首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
To quantify the genetic diversity of Frankia bacteria associated with Alnus rubra in natural settings and to examine the relative importance of site age, management, and geographic location in structuring Frankia assemblages in A. rubra forests, root nodules from four A. rubra sites in the Pacific Northwest, USA were sampled. Frankia genetic diversity at each site was compared using sequence-based analyses of a 606 bp fragment of the nifH gene. At a 3% sequence similarity cutoff, a total of 5 Frankia genotypes were identified from 317 successfully sequenced nodules. Sites varied in the total number of genotypes present, but were typically dominated by only one or two genotypes. Phylogenetic analyses showed that all of the A. rubra-Frankia genotypes grouped with other Alnus-infective Frankia. Analysis of similarity (ANOSIM) and chi-square analyses indicated that Frankia assemblages were more strongly influenced by site age/management than geographic location. This study demonstrates that the Frankia assemblages in A. rubra forests have low genotype diversity, but that genotype abundance can differ significantly in forests of different age/management history.  相似文献   

2.
H2 uptake and H2-supported O2 uptake were measured in N2-fixing cultures of Frankia strain ArI3 isolated from root nodules of Alnus rubra. H2 uptake by intact cells was O2 dependent and maximum rates were observed at ambient O2 concentrations. No hydrogenase activity could be detected in NH4+-grown, undifferentiated filaments cultured aerobically indicating that uptake hydrogenase activity was associated with the vesicles, the cellular site of nitrogen fixation in Frankia. Hydrogenase activity was inhibited by acetylene but inhibition could be alleviated by pretreatment with H2. H2 stimulated acetylene reduction at supraoptimal but not suboptimal O2 concentrations. These results suggest that uptake hydrogenase activity in ArI3 may play a role in O2 protection of nitrogenase, especially under conditions of carbon limitation.  相似文献   

3.
Field performance of tissue cultured clones and seedlings of Alnus viridis ssp. crispa, A. glutinosa, A. incana, and A. japonica was assessed five years after outplanting in central Ontario. Half the individuals were inoculated with a mixture of four Frankia isolates prior to planting. Inoculation produced significant increases (25% to 33%) in biomass production of two clones of A. glutinosa and one of A. incana. Woody biomass increments for the first five years, averaged across all clones and seedlings, were highest in A. japonica and A. incana (4.3 and 3.7 Mg ha–1 yr–1, respectively). Individual tree growth improved markedly in lower slope positions, but total plot biomass did not show similar gains in downslope positions owing to higher mortality and aphid (Paraprociphilus tessellatus) infestation. Aphids occurred in 22% of Frankia-inoculated individuals, and 15% of non-inoculated individuals. The fastest growing species, A. incana and A. japonica, were most susceptible to aphid attack. Growth of the best clones of A. glutinosa and A. incana exceeded seedling growth by 51% and 76%, respectively. The high growth variation in clones of the same species with similar geographic origins and the excellent performance of tissue cultured stock suggest that rapid genetic gains in an Alnus breeding program might be obtained by clonal propagation.  相似文献   

4.
应用ARDRA技术研究Frankia菌多样性   总被引:4,自引:0,他引:4  
应用原核生物16SrDNA特异性引物rD1和fD1,对分自4个分类接种群的12株纯培养Frankia菌总DNA进行扩增,得到1条长约1500bp的扩增产物.选用2种内切酶HinfI,MspI对扩增产物进行酶切,得到稳定的酶切图谱.对图谱的分析结果表明,Frankia菌间存在极其丰富的遗传多样性.  相似文献   

