norway spruce stands along a north-south climatic gradient in Sweden, measured 2001–2004. A process-orientated ecosystem model (CoupModel), previously parameterised on a regional dataset, was used for the analysis. Pools of soil organic carbon (SOC) and tree growth rates were highest at the southernmost site (1.6 and 2.0-fold, respectively). Tree litter production (litterfall and root litter) was also highest in the south, with about half coming from fine roots (<1 mm) at all sites. However, when the litter input from the forest floor vegetation was included, the difference in total litter input rate between the sites almost disappeared (190–233 g C m−2 year−1). We propose that a higher N deposition and N availability in the south result in a slower turnover of soil organic matter than in the north. This effect seems to overshadow the effect of temperature. At the southern site, 19% of the total litter input to the O horizon was leached to the mineral soil as dissolved organic carbon, while at the two northern sites the corresponding figure was approx. 9%. The CoupModel accurately described general C cycling behaviour in these ecosystems, reproducing the differences between north and south. The simulated changes in SOC pools during the measurement period were small, ranging from −8 g C m−2 year−1 in the north to +9 g C m−2 year−1 in the south. In contrast, NEE and tree growth measurements at the northernmost site suggest that the soil lost about 90 g C m−2 year−1. An erratum to this article can be found at  相似文献   

20.
North American prairie pothole wetlands are known to be important carbon stores. As a result there is interest in using wetland restoration and conservation programs to mitigate the effects of increasing greenhouse gas concentration in the atmosphere. However, the same conditions which cause these systems to accumulate organic carbon also produce the conditions under which methanogenesis can occur. As a result prairie pothole wetlands are potential hotspots for methane emissions. We examined change in soil organic carbon density as well as emissions of methane and nitrous oxide in newly restored, long-term restored, and reference wetlands across the Canadian prairies to determine the net GHG mitigation potential associated with wetland restoration. Our results indicate that methane emissions from seasonal, semi-permanent, and permanent prairie pothole wetlands are quite high while nitrous oxide emissions from these sites are fairly low. Increases in soil organic carbon between newly restored and long-term restored wetlands supports the conclusion that restored wetlands sequester organic carbon. Assuming a sequestration duration of 33 years and a return to historical SOC densities we estimate a mean annual sequestration rate for restored wetlands of 2.7 Mg C ha−1year−1 or 9.9 Mg CO2 eq. ha−1 year−1. Even after accounting for increased CH4 emissions associated with restoration our research indicates that wetland restoration would sequester approximately 3.25 Mg CO2 eq. ha−1year−1. This research indicates that widescale restoration of seasonal, semi-permanent, and permanent wetlands in the Canadian prairies could help mitigate GHG emissions in the near term until a more viable long-term solution to increasing atmospheric concentrations of GHGs can be found.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号