5.
The effectivity of nodulation of Alnus rubra Bong, by Frankia isolates from A. rubra and Alnus glutinosa (L.) Gaertn. in Northern Britain was compared with strains from The Netherlands and North America, using plants grown in combined nitrogen-free conditions. All strains gave rise to spore (-) nodules, even when isolated from nodules from sites known to contain spore (+) nodules. Nodules of all plants evolved little hydrogen, probably due to the presence of an efficient uptake hydrogenase in the microsymbkmts. Nodule weight as a percentage of whole plant weight was higher for nodules of low specific activity (N fixed per unit weight nodules), attaining a maximum of 5.1% of plant dry weight in the least effective of the heterologous associations of A. glutinosa Frankia with A. rubra . The range of variation in nodule specific activity was much greater in heterologous than homologous associations, but nodules of high specific activity were found in both associations. However, plants that fixed most N during the growth period were not those with nodules of highest specific activity. The most effective associations were homologous symbioses, which combined good nodule growth per plant with satisfactory specific activity, fixing N at rates which would support superior plant growth under the prevailing growth conditions. Preliminary field experiments suggest that the most effective of the A. rubra isolates is suitable for use as an inoculant in nurseries. Strains isolated from A. glutinosa were more effective and showed a different order of effectivity in homologous symbioses compared with their association with A. rubra . An A. glutinosa strain was isolated, which stimulated satisfactory nodule growth and gave good nodule specific activity in both A. rubra and A. gtutinosa .  相似文献   

6.
The genetic diversity of Frankia populations in soil and in root nodules of sympatrically grown Alnus taxa was evaluated by rep-polymerase chain reaction (PCR) and nifH gene sequence analyses. Rep-PCR analyses of uncultured Frankia populations in root nodules of 12 Alnus taxa (n?=?10 nodules each) growing sympatrically in the Morton Arboretum near Chicago revealed identical patterns for nodules from each Alnus taxon, including replicate trees of the same host taxon, and low diversity overall with only three profiles retrieved. One profile was retrieved from all nodules of nine taxa (Alnus incana subsp. incana, Alnus japonica, Alnus glutinosa, Alnus incana subsp. tenuifolia, Alnus incana subsp. rugosa, Alnus rhombifolia, Alnus mandshurica, Alnus maritima, and Alnus serrulata), the second was found in all nodules of two plant taxa (A. incana subsp. hirsuta and A. glutinosa var. pyramidalis), and the third was unique for all Frankia populations in nodules of A. incana subsp. rugosa var. americana. Comparative sequence analyses of nifH gene fragments in nodules representing these three profiles assigned these frankiae to different subgroups within the Alnus host infection group. None of these sequences, however, represented frankiae detectable in soil as determined by sequence analysis of 73 clones from a Frankia-specific nifH gene clone library. Additional analyses of nodule populations from selected alders growing on different soils demonstrated the presence of different Frankia populations in nodules for each soil, with populations showing identical sequences in nodules from the same soil, but differences between plant taxa. These results suggest that soil environmental conditions and host plant genotype both have a role in the selection of Frankia strains by a host plant for root nodule formation, and that this selection is not merely a function of the abundance of a Frankia strain in soil.  相似文献   

7.
Little is known about Ceanothus-infective Frankia strains because no Frankia strains that can reinfect the host plants have been isolated from Ceonothus spp. Therefore, we studied the diversity of the Ceonothus-infective Frankia strains by using molecular techniques. Frankia strains inhabiting root nodules of nine Ceanothus species were characterized. The Ceanothus species used represent the taxonomic diversity and geographic range of the genus; therefore, the breadth of the diversity of Frankia strains that infect Ceanothus spp. was studied. DNA was amplified directly from nodular material by using the PCR. The amplified region included the 3′ end of the 16S rRNA gene, the intergenic spacer, and a large portion of the 23S rRNA gene. A series of restriction enzyme digestions of the PCR product allowed us to identify PCR-restriction fragment length polymorphism (RFLP) groups among the Ceanothus-infective Frankia strains tested. Twelve different enzymes were used, which resulted in four different PCR-RFLP groups. The groups did not follow the taxonomic lines of the Ceanothus host species. Instead, the Frankia strains present were related to the sample collection locales.  相似文献   

8.
Numerous pollen records provide evidence for the widespread range expansion of Alnus throughout Alaska and adjacent Canada during the middle Holocene. Because Alnus can fix atmospheric N2, this vegetational change probably had a profound effect on N availability and cycling. To assess this effect, we analyzed a sediment core from Grandfather Lake in southwestern Alaska for a suite of geochemical indicators, including elemental composition, biogenic silica (BSi) content, and carbon (C) and nitrogen (N) isotopes of organic matter. These data, in conjunction with a pollen record from the same site, are used to infer biogeochemical processes associated with the mid-Holocene Alnus expansion. The increase in Alnus pollen percentages from 10% to 70% circa 8000-7000 BP (14C years before present) suggests the rapid spread of Alnus shrub thickets on mountain slopes and riparian zones in the Grandfather Lake region. Coincident with this vegetational change, the mean value of the sediment BSi content increases from 20.4 to 106.2 mg/g, reflecting increased diatom productivity within the lake as a result of Alnus N2 fixation in the watershed soils and the associated N flux to the lake. Elevated aquatic productivity at this time is also supported by increased percentages of organic C and N, decreased C:N ratios, and decreased values of δ 13C. Furthermore, the δ 15N values of sediments increase substantially with the establishment of Alnus shrub thickets, suggesting enhanced N availability and accelerated N cycling within the lake and its watershed. Superimposed on a general trend of soil acidification throughout the postglacial period, soil acidity probably increased as a result of the Alnus expansion, as can be inferred from decreasing ratios of authigenic base cations to allogenic silica (Si) and increasing ratios of authigenic aluminum (Al) to allogenic Si. The ultimate cause of these mid-Holocene ecosystem changes was an increase in effective moisture in the region. Received 21 July 2000; accepted 3 January 2001.  相似文献   

9.
Nodulation (mean number of nodules per seedling) was 5 times greater for Elaeagnus angustifolia than for Alnus glutinosa overall when seedlings were grown in pots containing either an upland or an alluvial soil from central Illinois, USA. However, the upland Alfisol had 1.3 times greater nodulation capacity for A. glutinosa than for E. angustifolia. The presence of A. glutinosa trees on either soil was associated with a two-fold increase in nodulation capacity for E. angustifolia. Nodulation increases for soils under A. glutinosa were obtained for A. glutinosa seedlings in the Alfisol, but decreased nodulation for A. glutinosa seedlings occurred in the Mollisol. Greatest nodulation of E. angustifolia seedlings occurred near pH 6.6 for soil pH values ranging from 4.9 to 7.1, while greatest nodulation of A. glutinosa occurred at pH 4.9 over the same pH range. Nodulation was not affected by total soil nitrogen concentrations ranging from 0.09 to 0.20%. Mollisol pH was significantly lower under A. glutinosa trees than under E. angustifolia trees. For 4- to 8-year-old field-grown trees, A. glutinosa nodule weights were negatively correlated with soil pH, while for similar aged E. angustifolia trees nodulation in the acidic Alfisol was not detected.  相似文献   

10.
Wheeler  C. T.  Hughes  L. T.  Oldroyd  J.  Pulford  I. D. 《Plant and Soil》2001,231(1):81-90
The tolerance of nickel by Frankia in culture and in symbiosis with Alnus was determined. Yield of three Frankia strains was not affected significantly by 2.25 mM nickel when cultured in propionate medium containing hydolysed casein as nitrogen source. Yield of two strains in medium without combined nitrogen, and thus reliant on fixed nitrogen, was stimulated markedly by the same nickel concentration. Utilisation of nickel for synthesis of uptake hydrogenases is presumed to be the cause of enhanced nitrogenase activity.Although growth was reduced, treatment of 2-month-old seedlings with 0.025 mM nickel for 4 weeks did not affect nodulation significantly while nitrogenase activity was doubled. Nodulation and nitrogenase activity of seedlings receiving 0.075 mM nickel were inhibited markedly, while 0.5 mM nickel was lethal to all seedlings after 4 weeks of treatment. A few small, ineffective nodules were initiated early on some of the latter seedlings, suggesting that effects of nickel on host plant processes rather than Frankia are the primary cause of inhibition of nodulation. This interpretation is supported by the retention of substantial nitrogenase activity in 10-month-old plants 1 day after the treatment with 0.59 mM nickel, when the nickel content of roots and nodules was already maximal. No nitrogenase activity was detected after 3 days, by which time the leaves were almost completely necrotic. Over a 4 day period, most nickel was retained in the roots and nodules. Supplying histidine simultaneously at concentrations equal to, or in excess of, nickel prevented wilting and leaf necrosis, but did not increase translocation of nickel to the shoot.  相似文献   

11.
The identity of Frankia strains from nodules of Myrica gale, Alnus incana subsp. rugosa, and Shepherdia canadensis was determined for a natural stand on a lake shore sand dune in Wisconsin, where the three actinorhizal plant species were growing in close proximity, and from two additional stands with M. gale as the sole actinorhizal component. Unisolated strains were compared by their 16S ribosomal DNA (rDNA) restriction patterns using a direct PCR amplification protocol on nodules. Phylogenetic relationships among nodular Frankia strains were analyzed by comparing complete 16S rDNA sequences of study and reference strains. Where the three actinorhizal species occurred together, each host species was nodulated by a different phylogenetic group of Frankia strains. M. gale strains from all three sites belonged to an Alnus-Casuarina group, closely related to Frankia alni representative strains, and were low in diversity for a host genus considered promiscuous with respect to Frankia microsymbiont genotype. Frankia strains from A. incana nodules were also within the Alnus-Casuarina cluster, distinct from Frankia strains of M. gale nodules at the mixed actinorhizal site but not from Frankia strains from two M. gale nodules at a second site in Wisconsin. Frankia strains from nodules of S. canadensis belonged to a divergent subset of a cluster of Elaeagnaceae-infective strains and exhibited a high degree of diversity. The three closely related local Frankia populations in Myrica nodules could be distinguished from one another using our approach. In addition to geographic separation and host selectivity for Frankia microsymbionts, edaphic factors such as soil moisture and organic matter content, which varied among locales, may account for differences in Frankia populations found in Myrica nodules.  相似文献   

12.
The identity of Frankia strains from nodules of Myrica gale, Alnus incana subsp. rugosa, and Shepherdia canadensis was determined for a natural stand on a lake shore sand dune in Wisconsin, where the three actinorhizal plant species were growing in close proximity, and from two additional stands with M. gale as the sole actinorhizal component. Unisolated strains were compared by their 16S ribosomal DNA (rDNA) restriction patterns using a direct PCR amplification protocol on nodules. Phylogenetic relationships among nodular Frankia strains were analyzed by comparing complete 16S rDNA sequences of study and reference strains. Where the three actinorhizal species occurred together, each host species was nodulated by a different phylogenetic group of Frankia strains. M. gale strains from all three sites belonged to an Alnus-Casuarina group, closely related to Frankia alni representative strains, and were low in diversity for a host genus considered promiscuous with respect to Frankia microsymbiont genotype. Frankia strains from A. incana nodules were also within the Alnus-Casuarina cluster, distinct from Frankia strains of M. gale nodules at the mixed actinorhizal site but not from Frankia strains from two M. gale nodules at a second site in Wisconsin. Frankia strains from nodules of S. canadensis belonged to a divergent subset of a cluster of Elaeagnaceae-infective strains and exhibited a high degree of diversity. The three closely related local Frankia populations in Myrica nodules could be distinguished from one another using our approach. In addition to geographic separation and host selectivity for Frankia microsymbionts, edaphic factors such as soil moisture and organic matter content, which varied among locales, may account for differences in Frankia populations found in Myrica nodules.  相似文献   

13.
The primary objectives of this study were to determine (1) the exchange characteristics of various soil amendments using a range of salt solutions, (2) the effect of selected soil amendments on heavy metal (Cu2+, Pb2+, and Zn2+) availability, and (3) the effect of selected soil amendments on NH4 + and P availability. The CEC of zeolite and red mud obtained using solutions of 0.1?M BaCl2 and 0.1?M BaCl2/NH4Cl were significantly lower than values obtained using 1?M KCl and 1?M NH4Cl. The higher CEC obtained with monovalent cations indicated that larger divalent cations could not enter the mineralogical framework of zeolite and red mud, and, consequently, a number of exchange sites were only accessible to the smaller monovalent cations. These findings suggest that 1?M KCl and 1?M NH4NO3 should be used as the extracting solutions to obtain the best estimation of CEC and ECEC of red mud and zeolite. The ability of red mud, zeolite, and calcium phosphate (Ca-P), mixed at rates of 0%, 5%, 10%, and 20% (w/w), to sorb Cu2+, Pb2+, and Zn2+ generally followed the order: red mud>zeolite>>Ca-P, while the affinity sequence for these metals followed the order: Pb2+≥Cu2+>>Zn2+. The higher affinity of the sand/amendment mixtures for Pb2+ and Cu2+ relative to Zn2+ was attributed to metal hydrolysis and subsequent specific adsorption as Pb(OH)+ and Cu(OH)+. Zinc was considered to have been primarily sorbed as the divalent cation species. Rates of 5% (w/w) adequately reduced the availability of heavy metals to concentrations below environmental guidelines based on the Toxicity Characteristic Leaching Procedure. Red mud and zeolite added at a rate of 10% (w/w) to the A and B horizon of a sandy soil significantly increased their ability to remove NH4 + from solution, but had negligible effect on P sorption compared with unamended soils. Increased NH4 + removal was attributed to the associated increase in CEC and the greater selectivity of the exchange sites for this cation relative to resident exchangeable Ca2+ and Na+. The absence of P sorption by these two amendments was attributed to the high pH and predominantly negative surface charge of the red mud and the lack of sorption sites in zeolite. Gypsum, on the other hand, tended to depress NH4 + retention but markedly increased P sorption. The depressive effect on NH4 + was due to increased competition between NH4 + and Ca2 + for a limited number of exchange sites, while formation of calcium phosphates of low solubility was the possible mechanism for increased P sorption.  相似文献   

14.
The status of four Frankia strains isolated from a root nodule of Alnus glutinosa was established in a polyphasic study. Taxogenomics and phenotypic features show that the isolates belong to the genus Frankia. All four strains form extensively branched substrate mycelia, multilocular sporangia, vesicles, lack aerial hyphae, but contain meso-diaminopimelic acid as the diamino acid of the peptidoglycan, galactose, glucose, mannose, ribose, xylose and traces of rhamnose as cell wall sugars, iso-C16:0 as the predominant fatty acid, diphosphatidylglycerol, phosphatidylglycerol, phosphatidylinositol as the major polar lipids, have comparable genome sizes to other cluster 1, Alnus-infective strains with structural and accessory genes associated with nitrogen fixation. The genome sizes of the isolates range from 7.0 to 7.7 Mbp and the digital DNA G + C contents from 71.3 to 71.5 %. The four sequenced genomes are rich in biosynthetic gene clusters predicted to express for novel specialized metabolites, notably antibiotics. 16S rRNA gene and whole genome sequence analyses show that the isolates fall into two lineages that are closely related to the type strains of Frankia alni and Frankia torreyi. All of these taxa are separated by combinations of phenotypic properties and by digital DNA:DNA hybridization scores which indicate that they belong to different genomic species. Based on these results, it is proposed that isolates Agncl-4T and Agncl-10, and Agncl-8T and Agncl-18, be recognised as Frankia gtarii sp. nov. and Frankia tisai sp. nov. respectively, with isolates Agncl-4T (=DSM 107976T = CECT 9711T) and Agncl-8T (=DSM 107980T = CECT 9715T) as the respective type strains.  相似文献   

15.
Restoration of tallgrass prairie on former agricultural land is often impeded by failure to establish a diverse native species assemblage and by difficulties with nonprairie, exotic species. High levels of available soil nitrogen (N) on such sites may favor fast‐growing exotics at the expense of more slowly growing prairie species characteristic of low‐N soils. We tested whether reducing N availability through soil carbon (C) amendments could be a useful tool in facilitating successful tallgrass prairie restoration. We added 6 kg/m2 hardwood sawdust to experimental plots on an abandoned agricultural field in the Sandusky Plains of central Ohio, United States, increasing soil C by 67% in the upper 15 cm. This C amendment caused a 94% reduction in annual net N mineralization and a 27% increase in soil moisture but had no effect on total N or pH. Overall, plant mass after one growing season was reduced by 64% on amended compared with unamended soil, but this effect was less for prairie forbs (?34%) than for prairie grasses (?67%) or exotics (?62%). After the second growing season, only exotics responded significantly to the soil C amendment, with a 40% reduction in mass. The N concentration of green‐leaf tissue and of senescent leaf litter was also reduced by the soil C treatment in most cases. We conclude that soil C amendment imparts several immediate benefits for tallgrass prairie restoration––notably reduced N availability, slower plant growth, and lower competition from exotic species.  相似文献   

16.
Alnus hirsuta in Korea was measured to estimate the amount and pattern of genetic diversity and population structure. The mean genetic diversity within populations was 0.166. Korean alder populations have slightly high levels of genetic diversity compared to those of two Canadian alder species. The genetic differentiation among populations accounted for 9% of the total variation. The rate of gene flow was estimated high (Nm=2.63). Analysis of inbreeding coefficient, calculated for all polymorphic loci in each population, showed a substantial heterozygote deficiency relative to Hardy-Weinberg expectations. The mean G ST value of A. hirsuta in Korea was 0.087. The low value of G ST in this species, reflecting little spatial genetic differentiation, may indicate extensive gene flow. A relationship between the mean heterozygosity and annual rainfall showed a positive relationship (r 2=0.54, F=4.67). Received 8 August 1998/ Accepted in revised form 7 July 1999  相似文献   

17.
大气氮沉降或人类活动导致生态系统氮输入增加,可能会提高土壤氮含量水平,促进优势种的生长和减少环境异质性,从而使物种共存的生态位减少,群落物种多样性降低。为研究土壤氮含量的增加对森林群落乔木树种多样性的影响,本研究在西双版纳热带季节雨林随机设置了14个1 ha的样方,对各样方土壤总氮( TN)含量、乔木树种丰富度以及西双版纳热带季节雨林20 ha动态监测样地中各样方乔木树种及建群种望天树( Parashorea chinensis)生物量进行了调查。结果表明:土壤氮含量与乔木树种丰富度具有显著负相关而与群落及建群种望天树生物量具有显著正相关。我们推测其机制可能是:土壤氮含量增加促进了建群种望天树等的生长及群落生物量的积累,减少树种共存的生态位,由于竞争排斥等原因而导致群落树种丰富度降低。因此,减少生态系统人为氮输入,对于保护西双版纳热带季节雨林乔木树种多样性具有重要意义。  相似文献   

18.
Observed phenotypic variation in the lateral root branching density (LRBD) in maize (Zea mays) is large (1–41 cm−1 major axis [i.e. brace, crown, seminal, and primary roots]), suggesting that LRBD has varying utility and tradeoffs in specific environments. Using the functional-structural plant model SimRoot, we simulated the three-dimensional development of maize root architectures with varying LRBD and quantified nitrate and phosphorus uptake, root competition, and whole-plant carbon balances in soils varying in the availability of these nutrients. Sparsely spaced (less than 7 branches cm−1), long laterals were optimal for nitrate acquisition, while densely spaced (more than 9 branches cm−1), short laterals were optimal for phosphorus acquisition. The nitrate results are mostly explained by the strong competition between lateral roots for nitrate, which causes increasing LRBD to decrease the uptake per unit root length, while the carbon budgets of the plant do not permit greater total root length (i.e. individual roots in the high-LRBD plants stay shorter). Competition and carbon limitations for growth play less of a role for phosphorus uptake, and consequently increasing LRBD results in greater root length and uptake. We conclude that the optimal LRBD depends on the relative availability of nitrate (a mobile soil resource) and phosphorus (an immobile soil resource) and is greater in environments with greater carbon fixation. The median LRBD reported in several field screens was 6 branches cm−1, suggesting that most genotypes have an LRBD that balances the acquisition of both nutrients. LRBD merits additional investigation as a potential breeding target for greater nutrient acquisition.At least four major classes of plant roots can be distinguished based on the organ from which they originate: namely the seed, the shoot, the hypocotyl/mesocotyl, and other roots (Zobel and Waisel, 2010). The last class is lateral roots, which form in most plants the majority of the root length, but not necessarily of the root weight, as lateral roots have smaller diameter. Lateral roots start with the formation of lateral root primordia, closely behind the root tip of the parent root. These primordia undergo nine distinguishable steps, of which the last step is the emergence from the cortex of the parent root just behind the zone of elongation, usually only a few days after the first cell divisions that lead to their formation (Malamy and Benfey, 1997). However, not all primordia develop into lateral roots; some stay dormant (Dubrovsky et al., 2006), although dormancy of primordia may not occur in maize (Zea mays; Jordan et al., 1993; Ploshchinskaia et al., 2002). The final number of lateral roots is thereby dependent on the rate of primordia formation as well as the percentage of primordia that develop into lateral roots. This process of primordia formation and lateral root emergence is being studied intensively, including the genes that are activated during the different steps and the hormones regulating the process (López-Bucio et al., 2003; Dubrovsky et al., 2006; Osmont et al., 2007; Péret et al., 2009; Lavenus et al., 2013). Significant genotypic variation in the density of lateral roots has been observed, ranging from no lateral roots to 41 roots cm−1 in maize (Trachsel et al., 2010; Lynch, 2013). This suggests that clear tradeoffs exist for the development of lateral roots and that these genotypes have preprogrammed growth patterns that are adaptive to specific environments. While some of the variation for lateral root branching density (LRBD) that has been observed across environments, for example by Trachsel et al. (2010), is constitutive, many genotypes have strong plasticity responses of LRBD to variations in soil fertility (Zhu et al., 2005a; Osmont et al., 2007). Both the nutrient and carbon status of the plant and the local nutrient environment of the (parent) root tip influence LRBD. Many studies have documented these plasticity responses, and others have tried to unravel parts of the sensing and signaling pathways that regulate LRBD. The utility of root proliferation into a nutrient patch has been studied and debated (Robinson et al., 1999; Hodge, 2004), but much less so the utility of having fewer or more branches across the whole root system. Our understanding of the adaptive significance of variation in LRBD among genotypes is thereby limited, with many studies not accounting for relevant tradeoffs. In this study, we integrate several functional aspects of LRBD with respect to nutrient acquisition, root competition, and internal resource costs and quantify these functional aspects using the functional structural plant model SimRoot. SimRoot simulates plant growth with explicit representation of root architecture in three dimensions (Fig. 1; Supplemental Movie S1). The model focuses on the resource acquisition by the root system and carbon fixation by the shoot while estimating the resource utilization and requirements by all the different organs.

Table I.

Minimum, maximum, and median LRBD in different populations phenotyped by various researchers at several locations in the worldLocations are as follows: D, Juelich, Germany; PA, State College, PA; and SA, Alma, South Africa. Some of the experiments included nutrient treatments: LN, low nitrogen availability; and LP, low phosphorus availability. Data were collected by counting the number of roots along a nodal root segment. Data were supplied by the person indicated under source: H.S., H. Schneider; L.Y., L. York; A.Z., A. Zhan; and J.P., J.A. Postma. WiDiv, Wisconsin Diversity panel; IBM, intermated B73 × Mo17; NAM, nested association mapping.
PopulationNo. of GenotypesaExperimentLocationDateNutrient TreatmentsSourceLRBD
MinimumMaximumMedian
cm−1
WiDiv527FieldSA2010H.S.1159
400FieldSA2011, 2012H.S.0186
400FieldSA2013LNH.S.0136
IBM30FieldSA, PA2012, 2013, 2014LNL.Y.0416
18MesocosmsPA2013LNA.Z.1104
NAM1,235FieldSA2010, 2011, 2012H.S.0146
6RhizotronsD2011LN, LPJ.P.1144
Open in a separate windowaMeans for the individual treatments are presented in Supplemental Appendix S4, Figure S5.Open in a separate windowFigure 1.Rendering of two simulated maize root systems. The model presents 40-d-old maize root systems with 2 (left) and 20 (right) branches cm−1 major root axes. The simulations depicted here assumed that there were no nutrient deficiencies affecting growth. Carbon limitations do cause the laterals in the right root system to stay somewhat shorter. Different major axes, with their respective laterals, have different pseudocolors: light blue, primary root; green, seminal roots; red, crown roots; and yellow, brace roots. For animation of these root systems over time, see Supplemental Movie S1.The formation of lateral roots presumably increases the sink strength of the root system, promoting the development of greater root length and thereby greater nutrient and water acquisition. However, greater LRBD also places roots closer together, which may increase competition for nutrients and water among roots of the same plant, effectively reducing the uptake efficiency per unit of root length. This decrease in efficiency when the root system increases in size was nicely modeled by Berntson (1994). Furthermore, the metabolic costs of the construction and maintenance of the additional root length, either calculated in units of carbon or in terms of other limiting resources, may reduce the growth of other roots or the shoot (Lynch, 2007b). We can thereby logically derive that there will be an optimum number of lateral roots depending on the balance of the marginal cost of root production and the marginal utility of soil resource acquisition. Therefore, the optimal LRBD will depend on environmental conditions. It is not clear in the literature what the optimal branching density might be, and how different environmental factors shift this optimum to fewer or more lateral branches per centimeter of parent root. Considering the primacy of soil resources as pervasive limitations to plant growth, understanding the utility and tradeoffs of lateral root branching density is important in understanding the evolution of root architecture and plant environmental adaptation in general. In addition, such information would be useful for trait-based selection to develop cultivars with increased productivity on soils with suboptimal availability of nutrients. The necessity and prospects of developing such cultivars are outlined by Lynch (2007a, 2011).Here, we present results from root architectural simulations with which we estimated the optimal lateral branching density in maize in soils with variable availability of nitrogen and phosphorus. The model simulated the uptake benefits from having additional lateral roots, root competition as affected by the three-dimensional placement of roots over time, metabolic costs of lateral roots, and effects on whole-plant root architecture, notably with respect to rooting depth.  相似文献   

19.
Seasonal variations in environmental conditions influence the functioning of the whole ecosystem of tropical rain forests, but as yet little is known about how such variations directly influence the leaf gas exchange and transpiration of individual canopy tree species. We examined the influence of seasonal variations in relative extractable water in the upper soil layers on predawn leaf water potential, saturated net photosynthesis, leaf dark respiration, stomatal conductance, and tree transpiration of 13 tropical rain forest canopy trees (eight species) over 2 yr in French Guiana. The canopies were accessed by climbing ropes attached to the trees and to a tower. Our results indicate that a small proportion of the studied trees were unaffected by soil water depletion during seasonal dry periods, probably thanks to efficient deep root systems. The trees showing decreased tree water status (i.e., predawn leaf water potential) displayed a wide range of leaf gas exchange responses. Some trees strongly regulated photosynthesis and transpiration when relative extractable water decreased drastically. In contrast, other trees showed little variation, thus indicating good adaptation to soil drought conditions. These results have important applications to modeling approaches: indeed, precise evaluation and grouping of these response patterns are required before any tree‐based functional models can efficiently describe the response of tropical rain forest ecosystems to future changes in environmental conditions.  相似文献   

20.
在水培条件下,研究不同浓度磷影响大豆根冠中碳分配的结果表明:磷有效性对大豆根冠中碳分配的影响依赖于磷浓度与胁迫时间。磷浓度高于0.125mmol.L^-1或低磷胁迫7d以内,大豆根冠中碳分配受到的影响不显著。低磷胁迫14d的大豆的净光合速率和根呼吸速率均显著下降,根冠比显著提高。这显示长期低磷胁迫下大豆碳同化总量和根呼吸消耗的碳量虽然减少,但根系生长的碳消耗则增加,光合碳同化形成的碳水化合物向根部的分配是受到促进的。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号